1
|
Belov K, Brel V, Sobornova V, Fedorova I, Khodov I. Conformational Analysis of 1,5-Diaryl-3-Oxo-1,4-Pentadiene Derivatives: A Nuclear Overhauser Effect Spectroscopy Investigation. Int J Mol Sci 2023; 24:16707. [PMID: 38069031 PMCID: PMC10706324 DOI: 10.3390/ijms242316707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
1,5-Diaryl-3-Oxo-1,4-Pentadiene derivatives are intriguing organic compounds with a unique structure featuring a pentadiene core, aryl groups, and a ketone group. This study investigates the influence of fluorine atoms on the conformational features of these derivatives in deuterated chloroform (CDCl3) solution. Through nuclear magnetic resonance (NMR) spectroscopy and quantum chemical calculations, we discerned variations in interatomic distances and established predominant conformer proportions. The findings suggest that the non-fluorinated entity exhibits a uniform distribution across various conformer groups. The introduction of a fluorine atom induces substantial alterations, resulting in the predominance of a specific conformer group. This structural insight may hold the key to their diverse anticancer activities, previously reported in the literature.
Collapse
Affiliation(s)
- Konstantin Belov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia; (K.B.); (V.S.); (I.F.)
| | - Valery Brel
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Valentina Sobornova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia; (K.B.); (V.S.); (I.F.)
| | - Irina Fedorova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia; (K.B.); (V.S.); (I.F.)
| | - Ilya Khodov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia; (K.B.); (V.S.); (I.F.)
| |
Collapse
|
2
|
Wang Y, Fan A, Cohen RD, Dal Poggetto G, Huang Z, Yang H, Martin GE, Sherer EC, Reibarkh M, Wang X. Unequivocal identification of two-bond heteronuclear correlations in natural products at nanomole scale by i-HMBC. Nat Commun 2023; 14:1842. [PMID: 37012241 PMCID: PMC10070429 DOI: 10.1038/s41467-023-37289-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
HMBC is an essential NMR experiment for determining multiple bond heteronuclear correlations in small to medium-sized organic molecules, including natural products, yet its major limitation is the inability to differentiate two-bond from longer-range correlations. There have been several attempts to address this issue, but all reported approaches suffer various drawbacks, such as restricted utility and poor sensitivity. Here we present a sensitive and universal methodology to identify two-bond HMBC correlations using isotope shifts, referred to as i-HMBC (isotope shift detection HMBC). Experimental utility was demonstrated at the sub-milligram / nanomole scale with only a few hours of acquisition time required for structure elucidation of several complex proton-deficient natural products, which could not be fully elucidated by conventional 2D NMR experiments. Because i-HMBC overcomes the key limitation of HMBC without significant reduction in sensitivity or performance, i-HMBC can be used as a complement to HMBC when unambiguous identifications of two-bond correlations are needed.
Collapse
Affiliation(s)
- Yunyi Wang
- Analytical Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Ryan D Cohen
- Analytical Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA
| | | | - Zheng Huang
- Process Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA
| | - Haifeng Yang
- Process Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA
| | - Gary E Martin
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, 07079, USA
| | - Edward C Sherer
- Analytical Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA
| | - Mikhail Reibarkh
- Analytical Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA.
| | - Xiao Wang
- Analytical Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA.
| |
Collapse
|
3
|
New C-19 Lappaconitine Derivatives. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Egorov VA, Khasanova LS, Gimalova FA, Lobov AN, Ishmetova DV, Vakhitov VA, Miftakhov MS. Cytotoxicity of novel cross-conjugated arylated cyclopentene-1,3-diones. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Bigler P, Furrer J. Simplifying LR-HSQC spectra using a triple-quantum filter: The LR-HTQC experiment. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:52-60. [PMID: 33411358 DOI: 10.1002/mrc.5078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 06/12/2023]
Abstract
Long-range heteronuclear single quantum correlation (LR-HSQC) experiments may be applied for detecting long-range correlations but suffer from two disadvantages, common to all heteronuclear long-range correlation experiments: (i) The information density in LR-HSQC spectra may be too high to be used directly without "filtering out" shorter range correlations, and (ii) often, substantial differences in intensity among cross peaks exist, potentially hampering the visualization of weak, often crucial cross peaks. In this contribution, we propose a modified LR-HSQC experiment, the LR-HTQC experiment (Long-Range Heteronuclear Triple Quantum Correlation) that partially solves the problems aforementioned. We show theoretically and experimentally that the LR-HTQC experiment removes the intense cross peaks of CH spin pairs, substantially reduces the medium intensity of cross peaks originating from CHH' spin systems, whereas the typically weak intensity of cross peaks of CHH'H″ and C(H)n, n > 3 spin systems is less affected. Consequently, the LR-HTQC experiment affords simplified long-range heteronuclear shift correlation spectra and scales down large intensity differences among different types of cross peaks, although a certain general reduction of signal intensities has to be accepted.
Collapse
Affiliation(s)
- Peter Bigler
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
| | - Julien Furrer
- Departement für Chemie und Biochemie, Universität Bern, Bern, Switzerland
| |
Collapse
|
6
|
Motiram-Corral K, Nolis P, Saurí J, Parella T. LR-HSQMBC versus LR-selHSQMBC: Enhancing the Observation of Tiny Long-Range Heteronuclear NMR Correlations. JOURNAL OF NATURAL PRODUCTS 2020; 83:1275-1282. [PMID: 32155071 DOI: 10.1021/acs.jnatprod.0c00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The detection of ultra-long-range (4JCH and higher) heteronuclear connectivities can complement the conventional use of HMBC/HSQMBC data in structure elucidation NMR studies of proton-deficient natural products, where two-bond and three-bond correlations are usually observed. The performance of the selHSQMBC experiment with respect to its broadband HSQMBC counterpart is evaluated. Despite its frequency-selectivity nature, selHSQMBC efficiently prevents any unwanted signal phase and intensity modulations due to passive proton-proton coupling constants typically involved in HSQMBC. As a result, selHSQMBC offers a significant sensitivity enhancement and provides pure in-phase multiplets, improving the detection levels for short- and long-range cross-peaks corresponding to small heteronuclear coupling values. This is particularly relevant for experiments optimized to small nJCH values (2-3 Hz), referred to as LR-selHSQMBC, where key cross-peaks that are not visible in the equivalent broadband LR-HSQMBC spectrum can become observable in optimum conditions.
Collapse
Affiliation(s)
- Kumar Motiram-Corral
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Pau Nolis
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Josep Saurí
- Structure Elucidation Group, Analytical Research & Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Motiram-Corral K, Souza AA, Saurí J, Nolis P, Parella T. LR-selHSQMBC: Simultaneous Detection and Quantification of Very Weak Long-Range Heteronuclear NMR Correlations. Chemphyschem 2020; 21:280-283. [PMID: 31951093 DOI: 10.1002/cphc.201901142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Indexed: 11/08/2022]
Abstract
The optimum detection and accurate measurement of longer-range (4 J and higher) heteronuclear NMR correlations is described. The magnitude and/or the sign of a wide range of large and small long-range couplings can be simultaneously determined for protonated and non-protonated 13 C and 15 N nuclei using the LR-selHSQMBC experiment.
Collapse
Affiliation(s)
- Kumar Motiram-Corral
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Catalonia, Spain
| | - Alexandre A Souza
- Departamento de Química, Universidade Federal de Piauí, 64049-550, Teresina" PI, Brazil
| | - Josep Saurí
- Structure Elucidation Group, Analytical Research & Development, Merck & Co., Inc., 33 Av. Louis Pasteur, Boston, MA, 02215, USA
| | - Pau Nolis
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Catalonia, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Catalonia, Spain
| |
Collapse
|