1
|
Song W, Toh J, Chen S, Xing R, Li D. Self-assembled eumelanin nanoparticles enhance IFN-I activation and cilia-driven intercellular communication to defend against Tulane virus, a human norovirus surrogate. Biomater Sci 2025; 13:777-794. [PMID: 39744920 DOI: 10.1039/d4bm01283f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Norovirus (NoV) infection is a leading cause of gastroenteritis and poses global health threats, with increasing incidence reported in immunocompromised individuals, which is further exacerbated by the globalization of the food industry. Eumelanin has demonstrated its potential in antiviral treatments, but its role in preventing viral infections remains underexplored. Therefore, in this study, we investigated the antiviral properties and potential mechanisms of self-assembled eumelanin nanoparticles (EmNPs) against Tulane virus (TuV), a surrogate with a similar infection mechanism to NoVs. EmNPs exhibited low cytotoxicity and strong antiviral activity in pre-incubated cells. Additionally, EmNPs stimulated the growth and endocytosis of cilia on the cell surface, exposing internal long-nanoparticle chains to interact with the cell membrane while promoting cilia growth and enhancing intercellular connections in cells. EmNPs were then transported to lysosomes via vesicles, leading to a perinuclear lysosome clustering. EmNPs activated several key intracellular signaling pathways, including Toll-like receptor (TLR) and C-type lectin receptor (CLR) pathways, along with activating NF-κB, Rap1, TNF, and Hippo pathways. This regulatory action initiated innate cellular immunity, significantly enhancing the production of type I interferons (IFN-α/β) and promoting the localization of lysosomes to the perinuclear region. Therefore, this study illustrated that EmNPs effectively stimulated immune responses, improved intercellular communication, and facilitated transport mechanisms, thereby bolstering resistance to subsequent viral infections. These findings position EmNPs as promising candidates for the prevention of norovirus infections.
Collapse
Affiliation(s)
- Wen Song
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117546, Singapore.
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
| | - Jillinda Toh
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117546, Singapore.
| | - Shurui Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575 Singapore
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117546, Singapore.
| |
Collapse
|
2
|
Song W, Yang H, Liu S, Yu H, Li D, Li P, Xing R. Melanin: insights into structure, analysis, and biological activities for future development. J Mater Chem B 2023; 11:7528-7543. [PMID: 37432655 DOI: 10.1039/d3tb01132a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Melanin, a widely distributed pigment found in various organisms, possesses distinct structures that can be classified into five main types: eumelanin (found in animals and plants), pheomelanin (found in animals and plants), allomelanin (found in plants), neuromelanin (found in animals), and pyomelanin (found in fungi and bacteria). In this review, we present an overview of the structure and composition of melanin, as well as the various spectroscopic identification methods that can be used, such as Fourier transform infrared (FTIR) spectroscopy, electron spin resonance (ESR) spectroscopy, and thermogravimetric analysis (TGA). We also provide a summary of the extraction methods of melanin and its diverse biological activities, including antibacterial properties, anti-radiation effects, and photothermal effects. The current state of research on natural melanin and its potential for further development is discussed. In particular, the review provides a comprehensive summary of the analysis methods used to determine melanin species, offering valuable insights and references for future research. Overall, this review aims to provide a thorough understanding of the concept and classification of melanin, its structure, physicochemical properties, and structural identification methods, as well as its various applications in the field of biology.
Collapse
Affiliation(s)
- Wen Song
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing 100000, China
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117546, Singapore.
| | - Haoyue Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117546, Singapore.
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| |
Collapse
|
3
|
Wakamatsu K, Ito S. Recent Advances in Characterization of Melanin Pigments in Biological Samples. Int J Mol Sci 2023; 24:ijms24098305. [PMID: 37176019 PMCID: PMC10179066 DOI: 10.3390/ijms24098305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The melanin pigments eumelanin (EM) and pheomelanin (PM), which are dark brown to black and yellow to reddish-brown, respectively, are widely found among vertebrates. They are produced in melanocytes in the epidermis, hair follicles, the choroid, the iris, the inner ear, and other tissues. The diversity of colors in animals is mainly caused by the quantity and quality of their melanin, such as by the ratios of EM versus PM. We have developed micro-analytical methods to simultaneously measure EM and PM and used these to study the biochemical and genetic fundamentals of pigmentation. The photoreactivity of melanin has become a major focus of research because of the postulated relevance of EM and PM for the risk of UVA-induced melanoma. Our biochemical methods have found application in many clinical studies on genetic conditions associated with alterations in pigmentation. Recently, besides chemical degradative methods, other methods have been developed for the characterization of melanin, and these are also discussed here.
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-192, Aichi, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-192, Aichi, Japan
| |
Collapse
|
4
|
Shankar N, Guimarães AO, Napoli E, Giulivi C. Forensic determination of hair deposition time in crime scenes using electron paramagnetic resonance. J Forensic Sci 2020; 66:72-82. [PMID: 32986869 DOI: 10.1111/1556-4029.14570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022]
Abstract
Several types of biological samples, including hair strands, are found at crime scenes. Apart from the identification of the value and the contributor of the probative evidence, it is important to prove that the time of shedding of hair belonging to a suspect or victim matches the crime window. To this end, to estimate the ex vivo aging of hair, we evaluated time-dependent changes in melanin-derived free radicals in blond, brown, and black hairs by using electron paramagnetic resonance spectroscopy (EPR). Hair strands aged under controlled conditions (humidity 40%, temperature 20-22°C, indirect light, with 12/12 hour of light/darkness cycles) showed a time-dependent decay of melanin-derived radicals. The half-life of eumelanin-derived radicals in hair under our experimental settings was estimated at 22 ± 2 days whereas that of pheomelanin was about 2 days suggesting better stabilization of unpaired electrons by eumelanin. Taken together, this study provides a reference for future forensic studies on determination of degradation of shed hair in a crime scene by following eumelanin radicals by utilizing the non-invasive, non-destructive, and highly specific EPR technique.
Collapse
Affiliation(s)
- Nikhita Shankar
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - André O Guimarães
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.,Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.,MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
5
|
Al Khatib M, Costa J, Baratto MC, Basosi R, Pogni R. Paramagnetism and Relaxation Dynamics in Melanin Biomaterials. J Phys Chem B 2020; 124:2110-2115. [PMID: 32105072 DOI: 10.1021/acs.jpcb.9b11785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spectroscopical characterization of melanins is a prior requirement for the efficient tailoring of their radical scavenging, ultraviolet-visible radiation absorption, metal chelation, and natural pigment properties. Electron paramagnetic resonance (EPR), exploiting the common persistent paramagnetism of melanins, represents the elective standard for the structural and dynamical characterization of their constituting radical species. Although melanins are mainly investigated using X-band (9.5 GHz) continuous wave (CW)-EPR, an integration with the application of Q-band (34 GHz) in CW and pulse EPR for the discrimination of melanin pigments of different compositions is presented here. The longitudinal relaxation times measured highlight faster relaxation rates for cysteinyldopa melanin, compared to those of the most common dopa melanin pigment, suggesting pulse EPR spin-lattice relaxation time measurements as a complementary tool for characterization of pigments of interest for biomimetic materials engineering.
Collapse
Affiliation(s)
- Maher Al Khatib
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Jessica Costa
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Riccardo Basosi
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
6
|
Dyed hair photoprotection efficacy of a quercetin-loaded cationic nanoemulsion. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 204:111788. [PMID: 32000111 DOI: 10.1016/j.jphotobiol.2020.111788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/02/2019] [Accepted: 01/12/2020] [Indexed: 11/24/2022]
|
7
|
Spectroscopic Characterization of Natural Melanin from a Streptomyces cyaneofuscatus Strain and Comparison with Melanin Enzymatically Synthesized by Tyrosinase and Laccase. Molecules 2018; 23:molecules23081916. [PMID: 30071605 PMCID: PMC6222888 DOI: 10.3390/molecules23081916] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
An actinobacteria strain was isolated from Algerian Sahara soil and assigned to Streptomyces cyaneofuscatus Pridham et al. 1958 species. This strain was selected for its ability to produce melanin exopigments in liquid and solid media. Melanin synthesis was associated with tyrosinase activity and the enzyme from this strain was isolated and biochemically characterized. Synthetic melanin was then enzymatically produced using the S. cyaneofuscatus Pridham et al. 1958 tyrosinase. As this enzyme showed a higher diphenolase activity, a synthetic melanin from the enzymic oxidation of 3,4-dihydroxyphenylalanine (dopa) was obtained by the use of a Trametes versicolor (L.) Lloyd laccase for comparison. The natural and synthetic pigments were physico-chemically characterized by the use of ultraviolet (UV)-Visible, and Fourier transform infrared (FT-IR) and multifrequency electron paramagnetic resonance (EPR) spectroscopies. All the melanin samples displayed a stable free radical when analyzed by X-band EPR spectroscopy. Once the samples were recorded at Q-band EPR, a copolymer derived from a mixture of different constituents was evident in the natural melanin. All radical species were analyzed and discussed. The use of water-soluble melanin naturally produced by S. cyaneofuscatus Pridham et al. 1958 represents a new biotechnological alternative to commercial insoluble pigments.
Collapse
|
8
|
|
9
|
Affiliation(s)
- Julian M Menter
- Department of Microbiology, Biochemistry, and Immunology Morehouse School of Medicine 720 Westview Drive SW Atlanta GA 30310 USA
| |
Collapse
|
10
|
Khemakhem M, Papadimitriou V, Sotiroudis G, Zoumpoulakis P, Arbez-Gindre C, Bouzouita N, Sotiroudis TG. Melanin and humic acid-like polymer complex from olive mill waste waters. Part I. Isolation and characterization. Food Chem 2016; 203:540-547. [PMID: 26948649 DOI: 10.1016/j.foodchem.2016.01.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/18/2015] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
Abstract
A water soluble humic acid and melanin-like polymer complex (OMWW-ASP) was isolated from olive mill waste waters (OMWW) by ammonium sulfate fractionation to be used as natural additive in food preparations. The dark polymer complex was further characterized by a variety of biochemical, physicochemical and spectroscopic techniques. OMWW-ASP is composed mainly of proteins associated with polyphenols and carbohydrates and the distribution of its relative molecular size was determined between about 5 and 190 kDa. SDS-PAGE shows the presence of a well separated protein band of 21.3 kDa and a low molecular weight peptide. The OMWW-ASP complex exhibits a monotonically increasing UV-Vis absorption spectrum and it contains stable radicals. Antioxidant activity measurements reveal the ability of the OMWW protein fraction to scavenge both the cationic 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+)) radical, as well as the stable nitroxide free radical 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL).
Collapse
Affiliation(s)
- Maissa Khemakhem
- Ecole Supérieure des Industries Alimentaires de Tunis, 58, Avenue Alain Savary, 1003 Tunis, Tunisia; Laboratoire de Chimie Organique Structurale: Synthèse et Etude Physicochimique, Faculté des Sciences de Tunis, Campus Universitaire 2092 - El Manar, Tunisia
| | - Vassiliki Papadimitriou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece.
| | - Georgios Sotiroudis
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Cécile Arbez-Gindre
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Nabiha Bouzouita
- Ecole Supérieure des Industries Alimentaires de Tunis, 58, Avenue Alain Savary, 1003 Tunis, Tunisia; Laboratoire de Chimie Organique Structurale: Synthèse et Etude Physicochimique, Faculté des Sciences de Tunis, Campus Universitaire 2092 - El Manar, Tunisia
| | - Theodore G Sotiroudis
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
11
|
Song S, Li S, Su N, Li J, Shi F, Ye M. Structural characterization, molecular modification and hepatoprotective effect of melanin from Lachnum YM226 on acute alcohol-induced liver injury in mice. Food Funct 2016; 7:3617-27. [DOI: 10.1039/c6fo00333h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this paper, we obtained the possible structural formula of the intracellular melanin of Lachnum YM226 and evaluated the protective effect of this melanin and itsd-glucosamine-modified product on acute alcohol-induced liver injury in mice.
Collapse
Affiliation(s)
- Sheng Song
- School of food science and engineering
- Hefei University of Technology
- Hefei
- China
| | - Shenglan Li
- School of food science and engineering
- Hefei University of Technology
- Hefei
- China
| | - Nana Su
- School of food science and engineering
- Hefei University of Technology
- Hefei
- China
| | - Jinglei Li
- School of food science and engineering
- Hefei University of Technology
- Hefei
- China
| | - Fang Shi
- School of food science and engineering
- Hefei University of Technology
- Hefei
- China
| | - Ming Ye
- School of food science and engineering
- Hefei University of Technology
- Hefei
- China
| |
Collapse
|
12
|
Kim E, Panzella L, Micillo R, Bentley WE, Napolitano A, Payne GF. Reverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism. Sci Rep 2015; 5:18447. [PMID: 26669666 PMCID: PMC4680885 DOI: 10.1038/srep18447] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/18/2015] [Indexed: 12/23/2022] Open
Abstract
Pheomelanin has been implicated in the increased susceptibility to UV-induced melanoma for people with light skin and red hair. Recent studies identified a UV-independent pathway to melanoma carcinogenesis and implicated pheomelanin's pro-oxidant properties that act through the generation of reactive oxygen species and/or the depletion of cellular antioxidants. Here, we applied an electrochemically-based reverse engineering methodology to compare the redox properties of human hair pheomelanin with model synthetic pigments and natural eumelanin. This methodology exposes the insoluble melanin samples to complex potential (voltage) inputs and measures output response characteristics to assess redox activities. The results demonstrate that both eumelanin and pheomelanin are redox-active, they can rapidly (sec-min) and repeatedly redox-cycle between oxidized and reduced states, and pheomelanin possesses a more oxidative redox potential. This study suggests that pheomelanin's redox-based pro-oxidant activity may contribute to sustaining a chronic oxidative stress condition through a redox-buffering mechanism.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Biosystems and Biotechnology Research University of Maryland 5115 Plant Sciences Building College Park, MD 20742, USA
- Fischell Department of Bioengineering University of Maryland College Park, MD 20742, USA
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples (Italy)
| | - Raffaella Micillo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples (Italy)
- Department of Clinical Medicine and Surgery, University of Naples “Federico II” – Via Pansini 5, I-80131 Naples, Italy
| | - William E. Bentley
- Institute for Biosystems and Biotechnology Research University of Maryland 5115 Plant Sciences Building College Park, MD 20742, USA
- Fischell Department of Bioengineering University of Maryland College Park, MD 20742, USA
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples (Italy)
| | - Gregory F. Payne
- Institute for Biosystems and Biotechnology Research University of Maryland 5115 Plant Sciences Building College Park, MD 20742, USA
- Fischell Department of Bioengineering University of Maryland College Park, MD 20742, USA
| |
Collapse
|
13
|
Chen G, Mo L, Lin F, Zhang X, Liu J, Wang H, Yang C. Development, validation and application of an HPLC method for reduced vitamin C qualification in HBOCs solution. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:456-61. [DOI: 10.3109/21691401.2015.1115412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Chikvaidze E, Topeshashvili M. Effect of ascorbic acid (vitamin C) on the ESR spectra of the red and black hair: pheomelanin free radicals are not always present in red hair. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:1019-1023. [PMID: 26352277 DOI: 10.1002/mrc.4291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/06/2015] [Accepted: 06/12/2015] [Indexed: 06/05/2023]
Abstract
Increased incidence of melanoma in the population with red hair is conditioned by synthesis of pheomelanin pigments in the skin and their phototoxic properties. The recent research has shown that free radicals of pheomelanin are produced not only by the influence of UV irradiation, but also in UV-independent pathways of oxidative stress. It has been ascertained, that the color of the hair is not always determinant of the amount of pheolemanin radicals in red hair. Therefore, in order to evaluate the risk of melanoma in different individuals, it is necessary to define the amount of free radicals of pheomelanin in red hair using ESR spectroscopy method. Besides, it is very important to find effective antioxidant, capable of neutralizing free radicals of pheomelanin. It was proved that ascorbic acid neutralizes free radicals of pheomelanin very effectively. The main goal of our research was to define the presumably optimal concentration of ascorbic acid as an antioxidant and study the kinetics of the influence of this concentration on red and black hair. It has been found out, that ascorbic acid influences the free radicals of red and black hair, and its appropriate optimal concentration is 10 mM. The obtained results can be considered in dermatology and cosmetology.
Collapse
Affiliation(s)
- Eduard Chikvaidze
- Faculty of Exact and Natural Sciences, Iv. Javakhishvili Tbilisi State University, 3 Chavchavadze Ave, 0128, Tbilisi, Georgia
| | - Maia Topeshashvili
- Faculty of Exact and Natural Sciences, Iv. Javakhishvili Tbilisi State University, 3 Chavchavadze Ave, 0128, Tbilisi, Georgia
| |
Collapse
|