1
|
Xiao Y, Li S, Jiang B, Liang X, Chu Y, Deng F. Effect of Co-Adsorbed Guest Adsorbates on the Separation of Ethylene/Ethane Mixtures on Metal-Organic Frameworks with Open Metal Sites. Chemistry 2024; 30:e202401006. [PMID: 38625163 DOI: 10.1002/chem.202401006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Direct determination of the equilibrium adsorption and spectroscopic observation of adsorbent-adsorbate interaction is crucial to evaluate the olefin/paraffin separation performance of porous adsorbents. However, the experimental characterization of competitive adsorption of various adsorbates at atomic-molecular level in the purification of multicomponent gas mixtures is challenging and rarely conducted. Herein, solid-state NMR spectroscopy is employed to examine the effect of co-adsorbed guest adsorbates on the separation of ethylene/ethane mixtures on Mg-MOF-74, Zn-MOF-74 and UTSA-74. 1H MAS NMR facilitates the determination of equilibrium uptake and adsorption selectivity of ethylene/ethane in ternary mixtures. The co-adsorption of H2O and CO2 significantly leads to the degradation of ethylene uptake and ethylene/ethane selectivity. The detailed host-guest and guest-guest interactions are unraveled by 2D 1H-1H spin diffusion homo-nuclear correlation and static 25Mg NMR experiments. The experimental results verify H2O coordinated on open metal sites can supply a new adsorption site for ethylene and ethane. The effects of guest adsorbates on the adsorption capacity and adsorption selectivity of ethylene/ethane mixtures are in the following order: H2O>CO2>O2. This work provides a direct approach for exploring the equilibrium adsorption and detailed separation mechanism of multicomponent gas mixtures using MOFs adsorbents.
Collapse
Affiliation(s)
- Yuqing Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Wuhan, 430074, China
| | - Xinmiao Liang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueying Chu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Smith ME. Recent progress in solid-state nuclear magnetic resonance of half-integer spin low-γ quadrupolar nuclei applied to inorganic materials. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:864-907. [PMID: 33207003 DOI: 10.1002/mrc.5116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
An overview is presented of recent progress in the solid-state nuclear magnetic resonance (NMR) observation of low-γ nuclei, with a focus on applications to inorganic materials. The technological and methodological advances in the last 20 years, which have underpinned the increased accessibility of low-γ nuclei for study by solid-state NMR techniques, are summarised, including improvements in hardware, pulse sequences and associated computational methods (e.g., first principles calculations and spectral simulation). Some of the key initial observations from inorganic materials of these nuclei are highlighted along with some recent (most within the last 10 years) illustrations of their application to such materials. A summary of other recent reviews of the study of low-γ nuclei by solid-state NMR is provided so that a comprehensive understanding of what has been achieved to date is available.
Collapse
Affiliation(s)
- Mark E Smith
- Vice-Chancellor and President's Office and Department of Chemistry, University of Southampton, Southampton, UK
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, UK
- Department of Physics, University of Warwick, Coventry, UK
| |
Collapse
|
3
|
Gervais C, Jones C, Bonhomme C, Laurencin D. Insight into the local environment of magnesium and calcium in low-coordination-number organo-complexes using 25Mg and 43Ca solid-state NMR: a DFT study. Acta Crystallogr C 2017; 73:208-218. [PMID: 28257015 DOI: 10.1107/s205322961601929x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022] Open
Abstract
With the increasing number of organocalcium and organomagnesium complexes under development, there is a real need to be able to characterize in detail their local environment in order to fully rationalize their reactivity. For crystalline structures, in cases when diffraction techniques are insufficient, additional local spectroscopies like 25Mg and 43Ca solid-state NMR may provide valuable information to help fully establish the local environment of the metal ions. In this current work, a prospective DFT investigation on crystalline magnesium and calcium complexes involving low-coordination numbers and N-bearing organic ligands was carried out, in which the 25Mg and 43Ca NMR parameters [isotropic chemical shift, chemical shift anisotropy (CSA) and quadrupolar parameters] were calculated for each structure. The analysis of the calculated parameters in relation to the local environment of the metal ions revealed that they are highly sensitive to very small changes in geometry/distances, and hence that they could be used to assist in the refinement of crystal structures. Moreover, such calculations provide a guideline as to how the NMR measurements will need to be performed, revealing that these will be very challenging.
Collapse
Affiliation(s)
- Christel Gervais
- Sorbonne Universités, UPMC - Paris 06, Collège de France, UMR CNRS 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Victoria 3800, Australia
| | - Christian Bonhomme
- Sorbonne Universités, UPMC - Paris 06, Collège de France, UMR CNRS 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR5253, CNRS UM ENSCM, CC1701, Pl. E. Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
4
|
O'Dell LA. The WURST kind of pulses in solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2013; 55-56:28-41. [PMID: 24183812 DOI: 10.1016/j.ssnmr.2013.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
WURST pulses (wideband, uniform rate, smooth truncation) were first introduced two decades ago by Kupče and Freeman as a means of achieving broadband adiabatic inversion of magnetisation for solution-state (13)C decoupling at high magnetic field strengths. In more recent years these pulses have found use in an increasingly diverse range of applications in solid-state NMR. This article reviews a number of recent developments that take advantage of WURST pulses, including broadband excitation, refocusing and cross polarisation for the acquisition of ultra-wideline powder patterns, signal enhancement for half-integer and integer spin quadrupolar nuclei, spectral editing, direct and indirectly observed (14)N overtone MAS, and symmetry-based homonuclear recoupling. Simple mathematical descriptions of WURST pulses and some brief theory behind their operation in the adiabatic and non-adiabatic regimes are provided, and various practical considerations for their use are also discussed.
Collapse
Affiliation(s)
- Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3220, Australia.
| |
Collapse
|
5
|
Burgess KMN, Xu Y, Leclerc MC, Bryce DL. Insight into Magnesium Coordination Environments in Benzoate and Salicylate Complexes through 25Mg Solid-State NMR Spectroscopy. J Phys Chem A 2013; 117:6561-70. [DOI: 10.1021/jp405145b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kevin M. N. Burgess
- Department of Chemistry
and Centre for Catalysis Research and
Innovation, University of Ottawa, 10 Marie
Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Yang Xu
- Department of Chemistry
and Centre for Catalysis Research and
Innovation, University of Ottawa, 10 Marie
Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Matthew C. Leclerc
- Department of Chemistry
and Centre for Catalysis Research and
Innovation, University of Ottawa, 10 Marie
Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - David L. Bryce
- Department of Chemistry
and Centre for Catalysis Research and
Innovation, University of Ottawa, 10 Marie
Curie Private, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
6
|
Griffin JM, Berry AJ, Ashbrook SE. Observation of "hidden" magnesium: first-principles calculations and 25Mg solid-state NMR of enstatite. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2011; 40:91-99. [PMID: 21871785 DOI: 10.1016/j.ssnmr.2011.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 05/31/2023]
Abstract
(25)Mg NMR parameters have been determined for two polymorphs of enstatite (MgSiO(3)), an important magnesium silicate phase present as a major component of the Earth's upper mantle. The crystal structures of both polymorphs contain two crystallographically distinct magnesium sites; however, only a single resonance is observed in (25)Mg MAS NMR spectra recorded at 14.1 and 20.0 T. First-principles calculations performed on geometry-optimised crystal structures reveal that the quadrupolar interaction for the second site is expected to be very large, resulting in extensive broadening of the spectral resonance, explaining its apparent absence in the NMR spectrum. (25)Mg QCPMG NMR experiments employing variable offset cumulative spectroscopy (VOCS) are used to observe the broadened site and enable measurement of NMR parameters. The large difference in quadrupolar interaction between the two crystallographic magnesium sites is rationalised qualitatively in terms of the distortion of the local coordination environment as well as longer-range effects using a simple point charge model.
Collapse
Affiliation(s)
- John M Griffin
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, UK
| | | | | |
Collapse
|
7
|
Kowalczyk RM, Kemp TF, Walker D, Pike KJ, Thomas PA, Kreisel J, Dupree R, Newton ME, Hanna JV, Smith ME. A variable temperature solid-state nuclear magnetic resonance, electron paramagnetic resonance and Raman scattering study of molecular dynamics in ferroelectric fluorides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:315402. [PMID: 21778562 DOI: 10.1088/0953-8984/23/31/315402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The local nuclear and electronic structures and molecular dynamics of the ferroelectric lattice in selected geometric fluorides (BaMgF(4), BaZnF(4), BaMg(1 - x)Mn(x)F(4) and BaMg(1 - x)Ni(x)F(4); x = 0.001 and 0.005) have been investigated. The (19)F and (25)Mg isotropic chemical shift δ(iso), (25)Mg quadrupolar coupling constants (C(q)) and asymmetry parameters (η) reflect the geometry of the coordination spheres. The zero-field splitting parameters |D| and |E| are consistent with distorted axial symmetry (low temperatures) and nearly rhombic symmetry (high temperatures) of octahedral Mn(2+) coordination. The high resolution of the nuclear magnetic resonance, electron paramagnetic resonance and phonon spectra are consistent with the highly ordered crystallographic structure. Combined multi-technique data evidence the subtle discontinuous changes in the temperature dependences of |D| and |E|, isotropic chemical shifts δ(iso) and signature parameters of Raman bands and suggest a discontinuous structural distortion of the fluoride octahedra. The temperature at which this change occurs depends on the ionic radius of the central ion of the octahedral site and is estimated to be ∼ 300 K for Zn(2+) fluorides and ∼ 240 K for Mg(2+) fluorides. This geometrical distortion modifies the lattice dynamics and originates from the rotation of the fluoride octahedra around a new direction approximately perpendicular to that related to the paraelectric-ferroelectric phase transition.
Collapse
Affiliation(s)
- Radoslaw M Kowalczyk
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhu J, Huang Y. A natural abundance solid-state 25Mg NMR study of layered magnesium phosphates. CAN J CHEM 2011. [DOI: 10.1139/v10-171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural abundance 25Mg solid-state magic-angle spinning and static NMR spectra of several representative layered magnesium phosphates were acquired at 21.1 and 9.4 T by using quadrupolar echo and double-frequency sweep quadrupolar Carr–Purcell–Meiboom–Gill pulse sequences. The spectra were dominated by the second-order quadrupolar interaction. The electric field gradient tensor parameters were extracted from the spectra via spectral simulations. These parameters, such as the quadrupolar coupling constant (CQ), appear to be sensitive to some parameters describing the distortion of the MgO6 octahedron in the layer. The empirical relationships between CQ and several structural parameters were established and used to obtain partial information on the Mg environment in a layered material (MgHPO4·1.2H2O) with unknown structure. Theoretical calculations suggest that the CQ values of the Mg sites are affected not only by the oxygen atoms in the first coordination sphere, but also by the spatial arrangements of the atoms in the second and third coordination spheres and beyond.
Collapse
Affiliation(s)
- Jianfeng Zhu
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
9
|
Affiliation(s)
- Shi Bai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
10
|
Cahill L, Hanna J, Wong A, Freitas JC, Yates J, Harris R, Smith M. Natural Abundance25Mg Solid-State NMR of Mg Oxyanion Systems: A Combined Experimental and Computational Study. Chemistry 2009; 15:9785-98. [DOI: 10.1002/chem.200900346] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Pallister PJ, Moudrakovski IL, Ripmeester JA. Mg-25 ultra-high field solid state NMR spectroscopy and first principles calculations of magnesium compounds. Phys Chem Chem Phys 2009; 11:11487-500. [DOI: 10.1039/b916076k] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|