1
|
Impact of Surfactants on the Performance of Clopidogrel-Copovidone Amorphous Solid Dispersions: Increased Drug Loading and Stabilization of Nanodroplets. Pharm Res 2022; 39:167-188. [PMID: 35013849 DOI: 10.1007/s11095-021-03159-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Surfactants are increasingly being added to amorphous solid dispersion (ASDs) formulations to enhance processability and release performance. The goal of the current work was to investigate the impact of cationic, anionic and non-ionic surfactants on the rate and extent of clopidogrel (CPD) release from copovidone-based ASDs. METHODS CPD release was evaluated for ASDs with different drug loadings using a surface normalized intrinsic dissolution apparatus. Studies were also carried out using dynamic light scattering, zeta potential measurements, and nuclear magnetic resonance spectroscopy to probe the impact of surfactants on drug-rich nanodroplet physical stability and clopidogrel-surfactant interactions. RESULTS CPD ASDs showed good release for drug loadings as high as 40%, before the release fell off a cliff at higher drug loadings. Only sodium dodecyl sulfate, added at a 5% level, was able to improve the release at 50% drug loading, with other surfactants proving to be ineffective. However, some of the surfactants evaluated did show some benefits in improving nanodroplet stability against size enlargement. Ionic and non-ionic surfactants were observed to interact differently with CPD-rich nanodroplets, and variations in the kinetics and morphology of water-induced phase separation were noted in the presence and absence of surfactants in ASD films. CONCLUSIONS In summary, addition of surfactants to ASD formulations may lead to some improvements in formulation performance, but predictive capabilities and mechanisms of surfactant effect still require further studies.
Collapse
|
2
|
Ryu S, Muramatsu T, Furihata K, Wei F, Koda M, Miyakawa T, Tanokura M. NMR-based metabolic profiling and comparison of Japanese persimmon cultivars. Sci Rep 2019; 9:15011. [PMID: 31628382 PMCID: PMC6802078 DOI: 10.1038/s41598-019-51489-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/02/2019] [Indexed: 11/09/2022] Open
Abstract
Persimmons are a traditional, autumnal, and healthy fruit commonly consumed in Japan and East Asia based on the saying, "a persimmon a day keeps the doctor away." The differences in metabolites among five major Japanese persimmon cultivars were investigated using a nuclear magnetic resonance (NMR)-based metabolomics approach. By using a broadband water suppression enhanced through T1 effects (WET) method for the sensitive detection of minor metabolites, better discrimination among cultivars and more informative details regarding their metabolic differences have been achieved compared to those achieved in conventional 1H NMR sequences. Among the nonastringent cultivars analyzed, the Taishu cultivar has the highest abundance of amino acids. The Matsumotowase-Fuyu cultivar contains ethyl-β-glycosides as characteristic components, which may relate to fruit softening. Citric acid concentration is higher in Maekawa Jiro than in other nonastringent cultivars. Among the two astringent cultivars analyzed, ethanol was significantly higher in Hiratanenashi than in Yotsumizo, which indicates different reactivity during deastringency treatments. The present study proposes an efficient and relatively quantitative metabolomics approach based on broadband WET NMR spectra.
Collapse
Affiliation(s)
- Shoraku Ryu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomonari Muramatsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Furihata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Feifei Wei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masanori Koda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
3
|
Tanaka K, Oouchi M, Hayashi F, Maeda H, Waki H. Structural Analysis of the End Groups and Substructures of Commercial Poly(ethylene terephthalate) by Multiple-WET 1H/13C NMR. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kimiko Tanaka
- Mitsui Chemical Analysis & Consulting Service Inc., 580-32 Nagaura, Sodegaura, Chiba, 299-0265, Japan
- NMR Facility, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Muneki Oouchi
- Mitsui Chemical Analysis & Consulting Service Inc., 580-32 Nagaura, Sodegaura, Chiba, 299-0265, Japan
- NMR Facility, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Fumiaki Hayashi
- Mitsui Chemical Analysis & Consulting Service Inc., 580-32 Nagaura, Sodegaura, Chiba, 299-0265, Japan
- NMR Facility, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hideaki Maeda
- Mitsui Chemical Analysis & Consulting Service Inc., 580-32 Nagaura, Sodegaura, Chiba, 299-0265, Japan
- NMR Facility, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Waki
- Mitsui Chemical Analysis & Consulting Service Inc., 580-32 Nagaura, Sodegaura, Chiba, 299-0265, Japan
- NMR Facility, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
4
|
Ryu S, Furihata K, Koda M, Wei F, Miyakawa T, Tanokura M. NMR-based analysis of the chemical composition of Japanese persimmon aqueous extracts. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:213-221. [PMID: 26482562 DOI: 10.1002/mrc.4364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/17/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
Japanese persimmon (Diospyros kaki L.) is recognized as an outstanding source of biologically active compounds relating to many health benefits. In the present study, NMR spectroscopy provided a comprehensive metabolic overview of Japanese persimmon juice. Detailed signal assignments of Japanese persimmon juice were carried out using various 2D NMR techniques incorporated with broadband water suppression enhanced through T1 effects (BB-WET) or WET sequences, and 26 components, including minor components, were identified. In addition, most components were quantitatively evaluated by the integration of signals using conventional (1) H NMR and BB-WET NMR. This is the first detailed analysis combined with quantitative characterization of chemical components using NMR for Japanese persimmon. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shoraku Ryu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Furihata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masanori Koda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Feifei Wei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|