1
|
Liaghati Mobarhan Y, Soong R, Lane D, Simpson AJ. In vivo comprehensive multiphase NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:427-444. [PMID: 32239574 DOI: 10.1002/mrc.4832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 06/11/2023]
Abstract
Traditionally, due to different hardware requirements, nuclear magnetic resonance (NMR) has developed as two separate fields: one dealing with solids, and one with solutions. Comprehensive multiphase (CMP) NMR combines all electronics and hardware (magic angle spinning [MAS], gradients, high power Radio Frequency (RF) handling, lock, susceptibility matching) into a universal probe that permits a comprehensive study of all phases (i.e., liquid, gel-like, semisolid, and solid), in intact samples. When applied in vivo, it provides unique insight into the wide array of bonds in a living system from the most mobile liquids (blood, fluids) through gels (muscle, tissues) to the most rigid (exoskeleton, shell). In this tutorial, the practical aspects of in vivo CMP NMR are discussed including: handling the organisms, rotor preparation, sample spinning, water suppression, editing experiments, and finishes with a brief look at the potential of other heteronuclei (2 H, 15 N, 19 F, 31 P) for in vivo research. The tutorial is aimed as a general resource for researchers interested in developing and applying MAS-based approaches to living organisms. Although the focus here is CMP NMR, many of the approaches can be adapted (or directly applied) using conventional high-resolution magic angle spinning, and in some cases, even standard solid-state NMR probes.
Collapse
Affiliation(s)
- Yalda Liaghati Mobarhan
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ronald Soong
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Lane
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Andre J Simpson
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Salem MA, Perez de Souza L, Serag A, Fernie AR, Farag MA, Ezzat SM, Alseekh S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020; 10:E37. [PMID: 31952212 PMCID: PMC7023240 DOI: 10.3390/metabo10010037] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/25/2019] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Plant-derived natural products have long been considered a valuable source of lead compounds for drug development. Natural extracts are usually composed of hundreds to thousands of metabolites, whereby the bioactivity of natural extracts can be represented by synergism between several metabolites. However, isolating every single compound from a natural extract is not always possible due to the complex chemistry and presence of most secondary metabolites at very low levels. Metabolomics has emerged in recent years as an indispensable tool for the analysis of thousands of metabolites from crude natural extracts, leading to a paradigm shift in natural products drug research. Analytical methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) are used to comprehensively annotate the constituents of plant natural products for screening, drug discovery as well as for quality control purposes such as those required for phytomedicine. In this review, the current advancements in plant sample preparation, sample measurements, and data analysis are presented alongside a few case studies of the successful applications of these processes in plant natural product drug discovery.
Collapse
Affiliation(s)
- Mohamed A. Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt;
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11787, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| |
Collapse
|
3
|
13C quantification in heterogeneous multiphase natural samples by CMP-NMR using stepped decoupling. Anal Bioanal Chem 2018; 410:7055-7065. [DOI: 10.1007/s00216-018-1306-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/03/2018] [Accepted: 08/03/2018] [Indexed: 01/29/2023]
|
4
|
Cai H, Jin Y, Cui X. Feasibility of Ultrafast High-Resolution Spectroscopy in the Analysis of Molecular-Mobility-Restricted Samples in Deuterium-Free Environments. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Honghao Cai
- Department of Physics; School of Science, Jimei University; Xiamen China
| | - Yali Jin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces; Xiamen University; Xiamen China
| | - Xiaohong Cui
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces; Xiamen University; Xiamen China
| |
Collapse
|
5
|
Santos A, Fonseca F, Lião L, Alcantara G, Barison A. High-resolution magic angle spinning nuclear magnetic resonance in foodstuff analysis. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Mori T, Tsuboi Y, Ishida N, Nishikubo N, Demura T, Kikuchi J. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of (13)C-labeled Plant Metabolites and Lignocellulose. Sci Rep 2015; 5:11848. [PMID: 26143886 PMCID: PMC4491710 DOI: 10.1038/srep11848] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/08/2015] [Indexed: 01/18/2023] Open
Abstract
Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components.
Collapse
Affiliation(s)
- Tetsuya Mori
- 1] Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-0810, Japan [2] Biotechnology Laboratory, Toyota Central R&D Labs, Inc., 41-1, Nagakute 480-1192, Japan
| | - Yuuri Tsuboi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Nobuhiro Ishida
- Biotechnology Laboratory, Toyota Central R&D Labs, Inc., 41-1, Nagakute 480-1192, Japan
| | - Nobuyuki Nishikubo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Taku Demura
- 1] RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Biomass Engineering Program, RIKEN Research Cluster for Innovation, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Jun Kikuchi
- 1] Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-0810, Japan [2] RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [3] Biomass Engineering Program, RIKEN Research Cluster for Innovation, 2-1 Hirosawa, Wako 351-0198, Japan [4] Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
7
|
Cai HH, Chen H, Lin YL, Feng JH, Cui XH, Chen Z. Feasibility of Ultrafast Intermolecular Single-Quantum Coherence Spectroscopy in Analysis of Viscous-Liquid Foods. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-0046-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Wałęsa R, Ptak T, Siodłak D, Kupka T, Broda MA. Experimental and theoretical NMR studies of interaction between phenylalanine derivative and egg yolk lecithin. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2014; 52:298-305. [PMID: 24639342 DOI: 10.1002/mrc.4064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/18/2014] [Accepted: 02/28/2014] [Indexed: 06/03/2023]
Abstract
The interaction of phenylalanine diamide (Ac-Phe-NHMe) with egg yolk lecithin (EYL) in chloroform was studied by (1)H and (13)C NMR. Six complexes EYL-Ac-Phe-NHMe, stabilized by N-H···O or/and C-H···O hydrogen bonds, were optimized at M06-2X/6-31G(d,p) level. The assignment of EYL and Ac-Phe-NHMe NMR signals was supported using GIAO (gauge including atomic orbital) NMR calculations at VSXC and B3LYP level of theory combined with STO-3Gmag basis set. Results of our study indicate that the interaction of peptides with lecithin occurs mainly in the polar 'head' of the lecithin. Additionally, the most probable lecithin site of H-bond interaction with Ac-Phe-NHMe is the negatively charged oxygen in phosphate group that acts as proton acceptor.
Collapse
Affiliation(s)
- Roksana Wałęsa
- Faculty of Chemistry, University of Opole, Oleska 48 Str., 45-052, Opole, Poland
| | | | | | | | | |
Collapse
|
9
|
Simpson AJ, Simpson MJ, Soong R. Nuclear magnetic resonance spectroscopy and its key role in environmental research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11488-11496. [PMID: 22909253 DOI: 10.1021/es302154w] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nuclear magnetic resonance (NMR) is arguably the most powerful and versatile tool in modern science. It has the capability to solve complex structures and interactions in situ even in complex heterogeneous multiphase samples such as soil, plants, and tissues. NMR has vast potential in environmental research and can provide insight into a diverse range of environmental processes at the molecular level be it identifying the binding site in human blood for a specific contaminant or the compositional dynamics of soil with climate change. Modern NMR-based metabonomics is elucidating contaminant toxicity and toxic mode of action rapidly and at sub lethal concentrations. Combined modern NMR approaches provide a powerful framework to better understand carbon cycling and sustainable agriculture, as well as contaminant fate, bioavailability, toxicity, sequestration, and remediation.
Collapse
Affiliation(s)
- Andre J Simpson
- Environmental NMR Centre, Department of Chemistry, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
10
|
Sánchez Pérez EM, García López J, Iglesias MJ, López Ortiz F, Toresano F, Camacho F. HRMAS-nuclear magnetic resonance spectroscopy characterization of tomato “flavor varieties” from Almería (Spain). Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Valentini M, Ritota M, Cafiero C, Cozzolino S, Leita L, Sequi P. The HRMAS-NMR tool in foodstuff characterisation. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2011; 49 Suppl 1:S121-S125. [PMID: 22290702 DOI: 10.1002/mrc.2826] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
High resolution magic angle spinning, that is, HRMAS, is a quite novel tool in NMR spectroscopy; it offers the almost unique opportunity of measuring intact tissues disguised as suspended or swollen in a deuterated solvent. The feasibility of (1)H-HRMAS-NMR in foodstuff characterisation has been exploited, but in spite of this, its applications are still limited. Metabolic profiling and biopolymer composition and aggregation are the topics investigated until now for raw vegetables, meat and processed foodstuff. Almost all known studies are reported in the next pages.
Collapse
Affiliation(s)
- Massimiliano Valentini
- Agricultural Research Council-Research Centre for Plant Soil System, Instrumental Centre of Tor Mancina, Monterotondo, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Koda M, Furihata K, Wei F, Miyakawa T, Tanokura M. F2-selective two-dimensional NMR spectroscopy for the analysis of minor components in foods. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2011; 49:710-716. [PMID: 22002587 DOI: 10.1002/mrc.2813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/12/2011] [Accepted: 07/24/2011] [Indexed: 05/31/2023]
Abstract
In this study, we propose F(2)-selective 2D NMR spectroscopy as an effective method to obtain high-quality spectra of minor components in complex foodstuffs. Selective excitation along the F(2) axis overcame the problems occurring in the conventional F(1)-selective 2D NMR spectroscopy. The technique was successfully applied to mango juice to provide high-quality TOCSY, DQF-COSY, and NOESY spectra of the minor components for the assignment of their signals. In addition, high-quality TOCSY spectra were obtained for the minor components of Japanese sake and honey. These results indicate that F(2)-selective 2D NMR spectroscopy will be useful for the non-destructive analysis of various foods.
Collapse
Affiliation(s)
- Masanori Koda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
13
|
Simpson AJ, McNally DJ, Simpson MJ. NMR spectroscopy in environmental research: from molecular interactions to global processes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:97-175. [PMID: 21397118 DOI: 10.1016/j.pnmrs.2010.09.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Affiliation(s)
- André J Simpson
- Environmental NMR Center, Department of Chemistry, University of Toronto, Ontario, Canada.
| | | | | |
Collapse
|
14
|
Pérez EMS, Iglesias MJ, Ortiz FL, Pérez IS, Galera MM. Study of the suitability of HRMAS NMR for metabolic profiling of tomatoes: Application to tissue differentiation and fruit ripening. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Laura M, Consonni R, Locatelli F, Fumagalli E, Allavena A, Coraggio I, Mattana M. Metabolic response to cold and freezing of Osteospermum ecklonis overexpressing Osmyb4. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:764-71. [PMID: 20619667 DOI: 10.1016/j.plaphy.2010.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 05/05/2023]
Abstract
The constitutive expression of the rice Osmyb4 gene in Arabidopsis plants gives rise to enhanced abiotic and biotic stress tolerance, probably by activating several stress-inducible pathways. However, the effect of Osmyb4 on stress tolerance likely depends on the genetic background of the transformed species. In this study, we explored the potential of Osmyb4 to enhance the cold and freezing tolerance of Osteospermum ecklonis, an ornamental and perennial plant native to South Africa, because of an increasing interest in growing this species in Europe where winter temperatures are low. Transgenic O. ecklonis plants were obtained through transformation with the Osmyb4 rice gene under the control of the CaMV35S promoter. We examined the phenotypic adaptation of transgenic plants to cold and freezing stress. We also analysed the ability of wild-type and transgenic Osteospermum to accumulate several solutes, such as proline, amino acids and sugars. Using nuclear magnetic resonance, we outlined the metabolic profile of this species under normal growth conditions and under stress for the first time. Indeed, we found that overexpression of Osmyb4 improved the cold and freezing tolerance and produced changes in metabolite accumulation, especially of sugars and proline. Based on our data, it could be of agronomic and economic interest to use this gene to produce Osteospermum plants capable of growing in open field, even during the winter season in climatic zone Z9.
Collapse
Affiliation(s)
- Marina Laura
- Unità di Ricerca per la Floricoltura e le Specie Ornamentali, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Corso Degli Inglesi 508, 18038 Sanremo (IM), Italy
| | | | | | | | | | | | | |
Collapse
|