1
|
Liu XH, Yu HY, Huang JY, Su JH, Xue C, Zhou XT, He YR, He Q, Xu DJ, Xiong C, Ji HB. Biomimetic catalytic aerobic oxidation of C-sp(3)-H bonds under mild conditions using galactose oxidase model compound Cu IIL. Chem Sci 2022; 13:9560-9568. [PMID: 36091900 PMCID: PMC9400635 DOI: 10.1039/d2sc02606f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Developing highly efficient catalytic protocols for C-sp(3)-H bond aerobic oxidation under mild conditions is a long-desired goal of chemists. Inspired by nature, a biomimetic approach for the aerobic oxidation of C-sp(3)-H by galactose oxidase model compound CuIIL and NHPI (N-hydroxyphthalimide) was developed. The CuIIL-NHPI system exhibited excellent performance in the oxidation of C-sp(3)-H bonds to ketones, especially for light alkanes. The biomimetic catalytic protocol had a broad substrate scope. Mechanistic studies revealed that the CuI-radical intermediate species generated from the intramolecular redox process of CuIILH2 was critical for O2 activation. Kinetic experiments showed that the activation of NHPI was the rate-determining step. Furthermore, activation of NHPI in the CuIIL-NHPI system was demonstrated by time-resolved EPR results. The persistent PINO (phthalimide-N-oxyl) radical mechanism for the aerobic oxidation of C-sp(3)-H bond was demonstrated.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Hai-Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Jia-Ying Huang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China Hefei 230026 China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Xian-Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Yao-Rong He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Qian He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - De-Jing Xu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
2
|
Maiti A, Elvers BJ, Bera S, Lindl F, Krummenacher I, Ghosh P, Braunschweig H, Yildiz CB, Schulzke C, Jana A. Disclosing Cyclic(Alkyl)(Amino)Carbenes as One-Electron Reductants: Synthesis of Acyclic(Amino)(Aryl)Carbene-Based Kekulé Diradicaloids. Chemistry 2022; 28:e202104567. [PMID: 35262232 PMCID: PMC9321839 DOI: 10.1002/chem.202104567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/10/2022]
Abstract
Herein, we disclose cyclic(alkyl)(amino)carbenes (CAACs) to be one-electron reductants under the formation of a transient radical cation as indicated by EPR spectroscopy. The disclosed CAAC reducing reactivity was used to synthesize acyclic(amino)(aryl)carbene-based Thiele and Chichibabin hydrocarbons, a new class of Kekulé diradicaloids. The results demonstrate CAACs to be potent organic reductants. Notably, the acyclic(amino)(aryl)carbene-based Chichibabin's hydrocarbon shows an appreciable population of the triplet state at room temperature, as evidenced by both variable-temperature NMR and EPR spectroscopy.
Collapse
Affiliation(s)
- Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046, TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Sachinath Bera
- Department of ChemistryRamakrishna Mission Residential College NarendrapurKolkata700103India
- Shahid Matangini Hazra Govt General Degree College for Women TamlukPurba Medinipur721649India
| | - Felix Lindl
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Prasanta Ghosh
- Department of ChemistryRamakrishna Mission Residential College NarendrapurKolkata700103India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046, TelanganaIndia
| |
Collapse
|
3
|
Schleicher E, Rein S, Illarionov B, Lehmann A, Al Said T, Kacprzak S, Bittl R, Bacher A, Fischer M, Weber S. Selective 13C labelling reveals the electronic structure of flavocoenzyme radicals. Sci Rep 2021; 11:18234. [PMID: 34521887 PMCID: PMC8440535 DOI: 10.1038/s41598-021-97588-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Flavocoenzymes are nearly ubiquitous cofactors that are involved in the catalysis and regulation of a wide range of biological processes including some light-induced ones, such as the photolyase-mediated DNA repair, magnetoreception of migratory birds, and the blue-light driven phototropism in plants. One of the factors that enable versatile flavin-coenzyme biochemistry and biophysics is the fine-tuning of the cofactor's frontier orbital by interactions with the protein environment. Probing the singly-occupied molecular orbital (SOMO) of the intermediate radical state of flavins is therefore a prerequisite for a thorough understanding of the diverse functions of the flavoprotein family. This may be ultimately achieved by unravelling the hyperfine structure of a flavin by electron paramagnetic resonance. In this contribution we present a rigorous approach to obtaining a hyperfine map of the flavin's chromophoric 7,8-dimethyl isoalloxazine unit at an as yet unprecedented level of resolution and accuracy. We combine powerful high-microwave-frequency/high-magnetic-field electron-nuclear double resonance (ENDOR) with 13C isotopologue editing as well as spectral simulations and density functional theory calculations to measure and analyse 13C hyperfine couplings of the flavin cofactor in DNA photolyase. Our data will provide the basis for electronic structure considerations for a number of flavin radical intermediates occurring in blue-light photoreceptor proteins.
Collapse
Affiliation(s)
- Erik Schleicher
- grid.5963.9Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Stephan Rein
- grid.5963.9Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Boris Illarionov
- grid.9026.d0000 0001 2287 2617Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Ariane Lehmann
- grid.5963.9Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Tarek Al Said
- grid.5963.9Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Sylwia Kacprzak
- grid.5963.9Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany ,grid.423218.ePresent Address: Bruker BioSpin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Robert Bittl
- grid.14095.390000 0000 9116 4836Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Adelbert Bacher
- grid.6936.a0000000123222966Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Markus Fischer
- grid.9026.d0000 0001 2287 2617Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Stefan Weber
- grid.5963.9Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Wörner J, Chen J, Bacher A, Weber S. Non-classical disproportionation revealed by photo-chemically induced dynamic nuclear polarization NMR. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:281-290. [PMID: 37904753 PMCID: PMC10539781 DOI: 10.5194/mr-2-281-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/07/2021] [Indexed: 11/01/2023]
Abstract
Photo-chemically induced dynamic nuclear polarization (photo-CIDNP) was used to observe the light-induced disproportionation reaction of 6,7,8-trimethyllumazine starting out from its triplet state to generate a pair of radicals comprising a one-electron reduced and a one-electron oxidized species. Our evidence is based on the measurement of two marker proton hyperfine couplings, A iso (H(6α )) and A iso (H(8α )), which we correlated to predictions from density functional theory. The ratio of these two hyperfine couplings is reversed in the oxidized and the reduced radical species. Observation of the dismutation reaction is facilitated by the exceptional C-H acidity of the methyl group at position 7 of 6,7,8-trimethyllumazine and the slow proton exchange associated with it, which leads to NMR-distinguishable anionic (TML- ) and neutral (TMLH) protonation forms.
Collapse
Affiliation(s)
- Jakob Wörner
- Institute of Physical Chemistry, Albert-Ludwigs-Universität
Freiburg, Freiburg, 79104, Germany
| | - Jing Chen
- Institute of Physical Chemistry, Albert-Ludwigs-Universität
Freiburg, Freiburg, 79104, Germany
| | - Adelbert Bacher
- Department of Chemistry, Technical University of Munich, Garching,
85748, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, Albert-Ludwigs-Universität
Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
5
|
Vogler S, Dietschreit JCB, Peters LDM, Ochsenfeld C. Important components for accurate hyperfine coupling constants: electron correlation, dynamic contributions, and solvation effects. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1772515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sigurd Vogler
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich, Germany
| | | | - Laurens D. M. Peters
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich, Germany
| |
Collapse
|