1
|
Singh K, Frydman L. Single-Scan Heteronuclear 13C- 15N J-Coupling NMR Observations Enhanced by Dissolution Dynamic Nuclear Polarization. J Phys Chem Lett 2024; 15:5659-5664. [PMID: 38767577 PMCID: PMC11145644 DOI: 10.1021/acs.jpclett.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Heteronuclear 13C-15N couplings were measured in single-scan nuclear magnetic resonance (NMR) experiments for a variety of nitrogen-containing chemical compounds with varied structural characteristics, by using a one-dimensional (1D) 13C-15N multiple-quantum (MQ)-filtered experiment. Sensitivity limitations of the MQ filtering were overcome by the combined use of 15N labeling and dissolution dynamic nuclear polarization (dDNP), performed at cryogenic conditions and followed by quick and optimized sample melting and transfer procedures. Coupling information could thus be obtained from nucleotide bases, amino acids, urea, and aliphatic and aromatic amides, including the measurement of relatively small J-couplings directly from the 1D filtered spectra. This experiment could pave the way for NMR-based analytical applications that investigate structural and stereochemical insights into nitrogen-containing compounds, including dipeptides and proteins, while relying on heteronuclear couplings and nuclear hyperpolarization.
Collapse
Affiliation(s)
- Kawarpal Singh
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
2
|
Bartholomew GL, Kraus SL, Karas LJ, Carpaneto F, Bennett R, Sigman MS, Yeung CS, Sarpong R. 14N to 15N Isotopic Exchange of Nitrogen Heteroaromatics through Skeletal Editing. J Am Chem Soc 2024; 146:2950-2958. [PMID: 38286797 DOI: 10.1021/jacs.3c11515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The selective modification of nitrogen heteroaromatics enables the development of new chemical tools and accelerates drug discovery. While methods that focus on expanding or contracting the skeletal structures of heteroaromatics are emerging, methods for the direct exchange of single core atoms remain limited. Here, we present a method for 14N → 15N isotopic exchange for several aromatic nitrogen heterocycles. This nitrogen isotope transmutation occurs through activation of the heteroaromatic substrate by triflylation of a nitrogen atom, followed by a ring-opening/ring-closure sequence mediated by 15N-aspartate to effect the isotopic exchange of the nitrogen atom. Key to the success of this transformation is the formation of an isolable 15N-succinyl intermediate, which undergoes elimination to give the isotopically labeled heterocycle. These transformations occur under mild conditions in high chemical and isotopic yields.
Collapse
Affiliation(s)
- G Logan Bartholomew
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Samantha L Kraus
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lucas J Karas
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Filippo Carpaneto
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Raffeal Bennett
- Discovery Analytical Research, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Charles S Yeung
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Lysak DH, Wolff WW, Soong R, Bermel W, Kupče ER, Jenne A, Biswas RG, Lane D, Gasmi-Seabrook G, Simpson A. Application of 15N-Edited 1H- 13C Correlation NMR Spectroscopy─Toward Fragment-Based Metabolite Identification and Screening via HCN Constructs. Anal Chem 2023; 95:11926-11933. [PMID: 37535003 DOI: 10.1021/acs.analchem.3c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Many key building blocks of life contain nitrogen moieties. Despite the prevalence of nitrogen-containing metabolites in nature, 15N nuclei are seldom used in NMR-based metabolite assignment due to their low natural abundance and lack of comprehensive chemical shift databases. However, with advancements in isotope labeling strategies, 13C and 15N enriched metabolites are becoming more common in metabolomic studies. Simple multidimensional nuclear magnetic resonance (NMR) experiments that correlate 1H and 15N via single bond 1JNH or multiple bond 2-3JNH couplings using heteronuclear single quantum coherence (HSQC) or heteronuclear multiple bond coherence are well established and routinely applied for structure elucidation. However, a 1H-15N correlation spectrum of a metabolite mixture can be difficult to deconvolute, due to the lack of a 15N specific database. In order to bridge this gap, we present here a broadband 15N-edited 1H-13C HSQC NMR experiment that targets metabolites containing 15N moieties. Through this approach, nitrogen-containing metabolites, such as amino acids, nucleotide bases, and nucleosides, are identified based on their 13C, 1H, and 15N chemical shift information. This approach was tested and validated using a [15N, 13C] enriched Daphnia magna (water flea) metabolite extract, where the number of clearly resolved 15N-containing peaks increased from only 11 in a standard HSQC to 51 in the 15N-edited HSQC, and the number of obscured peaks decreased from 59 to just 7. The approach complements the current repertoire of NMR techniques for mixture deconvolution and holds considerable potential for targeted metabolite NMR in 15N, 13C enriched systems.
Collapse
Affiliation(s)
- Daniel H Lysak
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - William W Wolff
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Ronald Soong
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, Ettlingen 76275, Germany
| | | | - Amy Jenne
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Rajshree Ghosh Biswas
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Daniel Lane
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | | | - Andre Simpson
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| |
Collapse
|
4
|
Dorn RW, Wall BJ, Ference SB, Norris SR, Lubach JW, Rossini AJ, VanVeller B. Attached Nitrogen Test by 13C- 14N Solid-State NMR Spectroscopy for the Structure Determination of Heterocyclic Isomers. Org Lett 2022; 24:5635-5640. [PMID: 35731042 PMCID: PMC9933616 DOI: 10.1021/acs.orglett.2c01576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Differentiation of heterocyclic isomers by solution 1H, 13C, and 15N NMR spectroscopy is often challenging due to similarities in their spectroscopic signatures. Here, 13C{14N} solid-state NMR spectroscopy experiments are shown to operate as an "attached nitrogen test", where heterocyclic isomers are easy to distinguish based on one-dimensional nitrogen-filtered 13C solid-state NMR. We anticipate that these NMR experiments will facilitate the assignment of heterocyclic isomers during synthesis and natural product discovery.
Collapse
Affiliation(s)
- Rick W. Dorn
- Iowa State University, Department of Chemistry, Ames, IA, USA, 50011.,US Department of Energy, Ames Laboratory, Ames, IS, USA, 50011
| | - Brendan J. Wall
- Iowa State University, Department of Chemistry, Ames, IA, USA, 50011
| | - Sarah B. Ference
- Iowa State University, Department of Chemistry, Ames, IA, USA, 50011
| | - Sean R. Norris
- Iowa State University, Department of Chemistry, Ames, IA, USA, 50011
| | | | - Aaron J. Rossini
- Iowa State University, Department of Chemistry, Ames, IA, USA, 50011.,US Department of Energy, Ames Laboratory, Ames, IS, USA, 50011.,Corresponding Author, 515-294-8952 , 515-294-7613
| | - Brett VanVeller
- Iowa State University, Department of Chemistry, Ames, IA, USA, 50011.,Corresponding Author, 515-294-8952 , 515-294-7613
| |
Collapse
|
5
|
Deev SL, Khalymbadzha IA, Shestakova TS, Charushin VN, Chupakhin ON. 15N labeling and analysis of 13C–15N and 1H–15N couplings in studies of the structures and chemical transformations of nitrogen heterocycles. RSC Adv 2019; 9:26856-26879. [PMID: 35528595 PMCID: PMC9070671 DOI: 10.1039/c9ra04825a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022] Open
Abstract
This review provides a generalization of effective examples of 15N labeling followed by an analysis of JCN and JHN couplings in solution as a tool to study the structural aspects and pathways of chemical transformations in nitrogen heterocycles.
Collapse
Affiliation(s)
- Sergey L. Deev
- Ural Federal University
- 620002 Yekaterinburg
- Russian Federation
- I. Ya. Postovsky Institute of Organic Synthesis
- 620219 Yekaterinburg
| | | | | | - Valery N. Charushin
- Ural Federal University
- 620002 Yekaterinburg
- Russian Federation
- I. Ya. Postovsky Institute of Organic Synthesis
- 620219 Yekaterinburg
| | - Oleg N. Chupakhin
- Ural Federal University
- 620002 Yekaterinburg
- Russian Federation
- I. Ya. Postovsky Institute of Organic Synthesis
- 620219 Yekaterinburg
| |
Collapse
|
6
|
Priotti J, García A, Leonardi D, Ferreira MJ, Lamas MC, Nunes TG. Succinyl-β-cyclodextrin: Influence of the substitution degree on albendazole inclusion complexes probed by NMR. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:694-702. [PMID: 30184797 DOI: 10.1016/j.msec.2018.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 02/03/2023]
Abstract
Succinyl-β-CD derivatives were obtained by green synthesis with degrees of substitution (DS) 1.3 and 2.9. The spray-drying technique was used to obtain albendazole (ABZ):succinyl-β-CD inclusion complexes. Phase solubility diagrams indicated that both succinyl-β-CD derivatives formed 1:1 molar ratio ABZ complexes, but the complex with DS 2.9 has a lower formation constant. The presence of stable inclusion complexes in aqueous solution was confirmed by NMR. For both complexes the aromatic moiety is encapsulated into the host cavity. In the solid-state, 13C and 15N NMR spectral differences between ABZ and ABZ included in spray-dried systems showed that strong structural changes occurred in the systems. At least two different ABZ amorphous species were identified based on DS. ABZ species were stable over more than six months based on spectral data. Finally, the influence of DS in the number and type of the inclusion complexes was elucidated.
Collapse
Affiliation(s)
- J Priotti
- IQUIR-CONICET, Suipacha 570, 2000 Rosario, Argentina
| | - A García
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000 Rosario, Argentina
| | - D Leonardi
- IQUIR-CONICET, Suipacha 570, 2000 Rosario, Argentina; Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000 Rosario, Argentina
| | - M J Ferreira
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M C Lamas
- IQUIR-CONICET, Suipacha 570, 2000 Rosario, Argentina; Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000 Rosario, Argentina.
| | - T G Nunes
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
7
|
Deev SL, Paramonov AS, Shestakova TS, Khalymbadzha IA, Chupakhin ON, Subbotina JO, Eltsov OS, Slepukhin PA, Rusinov VL, Arseniev AS, Shenkarev ZO. 15N-Labelling and structure determination of adamantylated azolo-azines in solution. Beilstein J Org Chem 2017; 13:2535-2548. [PMID: 29259663 PMCID: PMC5727827 DOI: 10.3762/bjoc.13.250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/27/2017] [Indexed: 01/19/2023] Open
Abstract
Determining the accurate chemical structures of synthesized compounds is essential for biomedical studies and computer-assisted drug design. The unequivocal determination of N-adamantylation or N-arylation site(s) in nitrogen-rich heterocycles, characterized by a low density of hydrogen atoms, using NMR methods at natural isotopic abundance is difficult. In these compounds, the heterocyclic moiety is covalently attached to the carbon atom of the substituent group that has no bound hydrogen atoms, and the connection between the two moieties of the compound cannot always be established via conventional 1H-1H and 1H-13C NMR correlation experiments (COSY and HMBC, respectively) or nuclear Overhauser effect spectroscopy (NOESY or ROESY). The selective incorporation of 15N-labelled atoms in different positions of the heterocyclic core allowed for the use of 1H-15N (JHN) and 13C-15N (JCN) coupling constants for the structure determinations of N-alkylated nitrogen-containing heterocycles in solution. This method was tested on the N-adamantylated products in a series of azolo-1,2,4-triazines and 1,2,4-triazolo[1,5-a]pyrimidine. The syntheses of adamantylated azolo-azines were based on the interactions of azolo-azines and 1-adamatanol in TFA solution. For azolo-1,2,4-triazinones, the formation of mixtures of N-adamantyl derivatives was observed. The JHN and JCN values were measured using amplitude-modulated 1D 1H spin-echo experiments with the selective inversion of the 15N nuclei and line-shape analysis in the 1D 13С spectra acquired with selective 15N decoupling, respectively. Additional spin-spin interactions were detected in the 15N-HMBC spectra. NMR data and DFT (density functional theory) calculations permitted to suggest a possible mechanism of isomerization for the adamantylated products of the azolo-1,2,4-triazines. The combined analysis of the JHN and JCN couplings in 15N-labelled compounds provides an efficient method for the structure determination of N-alkylated azolo-azines even in the case of isomer formation. The isomerization of adamantylated tetrazolo[1,5-b][1,2,4]triazin-7-ones in acidic conditions occurs through the formation of the adamantyl cation.
Collapse
Affiliation(s)
- Sergey L Deev
- Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Alexander S Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | | | | | - Oleg N Chupakhin
- Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Julia O Subbotina
- Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Oleg S Eltsov
- Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Pavel A Slepukhin
- Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | | | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| |
Collapse
|
8
|
Kupče Ē, Wrackmeyer B. 13C detected 15N 13C coupling measurements at the natural isotopic abundance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 279:68-73. [PMID: 28475948 DOI: 10.1016/j.jmr.2017.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
We propose a 13C detected experiment, the (H)CNMQC pulse sequence for measuring one-bond and long-range 15N13C scalar coupling constants in small organic molecules at the natural isotopic abundance. The previously proposed 1H detected H(C)NMBC experiment performs poorly in situations where the carbon atom of interest has no attached protons, in the presence of splittings due to the homonuclear HH couplings, unwanted coherence leaks and considerable t1-noise. These problems are largely avoided in the (H)CNMQC experiment based on direct 13C detection. In many cases the new experiment improves the measurement sensitivity and accuracy, not least because the 15N13C couplings are measured in the directly detected dimension enabling one-dimensional measurements.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Limited, Banner Lane, Coventry CV4 9GH, UK.
| | - Bernd Wrackmeyer
- Inorganic Chemistry, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
9
|
Kline M, Pierce D, Cheatham S. Assignment of oxime and hydrazone configuration using 1 H- 15 N and 13 C- 15 N coupling measurements at natural abundance. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:154-156. [PMID: 27706849 DOI: 10.1002/mrc.4536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/27/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
Measurement of 1 H-15 N and 13 C-15 N coupling constants at natural abundance is demonstrated to be a reliable and generic method to determine the configuration of oximes, hydrazines, and related systems. Data on 1 H-15 N and 13 C-15 N coupling constants on a variety of systems obtained at natural abundance confirm the geometric dependence of the measured 1 H-15 N and 13 C-15 N coupling constants. In addition, we summarize a simple "decision-tree" for determining configuration based on practical considerations of sample quantity, solubility, and complexity. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mike Kline
- DuPont Crop Protection, Stine Haskell Research Center, P.O. Box 30, Newark, DE, 19714, USA
| | - Dawn Pierce
- DuPont Crop Protection, Stine Haskell Research Center, P.O. Box 30, Newark, DE, 19714, USA
| | - Steve Cheatham
- DuPont Crop Protection, Stine Haskell Research Center, P.O. Box 30, Newark, DE, 19714, USA
| |
Collapse
|
10
|
Fredi A, Nolis P, Cobas C, Parella T. Access to experimentally infeasible spectra by pure-shift NMR covariance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 270:161-168. [PMID: 27494746 DOI: 10.1016/j.jmr.2016.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments.
Collapse
Affiliation(s)
- André Fredi
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Catalonia, Spain
| | - Pau Nolis
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Catalonia, Spain
| | - Carlos Cobas
- Mestrelab Research, Santiago de Compostela, E-15706 A Coruña, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Catalonia, Spain.
| |
Collapse
|
11
|
|