1
|
Heiden-Hecht T, Wu B, Schwärzer K, Förster S, Kohlbrecher J, Holderer O, Frielinghaus H. New insights into protein stabilized emulsions captured via neutron and X-ray scattering: An approach with β-lactoglobulin at triacylglyceride-oil/water interfaces. J Colloid Interface Sci 2024; 655:319-326. [PMID: 37948805 DOI: 10.1016/j.jcis.2023.10.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
HYPOTHESIS To analyze protein stabilized emulsions, SAXS and SANS are emerging techniques capturing oil droplet radius, interfacial coverage and structure. Protein shape, thus protein structure change during interfacial adsorption with partial protein unfolding is detected via SAXS analysis at and below the monolayer concentration for proteins, known as critical interfacial concentration (CIC). SANS determines the same phenomena below and above the CIC, via contrast variation and coarse-grained modelling. EXPERIMENTS β-lactoglobulin concentration dependent SAXS experiments were performed focusing on molecular length scales to characterize protein shape in water, and interfacial structure in emulsions. Complementary SANS experiments with contrast variation via deuterated triacylglyceride-oil provided insight into oil droplet radius, interfacial coverage and structure via data analysis with scattering models and low-resolution shape reconstruction with the DENFERT model. FINDINGS SAXS and SANS experiments allowed to determine the interfacial structure below and above the CIC, as well as oil droplet radius and interfacial coverage. These findings were identified via Q-4 Porod scattering at low-Q, protein scattering at high Q, and a Q-2 scattering of the interface. Since SANS with accurate contrast variation highlights the interface in comparison to other techniques like FTIR, the presented results show a high impact to understand interfaces in emulsions.
Collapse
Affiliation(s)
- Theresia Heiden-Hecht
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany.
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Kuno Schwärzer
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Förster
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany; Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | | - Olaf Holderer
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| |
Collapse
|
2
|
Ansaribaranghar N, Romero-Zerón L, Marica F, Balcom BJ. Measurement of crude oil emulsion instability using magnetic resonance and magnetic resonance imaging. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
D'Agostino C, Preziosi V, Caiazza G, Maiorino MV, Fridjonsson E, Guido S. Effect of surfactant concentration on diffusion and microstructure in water-in-oil emulsions studied by low-field benchtop NMR and optical microscopy. SOFT MATTER 2023; 19:3104-3112. [PMID: 37039250 DOI: 10.1039/d3sm00113j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Emulsions are ubiquitous in many consumer products, including food, cosmetics and pharmaceuticals. Whilst their macroscopic characterisation is well-established, understanding their microscopic behaviour is very challenging. In our previous work we investigated oil-in-water emulsions by studying the effect of water on structuring and dynamics of such systems. In the present work, we investigate the effect of surfactant concentration on microstructure and diffusion within the water-in-oil emulsion system by using low-field pulsed-field gradient (PFG) NMR studies carried out with a benchtop NMR instrument, in conjunction with optical imaging. The results reveal that at high surfactant concentration the formation of smaller droplets gives rise to a third component in the PFG NMR attenuation plot, which is mostly attributed to restricted diffusion near the droplet boundaries. In addition, structuring effects due to increase in surfactant concentration at the boundaries could also contribute to further slowing down water diffusion at the boundaries. As the surfactant concentration decreases, the average droplet size becomes larger and both restriction and structuring effects at the droplet boundaries become less significant, as suggested by the PFG NMR plot, whereby the presence of a third diffusion component becomes less pronounced.
Collapse
Affiliation(s)
- Carmine D'Agostino
- Department of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester, M13 9PL, UK.
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum - Università di Bologna, Via Terracini, 28, 40131 Bologna, Italy
| | - Valentina Preziosi
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, UdR INSTM, Piazzale Tecchio, 80, 80125, Napoli, Italy.
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Giuseppina Caiazza
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, UdR INSTM, Piazzale Tecchio, 80, 80125, Napoli, Italy.
| | - Maria Vittoria Maiorino
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, UdR INSTM, Piazzale Tecchio, 80, 80125, Napoli, Italy.
| | - Einar Fridjonsson
- Department of Chemical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, UdR INSTM, Piazzale Tecchio, 80, 80125, Napoli, Italy.
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| |
Collapse
|
4
|
Xu Y, Nelson ML, Seymour JD, Mason TG. Signatures of nanoemulsion jamming and unjamming in stimulated-echo NMR. Phys Rev E 2023; 107:024605. [PMID: 36932564 DOI: 10.1103/physreve.107.024605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
The unjamming of elastic concentrated nanoemulsions into viscous dilute nanoemulsions, through dilution with the continuous phase, offers interesting opportunities for a pulsed-field gradient (PFG) NMR, particularly if the nanoemulsion is designed to take advantage of the nuclear specificity offered by NMR. Here, we make and study size-fractionated oil-in-water nanoemulsions using a perfluorinated copolymer silicone oil that is highly insoluble in the aqueous continuous phase. By studying these nanoemulsions using ^{19}F stimulated-echo PFG-NMR, we avoid any contribution from the aqueous continuous phase, which contains a nonfluorinated ionic surfactant. We find a dramatic change in the ^{19}F PFG-NMR decays at high field-gradient strengths as the droplet volume fraction, ϕ, is lowered through dilution. At high ϕ, observed decays as a function of field-gradient strength exhibit decay-to-plateau behavior indicating the jamming of nanodroplets, which contain ^{19}F probe molecules, in an elastic material reminiscent of a nanoporous solid. In contrast, at lower ϕ, only a simple decay is observed, indicating that the nanodroplets have unjammed and can diffuse over much larger distances. Through a comparison with bulk mechanical rheometry, we show that this dramatic change coincides with the loss of low-frequency shear elasticity of the nanoemulsion.
Collapse
Affiliation(s)
- Yixuan Xu
- Department of Materials Science and Engineering, University of California-Los Angeles, Los Angeles, California 90095, USA
| | - Madison L Nelson
- Department of Physics, Montana State University, Bozeman, Montana 59717-3920, USA
| | - Joseph D Seymour
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717-3920, USA
| | - Thomas G Mason
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, USA.,Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
Wang X, Anton H, Vandamme T, Anton N. Updated insight into the characterization of nano-emulsions. Expert Opin Drug Deliv 2023; 20:93-114. [PMID: 36453201 DOI: 10.1080/17425247.2023.2154075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION In most of the studies, nano-emulsion characterization is limited to their size distribution and zeta potential. In this review, we present an updated insight of the characterization methods of nano-emulsions, including new or unconventional experimental approaches to explore in depth the nano-emulsion properties. AREA COVERED We propose an overview of all the main techniques used to characterize nano-emulsions, including the most classical ones, up to in vitro, ex vivo and in vivo evaluation. Innovative approaches are then presented in the second part of the review that presents innovative, experimental techniques less known in the field of nano-emulsion such as the nanoparticle tracking analysis, small-angle X-ray scattering, Raman spectroscopy, and nuclear magnetic resonance. Finally, in the last part we discuss the use of lipophilic fluorescent probes and imaging techniques as an emerging tool to understand the nano-emulsion droplet stability, surface decoration, release mechanisms, and in vivo fate. EXPERT OPINION This review is mostly intended for a broad readership and provides key tools regarding the choice of the approach to characterize nano-emulsions. Innovative and uncommon methods will be precious to disclose the information potentially reachable behind a formulation of nano-emulsions, not always known in first intention and with conventional methods.
Collapse
Affiliation(s)
- Xinyue Wang
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Halina Anton
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, F-67000 Strasbourg, France
| | - Thierry Vandamme
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| |
Collapse
|
6
|
Heiden-Hecht T, Taboada ML, Brückner-Gühmann M, Karbstein HP, Gaukel V, Drusch S. Towards an improved understanding of spray-dried emulsions: Impact of the emulsifying constituent combination on characteristics and storage stability. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Nelis V, De Neve L, Balcaen M, Dewettinck K, Courtin T, Martins JC, Van der Meeren P. Influence of fat crystallization in W/O emulsions on the water droplet size determination by NMR diffusometry. J Colloid Interface Sci 2021; 598:314-323. [PMID: 33901855 DOI: 10.1016/j.jcis.2021.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022]
Abstract
HYPOTHESIS It is expected that low resolution (LR) NMR diffusometry enables (more) accurate water droplet size determination for solid-fat based water-in-oil (W/O) emulsions with (sub)-micron size water droplets in comparison to liquid-oil based W/O emulsions due to hindered extra-droplet water diffusion. EXPERIMENTS W/O emulsions with a volume-weighed mean diameter of about 1 µm and a solid fat content (SFC) ranging from 0% to 74% were produced. The aqueous phase contained the ionic marker tetraphenylphosphonium chloride (TPPCl). The water droplet size was estimated using LR and high resolution (HR) NMR diffusometry. FINDINGS HR-NMR diffusometry showed that the diffusion behavior of water and TPPCl was different, indicating water diffusion beyond the droplet's interfacial boundaries. From a certain SFC onwards, a slower echo decay was observed for the water molecules, thus decreasing the overestimation of the water droplet size in (sub)micron W/O emulsions. For those emulsions, the solid fat matrix is believed to hinder extra-droplet water diffusion, which is most likely to be related to the increased tortuosity of the diffusive path in the porous fat crystal network. Using LR-NMR, it can be verified whether the water echo attenuation is mono-exponential or bi-exponential by increasing the gradient pulse duration for the maximum gradient strength, which is more convenient for routine analysis compared to HR-NMR.
Collapse
Affiliation(s)
- Veronique Nelis
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium; Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Lorenz De Neve
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Mathieu Balcaen
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Koen Dewettinck
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Timothee Courtin
- NMR Structure and Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre S4, Krijgslaan 281, B-9000 Gent, Belgium
| | - José C Martins
- NMR Structure and Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre S4, Krijgslaan 281, B-9000 Gent, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium.
| |
Collapse
|
8
|
Balcaen M, De Neve L, Dewettinck K, Van der Meeren P. Effect of dilution on particle size analysis of w/o emulsions by dynamic light scattering. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1712216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Mathieu Balcaen
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Lorenz De Neve
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Koen Dewettinck
- Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Rudszuck T, Förster E, Nirschl H, Guthausen G. Low-field NMR for quality control on oils. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:777-793. [PMID: 30790362 DOI: 10.1002/mrc.4856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 05/15/2023]
Abstract
Oil is a prominent, but multifaceted material class with a wide variety of applications. Technical oils, crude oils as well as edibles are main subclasses. In this review, the question is addressed how low-field NMR can contribute in oil characterization as an analytical tool, mainly with respect to quality control. Prerequisite in the development of a quality control application, however, is a detailed understanding of the oils and of the measurement. Low-field NMR is known as a rich methodical toolbox that was and is explored and further developed to address questions about oils, their quality, and usability as raw materials, during production and formulation as well as in use.
Collapse
Affiliation(s)
- Thomas Rudszuck
- Institute for Mechanical Engineering and Mechanics, Karlsruher Institute of Technology (KIT), Karlsruhe, Germany
| | - Eva Förster
- Institute for Mechanical Engineering and Mechanics, Karlsruher Institute of Technology (KIT), Karlsruhe, Germany
| | - Hermann Nirschl
- Institute for Mechanical Engineering and Mechanics, Karlsruher Institute of Technology (KIT), Karlsruhe, Germany
| | - Gisela Guthausen
- Institute for Mechanical Engineering and Mechanics, Karlsruher Institute of Technology (KIT), Karlsruhe, Germany
- Engler-Bunte Institute, Water Science and Technology, Karlsruher Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
10
|
Klojdová I, Štětina J, Horáčková Š. W/O/W Multiple Emulsions as the Functional Component of Dairy Products. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Iveta Klojdová
- UCT PragueDepartment of Dairy, Fat and Cosmetics Technická 5 166 28 Prague Czech Republic
| | - Jiří Štětina
- UCT PragueDepartment of Dairy, Fat and Cosmetics Technická 5 166 28 Prague Czech Republic
| | - Šárka Horáčková
- UCT PragueDepartment of Dairy, Fat and Cosmetics Technická 5 166 28 Prague Czech Republic
| |
Collapse
|
11
|
Hale W, Rossetto G, Greenhalgh R, Finch G, Utz M. High-resolution nuclear magnetic resonance spectroscopy in microfluidic droplets. LAB ON A CHIP 2018; 18:3018-3024. [PMID: 30131995 DOI: 10.1039/c8lc00712h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A generic approach is presented that allows high-resolution NMR spectroscopy of water/oil droplet emulsions in microfluidic devices. Microfluidic NMR spectroscopy has recently made significant advances due to the design of micro-detector systems and their successful integration with microfluidic devices. Obtaining NMR spectra of droplet suspensions, however, is complicated by the inevitable differences in magnetic susceptibility between the chip material, the continuous phase, and the droplet phases. This leads to broadening of the NMR resonance lines and results in loss of spectral resolution. We have mitigated the susceptibility difference between the continuous (oil) phase and the chip material by incorporating appropriately designed air-filled structures into the chip. The susceptibilities of the continuous and droplet (aqueous) phases have been matched by doping the droplet phase with a Eu3+ complex. Our results demonstrate that this leads to a proton line width in the droplet phase of about 3 Hz, enabling high-resolution NMR techniques.
Collapse
Affiliation(s)
- William Hale
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | | | | | | | | |
Collapse
|
12
|
Awad TS, Asker D, Romsted LS. Evidence of coexisting microemulsion droplets in oil-in-water emulsions revealed by 2D DOSY 1H NMR. J Colloid Interface Sci 2018; 514:83-92. [DOI: 10.1016/j.jcis.2017.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
|
13
|
Balcaen M, De Neve L, Vermeir L, Courtin T, Dewettinck K, Sinnaeve D, Van der Meeren P. Increasing water solubility with decreasing droplet size limits the use of water NMR diffusometry in submicron W/O-emulsion droplet size analysis. J Colloid Interface Sci 2018; 514:364-375. [DOI: 10.1016/j.jcis.2017.12.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/28/2022]
|
14
|
Marques DS, Sørland G, Less S, Vilagines R. The application of pulse field gradient (PFG) NMR methods to characterize the efficiency of separation of water-in-crude oil emulsions. J Colloid Interface Sci 2018; 512:361-368. [DOI: 10.1016/j.jcis.2017.10.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
|
15
|
|
16
|
Effect of molecular exchange on water droplet size analysis as determined by diffusion NMR: The W/O/W double emulsion case. J Colloid Interface Sci 2016; 475:57-65. [DOI: 10.1016/j.jcis.2016.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 11/23/2022]
|
17
|
Vermeir L, Sabatino P, Balcaen M, Declerck A, Dewettinck K, Martins JC, Van der Meeren P. Effect of molecular exchange on water droplet size analysis in W/O emulsions as determined by diffusion NMR. J Colloid Interface Sci 2016; 463:128-36. [DOI: 10.1016/j.jcis.2015.10.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 11/24/2022]
|
18
|
Pochert A, Schneider D, Haase J, Linden M, Valiullin R. Diffusion and Molecular Exchange in Hollow Core-Shell Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10285-10295. [PMID: 26327167 DOI: 10.1021/acs.langmuir.5b02367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The diffusion behavior of small molecules in hollow core-shell nanocapsules was studied using pulsed field gradient NMR. By purposefully selecting the liquid saturating the hollow core and the porous shell and the solvent between the nanocapsules, two different situations corresponding to the excluded and admitted molecular exchange between the intra- and intercapsule liquids at the external boundary of the nanoparticles were covered. In the former case, corresponding to the reflective boundary condition for the molecules approaching the nanocapsule boundary, restricted diffusion in the complex pore space formed by the hollow core and the mesoporous shell was observed. The time-dependent diffusivities measured in the experiment were inter-related with the geometry of the intraparticle pore space. The thus assessed structural information was found to be in a good agreement with that provided by electron microscopy. In the case of the molecular exchange occurring between the two pools of molecules in the nanocapsules and between them, the diffusive dynamics of only the molecules remaining in the nanocapsules during the entire observation times was studied.
Collapse
Affiliation(s)
- A Pochert
- Institute of Inorganic Chemistry 2, University of Ulm , Ulm, 89081, Germany
| | | | | | - M Linden
- Institute of Inorganic Chemistry 2, University of Ulm , Ulm, 89081, Germany
| | | |
Collapse
|
19
|
Structure of and diffusion in O/W/O double emulsions by CLSM and NMR–comparison with W/O/W. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Jalilian B, Christiansen SH, Einarsson HB, Pirozyan MR, Petersen E, Vorup-Jensen T. Properties and prospects of adjuvants in influenza vaccination - messy precipitates or blessed opportunities? MOLECULAR AND CELLULAR THERAPIES 2013; 1:2. [PMID: 26056568 PMCID: PMC4448954 DOI: 10.1186/2052-8426-1-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/10/2013] [Indexed: 01/09/2023]
Abstract
Influenza is a major challenge to healthcare systems world-wide. While prophylactic vaccination is largely efficient, long-lasting immunity has not been achieved in immunized populations, at least in part due to the challenges arising from the antigen variation between strains of influenza A virus as a consequence of genetic drift and shift. From progress in our understanding of the immune system, the mode-of-action of vaccines can be divided into the stimulation of the adaptive system through inclusion of appropriate vaccine antigens and of the innate immune system by the addition of adjuvant to the vaccine formulation. A shared property of many vaccine adjuvants is found in their nature of water-insoluble precipitates, for instance the particulate material made from aluminum salts. Previously, it was thought that embedding of vaccine antigens in these materials provided a "depot" of antigens enabling a long exposure of the immune system to the antigen. However, more recent work points to a role of particulate adjuvants in stimulating cellular parts of the innate immune system. Here, we briefly outline the infectious medicine and immune biology of influenza virus infection and procedures to provide sufficient and stably available amounts of vaccine antigen. This is followed by presentation of the many roles of adjuvants, which involve humoral factors of innate immunity, notably complement. In a perspective of the ultrastructural properties of these humoral factors, it becomes possible to rationalize why these insoluble precipitates or emulsions are such a provocation of the immune system. We propose that the biophysics of particulate material may hold opportunities that could aid the development of more efficient influenza vaccines.
Collapse
Affiliation(s)
- Babak Jalilian
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Stig Hill Christiansen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Halldór Bjarki Einarsson
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark ; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehdi Rasoli Pirozyan
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Eskild Petersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark ; Department of Infectious Medicine (Q), Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
21
|
Hughes E, Maan AA, Acquistapace S, Burbidge A, Johns ML, Gunes DZ, Clausen P, Syrbe A, Hugo J, Schroen K, Miralles V, Atkins T, Gray R, Homewood P, Zick K. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions. J Colloid Interface Sci 2013; 389:147-56. [DOI: 10.1016/j.jcis.2012.07.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 07/01/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
22
|
Schuster S, Bernewitz R, Guthausen G, Zapp J, Greiner AM, Köhler K, Schuchmann HP. Analysis of W1/O/W2 double emulsions with CLSM: Statistical image processing for droplet size distribution. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2012.06.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|