1
|
Xia W, Zhou Z, Sheng L, Chen L, Shen F, Zheng F, Zhang Z, Yang Q, Ren Q, Bao Z. Bioinspired recognition in metal-organic frameworks enabling precise sieving separation of fluorinated propylene and propane mixtures. Nat Commun 2024; 15:8716. [PMID: 39379380 PMCID: PMC11461849 DOI: 10.1038/s41467-024-53024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
The separation of fluorinated propane/propylene mixtures remains a major challenge in the electronics industry. Inspired by biological ion channels with negatively charged inner walls that allow selective transport of cations, we presented a series of formic acid-based metal-organic frameworks (MFA) featuring biomimetic multi-hydrogen confined cavities. These MFA materials, especially the cobalt formate (CoFA), exhibit specific recognition of hexafluoropropylene (C3F6) while facilitating size exclusion of perfluoropropane (C3F8). The dual-functional adsorbent offers multiple binding sites to realize intelligent selective recognition of C3F6, as supported by theoretical calculations and in situ spectroscopic experiments. Mixed-gas breakthrough experiments validate the capability of CoFA to produce high-purity (>5 N) C3F8 in a single step. Importantly, the stability and cost-effective scalable synthesis of CoFA underscore its extraordinary potential for industrial C3F6/C3F8 separations. This bioinspired molecular recognition approach opens new avenues for the efficient purification of fluorinated electronic specialty gases.
Collapse
Affiliation(s)
- Wei Xia
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Zhijie Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Liangzheng Sheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Lihang Chen
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Fuxing Shen
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Fang Zheng
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China.
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China.
| |
Collapse
|
2
|
Kovács B, Földes T, Szabó M, Dorkó É, Kótai B, Laczkó G, Holczbauer T, Domján A, Pápai I, Soós T. Illuminating the multiple Lewis acidity of triaryl-boranes via atropisomeric dative adducts. Chem Sci 2024:d4sc00925h. [PMID: 39257854 PMCID: PMC11382148 DOI: 10.1039/d4sc00925h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Using the principle that constrained conformational spaces can generate novel and hidden molecular properties, we challenged the commonly held perception that a single-centered Lewis acid reacting with a single-centered Lewis base always forms a single Lewis adduct. Accordingly, the emergence of single-centered but multiple Lewis acidity among sterically hindered and non-symmetric triaryl-boranes is reported. These Lewis acids feature several diastereotopic faces providing multiple binding sites at the same Lewis acid center in the interaction with Lewis bases giving rise to adducts with diastereomeric structures. We demonstrate that with a proper choice of the base, atropisomeric adduct species can be formed that interconvert via the dissociative mechanism rather than conformational isomerism. The existence of this exotic and peculiar molecular phenomenon was experimentally confirmed by the formation of atropisomeric piperidine-borane adducts using state-of-the-art NMR techniques in combination with computational methods.
Collapse
Affiliation(s)
- Benjámin Kovács
- Centre for Structural Science, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Tamás Földes
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Márk Szabó
- Centre for Structural Science, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Éva Dorkó
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Bianka Kótai
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Gergely Laczkó
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University P. O. Box 32 Budapest H-1518 Hungary
| | - Tamás Holczbauer
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Attila Domján
- Centre for Structural Science, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Imre Pápai
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| |
Collapse
|
3
|
Sobornova VV, Belov KV, Krestyaninov MA, Khodov IA. Influence of Solvent Polarity on the Conformer Ratio of Bicalutamide in Saturated Solutions: Insights from NOESY NMR Analysis and Quantum-Chemical Calculations. Int J Mol Sci 2024; 25:8254. [PMID: 39125824 PMCID: PMC11311660 DOI: 10.3390/ijms25158254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The study presents a thorough and detailed analysis of bicalutamide's structural and conformational properties. Quantum chemical calculations were employed to explore the conformational properties of the molecule, identifying significant energy differences between conformers. Analysis revealed that hydrogen bonds stabilise the conformers, with notable variations in torsion angles. Conformers were classified into 'closed' and 'open' types based on the relative orientation of the cyclic fragments. NOE spectroscopy in different solvents (CDCl3 and DMSO-d6) was used to study the conformational preferences of the molecule. NOESY experiments provided the predominance of 'closed' conformers in non-polar solvents and a significant presence of 'open' conformers in polar solvents. The proportions of open conformers were 22.7 ± 3.7% in CDCl3 and 59.8 ± 6.2% in DMSO-d6, while closed conformers accounted for 77.3 ± 3.7% and 40.2 ± 6.2%, respectively. This comprehensive study underscores the solvent environment's impact on its structural behaviour. The findings significantly contribute to a deeper understanding of conformational dynamics, stimulating further exploration in drug development.
Collapse
Affiliation(s)
| | | | | | - Ilya A. Khodov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russia
| |
Collapse
|
4
|
Chiari C, Batista PR, Viesser RV, Schenberg LA, Ducati LC, Linclau B, Tormena CF. Molecular dynamics and NMR reveal the coexistence of H-bond-assisted and through-space JFH coupling in fluorinated amino alcohols. Org Biomol Chem 2024; 22:2580-2595. [PMID: 38441115 DOI: 10.1039/d4ob00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The JFH coupling constants in fluorinated amino alcohols were investigated through experimental and theoretical approaches. The experimental JFH couplings were only reproduced theoretically when explicit solvation through molecular dynamics (MD) simulations was conducted in DMSO as the solvent. The combination of MD conformation sampling and DFT NMR spin-spin coupling calculations for these compounds reveals the simultaneous presence of through-space (TS) and hydrogen bond (H-bond) assisted JFH coupling between fluorine and hydrogen of the NH group. Furthermore, MD simulations indicate that the hydrogen in the amino group participates in both an intermolecular bifurcated H-bond with DMSO and in transmitting the observed JFH coupling. The contribution of TS to the JFH coupling is due to the spatial proximity of the fluorine and the NH group, aided by a combination of the non-bonding transmission pathway and the hydrogen bonding pathway. The experimental JFH coupling observed for the molecules studied should be represented as 4TS/1hJFH coupling.
Collapse
Affiliation(s)
- Cassia Chiari
- Institute of Chemistry, University of Campinas - UNICAMP, P. O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| | - Patrick R Batista
- Institute of Chemistry, University of Campinas - UNICAMP, P. O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| | - Renan V Viesser
- Department of Chemistry, University of Houston, Houston, TX 77024, USA
| | - Leonardo A Schenberg
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Lucas C Ducati
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Bruno Linclau
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Cláudio F Tormena
- Institute of Chemistry, University of Campinas - UNICAMP, P. O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Alonso-Moreno P, Rodriguez I, Izquierdo-Garcia JL. Benchtop NMR-Based Metabolomics: First Steps for Biomedical Application. Metabolites 2023; 13:614. [PMID: 37233655 PMCID: PMC10223723 DOI: 10.3390/metabo13050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Nuclear magnetic resonance (NMR)-based metabolomics is a valuable tool for identifying biomarkers and understanding the underlying metabolic changes associated with various diseases. However, the translation of metabolomics analysis to clinical practice has been limited by the high cost and large size of traditional high-resolution NMR spectrometers. Benchtop NMR, a compact and low-cost alternative, offers the potential to overcome these limitations and facilitate the wider use of NMR-based metabolomics in clinical settings. This review summarizes the current state of benchtop NMR for clinical applications where benchtop NMR has demonstrated the ability to reproducibly detect changes in metabolite levels associated with diseases such as type 2 diabetes and tuberculosis. Benchtop NMR has been used to identify metabolic biomarkers in a range of biofluids, including urine, blood plasma and saliva. However, further research is needed to optimize the use of benchtop NMR for clinical applications and to identify additional biomarkers that can be used to monitor and manage a range of diseases. Overall, benchtop NMR has the potential to revolutionize the way metabolomics is used in clinical practice, providing a more accessible and cost-effective way to study metabolism and identify biomarkers for disease diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Pilar Alonso-Moreno
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
| | - Ignacio Rodriguez
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Luis Izquierdo-Garcia
- NMR and Imaging in Biomedicine Group, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.A.-M.); (I.R.)
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Abstract
Nuclear Overhauser Effect (NOE) methods in NMR are an important tool for 3D structural analysis of small molecules. Quantitative NOE methods conventionally rely on reference distances, known distances that have to be spectrally separated and are not always available. Here we present a new method for evaluation and 3D structure selection that does not require a reference distance, instead utilizing structures optimized by molecular mechanics, enabling NOE evaluation even on molecules without suitable reference groups. A quantitative Nuclear Overhauser Effect (NOE) analysis approach that avoids the use of and internal reference distance to perform molecular configuration selection.![]()
Collapse
Affiliation(s)
- Martin R M Koos
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| | - Karl H G Schulz
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| | - Roberto R Gil
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| |
Collapse
|
7
|
Howe PWA. Recent developments in the use of fluorine NMR in synthesis and characterisation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:1-9. [PMID: 32883447 DOI: 10.1016/j.pnmrs.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
A review of developments in fluorine NMR of relevance to synthesis, characterisation and industrial applications of small organic molecules. Developments considered include those in spectrometer technology, computational methods and pulse sequences. The review of 80 references outlines applications in areas of identification, quantitation, mixture analysis, reaction monitoring, environmental studies and fragment-based drug design.
Collapse
Affiliation(s)
- Peter W A Howe
- Syngenta, Jealott's Hill Research Centre, Bracknell, Berkshire RG42 6EY, UK.
| |
Collapse
|