1
|
Singh K, Frydman L. Single-Scan Heteronuclear 13C- 15N J-Coupling NMR Observations Enhanced by Dissolution Dynamic Nuclear Polarization. J Phys Chem Lett 2024; 15:5659-5664. [PMID: 38767577 PMCID: PMC11145644 DOI: 10.1021/acs.jpclett.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Heteronuclear 13C-15N couplings were measured in single-scan nuclear magnetic resonance (NMR) experiments for a variety of nitrogen-containing chemical compounds with varied structural characteristics, by using a one-dimensional (1D) 13C-15N multiple-quantum (MQ)-filtered experiment. Sensitivity limitations of the MQ filtering were overcome by the combined use of 15N labeling and dissolution dynamic nuclear polarization (dDNP), performed at cryogenic conditions and followed by quick and optimized sample melting and transfer procedures. Coupling information could thus be obtained from nucleotide bases, amino acids, urea, and aliphatic and aromatic amides, including the measurement of relatively small J-couplings directly from the 1D filtered spectra. This experiment could pave the way for NMR-based analytical applications that investigate structural and stereochemical insights into nitrogen-containing compounds, including dipeptides and proteins, while relying on heteronuclear couplings and nuclear hyperpolarization.
Collapse
Affiliation(s)
- Kawarpal Singh
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
2
|
Zhang Z, Le GNT, Ge Y, Tang X, Chen X, Ejim L, Bordeleau E, Wright GD, Burns DC, Tran S, Axerio-Cilies P, Wang YT, Dong M, Woolley GA. Isomerization of bioactive acylhydrazones triggered by light or thiols. Nat Chem 2023; 15:1285-1295. [PMID: 37308709 DOI: 10.1038/s41557-023-01239-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2023] [Indexed: 06/14/2023]
Abstract
The acylhydrazone unit is well represented in screening databases used to find ligands for biological targets, and numerous bioactive acylhydrazones have been reported. However, potential E/Z isomerization of the C=N bond in these compounds is rarely examined when bioactivity is assayed. Here we analysed two ortho-hydroxylated acylhydrazones discovered in a virtual drug screen for modulators of N-methyl-D-aspartate receptors and other bioactive hydroxylated acylhydrazones with structurally defined targets reported in the Protein Data Bank. We found that ionized forms of these compounds, which are populated under laboratory conditions, photoisomerize readily and the isomeric forms have markedly different bioactivity. Furthermore, we show that glutathione, a tripeptide involved with cellular redox balance, catalyses dynamic E⇄Z isomerization of acylhydrazones. The ratio of E to Z isomers in cells is determined by the relative stabilities of the isomers regardless of which isomer was applied. We conclude that E/Z isomerization may be a common feature of the bioactivity observed with acylhydrazones and should be routinely analysed.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Giang N T Le
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yang Ge
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Linda Ejim
- David Braley Centre for Antibiotics Discovery M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Emily Bordeleau
- David Braley Centre for Antibiotics Discovery M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D Wright
- David Braley Centre for Antibiotics Discovery M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Darcy C Burns
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Susannah Tran
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Peter Axerio-Cilies
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Yu Tian Wang
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Vriens E, De Ruysscher D, Weir ANM, Dekimpe S, Steurs G, Shemy A, Persoons L, Santos AR, Williams C, Daelemans D, Crump MP, Voet A, De Borggraeve W, Lescrinier E, Masschelein J. Polyketide Synthase-Mediated O-Methyloxime Formation in the Biosynthesis of the Oximidine Anticancer Agents. Angew Chem Int Ed Engl 2023; 62:e202304476. [PMID: 37218580 DOI: 10.1002/anie.202304476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are modular megaenzymes that employ unusual catalytic domains to assemble diverse bioactive natural products. One such PKS is responsible for the biosynthesis of the oximidine anticancer agents, oxime-substituted benzolactone enamides that inhibit vacuolar H+ -ATPases. Here, we describe the identification of the oximidine gene cluster in Pseudomonas baetica and the characterization of four novel oximidine variants, including a structurally simpler intermediate that retains potent anticancer activity. Using a combination of in vivo, in vitro and computational approaches, we experimentally elucidate the oximidine biosynthetic pathway and reveal an unprecedented mechanism for O-methyloxime formation. We show that this process involves a specialized monooxygenase and methyltransferase domain and provide insight into their activity, mechanism and specificity. Our findings expand the catalytic capabilities of trans-AT PKSs and identify potential strategies for the production of novel oximidine analogues.
Collapse
Affiliation(s)
- Eveline Vriens
- Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, 3001, Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, 3001, Heverlee, Belgium
| | - Dries De Ruysscher
- Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, 3001, Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, 3001, Heverlee, Belgium
| | - Angus N M Weir
- Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, 3001, Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, 3001, Heverlee, Belgium
| | - Sofie Dekimpe
- Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, 3001, Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, 3001, Heverlee, Belgium
| | - Gert Steurs
- Department of Chemistry, KU Leuven, 3001, Heverlee, Belgium
| | - Ahmed Shemy
- Laboratory for Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, 3001, Heverlee, Belgium
| | - Leentje Persoons
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | | | | | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Arnout Voet
- Laboratory for Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, 3001, Heverlee, Belgium
| | - Wim De Borggraeve
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, 3001, Heverlee, Belgium
| | - Eveline Lescrinier
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Joleen Masschelein
- Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, 3001, Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, 3001, Heverlee, Belgium
| |
Collapse
|
4
|
Lysak DH, Wolff WW, Soong R, Bermel W, Kupče ER, Jenne A, Biswas RG, Lane D, Gasmi-Seabrook G, Simpson A. Application of 15N-Edited 1H- 13C Correlation NMR Spectroscopy─Toward Fragment-Based Metabolite Identification and Screening via HCN Constructs. Anal Chem 2023; 95:11926-11933. [PMID: 37535003 DOI: 10.1021/acs.analchem.3c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Many key building blocks of life contain nitrogen moieties. Despite the prevalence of nitrogen-containing metabolites in nature, 15N nuclei are seldom used in NMR-based metabolite assignment due to their low natural abundance and lack of comprehensive chemical shift databases. However, with advancements in isotope labeling strategies, 13C and 15N enriched metabolites are becoming more common in metabolomic studies. Simple multidimensional nuclear magnetic resonance (NMR) experiments that correlate 1H and 15N via single bond 1JNH or multiple bond 2-3JNH couplings using heteronuclear single quantum coherence (HSQC) or heteronuclear multiple bond coherence are well established and routinely applied for structure elucidation. However, a 1H-15N correlation spectrum of a metabolite mixture can be difficult to deconvolute, due to the lack of a 15N specific database. In order to bridge this gap, we present here a broadband 15N-edited 1H-13C HSQC NMR experiment that targets metabolites containing 15N moieties. Through this approach, nitrogen-containing metabolites, such as amino acids, nucleotide bases, and nucleosides, are identified based on their 13C, 1H, and 15N chemical shift information. This approach was tested and validated using a [15N, 13C] enriched Daphnia magna (water flea) metabolite extract, where the number of clearly resolved 15N-containing peaks increased from only 11 in a standard HSQC to 51 in the 15N-edited HSQC, and the number of obscured peaks decreased from 59 to just 7. The approach complements the current repertoire of NMR techniques for mixture deconvolution and holds considerable potential for targeted metabolite NMR in 15N, 13C enriched systems.
Collapse
Affiliation(s)
- Daniel H Lysak
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - William W Wolff
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Ronald Soong
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, Ettlingen 76275, Germany
| | | | - Amy Jenne
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Rajshree Ghosh Biswas
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Daniel Lane
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | | | - Andre Simpson
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| |
Collapse
|
5
|
Cortés I, Sarotti AM. E/ Z configurational determination of oximes and related derivatives through quantum mechanics NMR calculations: scope and limitations of the leading probabilistic methods. Org Biomol Chem 2023; 21:2935-2940. [PMID: 36942946 DOI: 10.1039/d3ob00291h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Oximes and related derivatives featuring a CN double bond are important in many areas of chemistry. Different methods for the determination of the E/Z configuration have been developed, each with its own scope and limitations. While some cannot be used when only one isomer is available, others require special NMR experiments. Here, three popular computational methodologies (DP4, DP4+, and ML-J-DP4) have been thoroughly studied using a challenging test set. Although DP4+ provides the best confidence, its computational cost might be high. On the other hand, ML-J-DP4 shows excellent performance in most cases in a fraction of CPU time. A detailed analysis of the structural factors affecting the NMR prediction and sense of the assignment is also provided.
Collapse
Affiliation(s)
- Iván Cortés
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
6
|
Isomerization and aggregation of 2-(2-(2-hydroxy-4-nitrophenyl)hydrazono)-1-phenylbutane-1,3-dione: Recent evidences from theory and experiment. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Muramatsu W, Tsuji H, Yamamoto H. Catalytic Peptide Synthesis: Amidation of N-Hydroxyimino Esters. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04244] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wataru Muramatsu
- Molecular Catalyst Research
Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hiroaki Tsuji
- Molecular Catalyst Research
Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hisashi Yamamoto
- Molecular Catalyst Research
Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
8
|
Kupče Ē, Wrackmeyer B. 13C detected 15N 13C coupling measurements at the natural isotopic abundance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 279:68-73. [PMID: 28475948 DOI: 10.1016/j.jmr.2017.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
We propose a 13C detected experiment, the (H)CNMQC pulse sequence for measuring one-bond and long-range 15N13C scalar coupling constants in small organic molecules at the natural isotopic abundance. The previously proposed 1H detected H(C)NMBC experiment performs poorly in situations where the carbon atom of interest has no attached protons, in the presence of splittings due to the homonuclear HH couplings, unwanted coherence leaks and considerable t1-noise. These problems are largely avoided in the (H)CNMQC experiment based on direct 13C detection. In many cases the new experiment improves the measurement sensitivity and accuracy, not least because the 15N13C couplings are measured in the directly detected dimension enabling one-dimensional measurements.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Limited, Banner Lane, Coventry CV4 9GH, UK.
| | - Bernd Wrackmeyer
- Inorganic Chemistry, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|