1
|
Sang K, Wu D, Zhao S, Zhou H, Zhang J, Tong Z, Ding F, Pang Q, Zhang X, Zhou L, Chen P. Ligand-Induced In Situ Epitaxial Growth of PbI 2 Nanosheets/MAPbI 3 Heterojunction Realizes High-Performance HTM-Free Carbon-Based MAPbI 3 Solar Cells. SMALL METHODS 2024; 8:e2301531. [PMID: 38308413 DOI: 10.1002/smtd.202301531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/15/2024] [Indexed: 02/04/2024]
Abstract
Hole-transporting layer-free carbon-based perovskite solar cells (HTL-free C-PSCs) hold great promise for photovoltaic applications due to their low cost and outstanding stability. However, the low power conversion efficiency (PCE) of HTL-free C-PSCs mainly results from grain boundaries (GBs). Here, epitaxial growth is proposed to rationally design a hybrid nanostructure of PbI2 nanosheets/perovskite with the desired photovoltaic properties. A post-treatment technique using tri(2,2,2-trifluoromethyl) phosphate (TFEP) to induce in situ epitaxial growth of PbI2 nanosheets at the GBs of perovskite films realizes high-performance HTL-free C-PSCs. The structure model and high-resolution transmission electron microscope unravel the epitaxial growth mechanism. The epitaxial growth of oriented PbI2 nanosheets generates the PbI2/perovskite heterojunction, which not only passivates defects but forms type-I band alignment, avoiding carrier loss. Additionally, Fourier-transform infrared spectroscopy, 31P NMR, and 1H NMR spectra reveal the passivation effect and hydrogen bonding interaction between TFEP and perovskite. As a result, the VOC is remarkably boosted from 1.04 to 1.10 V, leading to a substantial gain in PCE from 14.97% to 17.78%. In addition, the unencapsulated PSC maintains the initial PCE of 80.1% for 1440 h under air ambient of 40% RH. The work offers a fresh perspective on the rational design of high-performance HTL-free C-PSCs.
Collapse
Affiliation(s)
- Kaihang Sang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Dongqi Wu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Suxin Zhao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Huanyi Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Junfang Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Zhensang Tong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Feifei Ding
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Qi Pang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Xinguo Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Peican Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| |
Collapse
|
2
|
Fang J, Wang L, Chen Z, Wang S, Yuan L, Saeed A, Hussain I, Zhao J, Liu R, Miao Q. Sulfonic Acid Functionalized Ionic Liquids for Defect Passivation via Molecular Interactions for High-Quality Perovskite Films and Stable Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652094 DOI: 10.1021/acsami.4c04762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The high photoelectric conversion efficiency and low cost of perovskite solar cells (PSCs) have further inspired people's determination to push this technology toward industrialization. The high-quality perovskite films and high-efficiency and stable PSCs are the crucial factors. Ionic liquids have been proven to be an effective strategy for regulating high-quality perovskite films and high-performance PSCs. However, the regulation mechanism between ionic liquids and perovskites still needs further clarification. In this study, a novel sulfonic acid-functionalized ionic liquid, 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BSO3HMImOTf), was used as an effective additive to regulate high-quality perovskite films and high-performance devices. Microscopic mechanism studies revealed strong interactions between BSO3HMImOTf and Pb2+ ions as well as halogens in the perovskite. The perovskite film is effectively passivated with the controlled crystal growth, suppressed ion migration, facilitating to the greatly improved photovoltaic performance, and superior long-term stability. This article reveals the regulatory mechanism of sulfonic acid type ionic liquids through testing characterization and mechanism analysis, providing a new approach for the preparation of high-quality perovskite devices.
Collapse
Affiliation(s)
- Junhui Fang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, PR China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
| | - Liang Wang
- Info-Powered Energy System Research Center (i-PERC), The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Zhaoyang Chen
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, PR China
| | - Shuai Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
| | - Lin Yuan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
| | - Aamir Saeed
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
| | - Iqbal Hussain
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
| | - Jianwei Zhao
- Shenzhen Huasuan Technology Co. Ltd., Shenzhen 518055, PR China
| | - Ruixia Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, PR China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
| | - Qingqing Miao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, PR China
- Langfang Green Industrial Technology Center, Langfang 065001, PR China
| |
Collapse
|
3
|
Filippov A, Antzutkin ON. State of anion in ethylammonium nitrate enclosed between micrometer-spaced glass plates as studied by 17O and 15N NMR. Phys Chem Chem Phys 2023; 25:14538-14545. [PMID: 37191082 DOI: 10.1039/d3cp01737k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Some aprotic and protic ionic liquids (ILs) containing nitrate anion demonstrate unusual dynamic behavior of cations when these ILs are enclosed in micrometer-spaced layers between glass plates. We applied 17O and 15N NMR spectroscopy to discover the state and transformations of 17O and 15N isotopically enriched nitrate anion of ethylammonium nitrate (EAN) enclosed between glass plates. 15N NMR spectra demonstrated preferential orientation of the principal axes of the nitrate anions perpendicular to the normal of the glass surface. Therefore, isotropic ionic liquid EAN, when placed within a micrometer-spaced enclosure, forms an ordered phase, which is similar to a liquid crystal. The peculiarity of this phase is that the cations do not have a predominant orientation. Other features of this phase that are typical for liquid crystal phases are the changed local and translational dynamics in comparison with the isotropic state and slow transformation occurring under the action of an external magnetic field.
Collapse
Affiliation(s)
- Andrei Filippov
- Chemistry of Interfaces, Luleå University of Technology, SE-97187 Luleå, Sweden.
| | - Oleg N Antzutkin
- Chemistry of Interfaces, Luleå University of Technology, SE-97187 Luleå, Sweden.
| |
Collapse
|
6
|
Gnezdilov OI, Antzutkin ON, Gimatdinov R, Filippov A. Temperature dependence of 1H NMR chemical shifts and diffusivity of confined ethylammonium nitrate ionic liquid. Magn Reson Imaging 2020; 74:84-89. [PMID: 32949669 DOI: 10.1016/j.mri.2020.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/30/2022]
Abstract
Some ionic liquids (ILs) change their dynamic properties when placed in a confinement between polar surfaces (Filippov et al., Phys. Chem. Chem. Phys. 2018, 20, 6316). The diffusivities of ions and NMR relaxation times in these ILs also reversibly change under a strong static magnetic field. The mechanisms of these phenomena are not clear, but it has been suggested that they involve modified hydrogen-bonding networks formed in these ILs in the presence of polar surfaces. To obtain a better understanding of these effects, we performed temperature-dependent measurements of chemical shifts and diffusion coefficients for ethylammonium nitrate (EAN) IL in the bulk phase (IB) and confined in layers with a thickness of ~4 μm between quartz plates unexposed (I phase) and exposed (IMF phase) to a static magnetic field of 9.4 T. It was shown that the NMR chemical shift of NH3 protons of EAN in the I phase is strongly shifted upfield, ~0.0145 ppm/K, which is due to weakening of the hydrogen-bonding network of the confined EAN. Exposure to the magnetic field leads to restitution of the hydrogen-bonding (H-bonding network). The temperature dependences of diffusion coefficients follow the order D(I) > D(IB) > D(IMF) and can be described by a Vogel-Fulcher-Tammann approach with variation of the pre-exponential factor, which is determined by the strength of the H-bonding network. Confinement of EAN between plates (IB → I) is an endothermic process, while processes occurring in a magnetic field, I → IMF and IMF → I, are exothermic and endothermic, respectively.
Collapse
Affiliation(s)
| | - Oleg N Antzutkin
- Chemistry of Interfaces, Luleå University of Technology, SE-97187 Luleå, Sweden; Department of Physics, Warwick University, Coventry CV4 7AL, UK
| | | | - Andrei Filippov
- Chemistry of Interfaces, Luleå University of Technology, SE-97187 Luleå, Sweden; Kazan State Medical University, 420012 Kazan, Russia.
| |
Collapse
|