1
|
Grimes MI, Cheeks M, Smith J, Zurlo F, Mantle MD. Decoupling Protein Concentration and Aggregate Content Using Diffusion and Water NMR. Anal Chem 2024; 96:11155-11162. [PMID: 38943616 PMCID: PMC11256015 DOI: 10.1021/acs.analchem.3c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Protein-based biopharmaceutical drugs, such as monoclonal antibodies, account for the majority of the best-selling drugs globally in recent years. For bioprocesses, key performance indicators are the concentration and aggregate level for the product being produced. In water NMR (wNMR), the use of the water transverse relaxation rate [R2(1H2O)] has been previously used to determine protein concentration and aggregate level; however, it cannot be used to separate between them without using an additional technique. This work shows that it is possible to "decouple" these two key characteristics by recording the water diffusion coefficient [D(1H2O)] in conjunction with R2(1H2O), even in the event of overlap in either D(1H2O) or R2(1H2O). This method is demonstrated on three different systems, following appropriate D(1H2O) or R2(1H2O) calibration data acquisition for a protein of interest. Our method highlights the potential use of benchtop NMR as an at-line process analytical technique.
Collapse
Affiliation(s)
- Mark I. Grimes
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Matthew Cheeks
- Cell
Culture & Fermentation Sciences, Biopharmaceutical Development,
Biopharmaceuticals R&D, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Jennifer Smith
- Cell
Culture & Fermentation Sciences, Biopharmaceutical Development,
Biopharmaceuticals R&D, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Fabio Zurlo
- Cell
Culture & Fermentation Sciences, Biopharmaceutical Development,
Biopharmaceuticals R&D, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Mick D. Mantle
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| |
Collapse
|
2
|
Taraban MB, Ndung'u T, Karki P, Li K, Fung G, Kirkitadze M, Yu YB. Analysis of the Adsorbed Vaccine Formulations Using Water Proton Nuclear Magnetic Resonance-Comparison with Optical Analytics. Pharm Res 2023; 40:1989-1998. [PMID: 37127780 PMCID: PMC10151113 DOI: 10.1007/s11095-023-03528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE To evaluate wNMR, an emerging noninvasive analytical technology, for characterizing aluminum-adjuvanted vaccine formulations. METHODS wNMR stands for water proton nuclear magnetic resonance. In this work, wNMR and optical techniques (laser diffraction and laser scattering) were used to characterize vaccine formulations containing different antigen loads adsorbed onto AlPO4 adjuvant microparticles, including the fully dispersed state and the sedimentation process. All wNMR measurements were done noninvasively on sealed vials containing the adsorbed vaccine suspensions, while the optical techniques require transferring the adsorbed vaccine suspensions out of the original vial into specialized cuvette/tube for analysis. For analyzing fully dispersed suspensions, optical techniques also require sample dilution. RESULTS wNMR outperformed laser diffraction in differentiating high- and low-dose formulations of the same vaccine, while wNMR and laser scattering achieved comparable results on vaccine sedimentation kinetics and the compactness of fully settled vaccines. CONCLUSION wNMR could be used to analyze aluminum-adjuvanted formulations and to differentiate between formulations containing different antigen loads adsorbed onto aluminum adjuvant microparticles. The results demonstrate the capability of wNMR to characterize antigen-adjuvant complexes and to noninvasively inspect finished vaccine products.
Collapse
Affiliation(s)
- Marc B Taraban
- Bio‑ and Nano‑Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Teresia Ndung'u
- Bio‑ and Nano‑Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Pratima Karki
- Bio‑ and Nano‑Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Kira Li
- Analytical Sciences, Vaccine CMC Development and Supply, Sanofi, Toronto, ON, M2R 3T4, Canada
| | - Ginny Fung
- Analytical Sciences, Vaccine CMC Development and Supply, Sanofi, Toronto, ON, M2R 3T4, Canada
| | - Marina Kirkitadze
- Analytical Sciences, Vaccine CMC Development and Supply, Sanofi, Toronto, ON, M2R 3T4, Canada.
| | - Y Bruce Yu
- Bio‑ and Nano‑Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
| |
Collapse
|
3
|
Taraban MB, Briggs KT, Yu YB, Jones MT, Rosner L, Bhambhani A, Williams DM, Farrell C, Reibarkh M, Su Y. Assessing Antigen-Adjuvant Complex Stability Against Physical Stresses By wNMR. Pharm Res 2023; 40:1435-1446. [PMID: 36414838 DOI: 10.1007/s11095-022-03437-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
This study applies an emerging analytical technology, wNMR (water proton nuclear magnetic resonance), to assess the stability of aluminum adjuvants and antigen-adjuvant complexes against physical stresses, including gravitation, flow and freeze/thaw. Results from wNMR are verified by conventional analytical technologies, including static light scattering and microfluidic imaging. The results show that wNMR can quickly and noninvasively determine whether an aluminum adjuvant or antigen-adjuvant complex sample has been altered by physical stresses.
Collapse
Affiliation(s)
- Marc B Taraban
- University of Maryland School of Pharmacy and Institute for Bioscience and Biotechnology, Rockville, Maryland, 20850, USA
| | - Katharine T Briggs
- University of Maryland School of Pharmacy and Institute for Bioscience and Biotechnology, Rockville, Maryland, 20850, USA
| | - Yihua Bruce Yu
- University of Maryland School of Pharmacy and Institute for Bioscience and Biotechnology, Rockville, Maryland, 20850, USA.
| | | | | | - Akhilesh Bhambhani
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey, 07065, USA.
- Biologics and mRNA Drug Product Development, Tech Dev/Tech Ops, Ultragenyx Pharmaceutical, Brisbane, California, 94005, USA.
| | - Donna M Williams
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey, 07065, USA
| | - Christopher Farrell
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, USA
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, USA
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, USA.
| |
Collapse
|
4
|
Cosgrove T, Stebbing S, Ackroyd M, Fairhurst D, Sanderson K, Prescott SW. Using low-field NMR relaxation to optimise particulate dispersions. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Taraban MB, Wang Y, Briggs KT, Yu YB. Inspecting Insulin Products Using Water Proton NMR. I. Noninvasive vs Invasive Inspection. J Diabetes Sci Technol 2022; 16:1410-1418. [PMID: 34111968 PMCID: PMC9631543 DOI: 10.1177/19322968211023806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND There is a clear need to transition from batch-level to vial/syringe/pen-level quality control of biologic drugs, such as insulin. This could be achieved only by noninvasive and quantitative inspection technologies that maintain the integrity of the drug product. METHODS Four insulin products for patient self-injection presented as prefilled pens have been noninvasively and quantitatively inspected using the water proton NMR technology. The inspection output is the water proton relaxation rate R2(1H2O), a continuous numerical variable rather than binary pass/fail. RESULTS Ten pens of each product were inspected. R2(1H2O) displays insignificant variation among the 10 pens of each product, suggesting good insulin content uniformity in the inspected pens. It is also shown that transferring the insulin solution out of and then back into the insulin pen caused significant change in R2(1H2O), presumably due to exposure to O2 in air. CONCLUSIONS Water proton NMR can noninvasively and quantitatively inspect insulin pens. wNMR can confirm product content uniformity, but not absolute content. Its sensitivity to sample transferring provides a way to detect drug product tampering. This opens the possibility of inspecting every pen/vial/syringe by manufacturers and end-users.
Collapse
Affiliation(s)
- Marc B. Taraban
- Bio- and Nano-Technology Center,
University of Maryland School of Pharmacy, Baltimore, MD, USA
- Institute for Bioscience and
Biotechnology Research, Rockville, MD, USA
| | - Yilin Wang
- Bio- and Nano-Technology Center,
University of Maryland School of Pharmacy, Baltimore, MD, USA
- Institute for Bioscience and
Biotechnology Research, Rockville, MD, USA
| | - Katharine T. Briggs
- Bio- and Nano-Technology Center,
University of Maryland School of Pharmacy, Baltimore, MD, USA
- Institute for Bioscience and
Biotechnology Research, Rockville, MD, USA
| | - Yihua Bruce Yu
- Bio- and Nano-Technology Center,
University of Maryland School of Pharmacy, Baltimore, MD, USA
- Institute for Bioscience and
Biotechnology Research, Rockville, MD, USA
- Yihua Bruce Yu, Bio- and Nano-Technology
Center, University of Maryland School of Pharmacy, and Institute for Bioscience
and Biotechnology Research, 9600 Gudelsky Dr., Rockville, MD 20850, USA.
| |
Collapse
|
6
|
Gerzon G, Sheng Y, Kirkitadze M. Process Analytical Technologies - Advances in bioprocess integration and future perspectives. J Pharm Biomed Anal 2022; 207:114379. [PMID: 34607168 DOI: 10.1016/j.jpba.2021.114379] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Process Analytical Technology (PAT) instruments include analyzers capable of measuring physical and chemical process parameters and key attributes with the goal of optimizing process controls. PAT in the form of a probe or sensor is designed to integrate within the pharmaceutical manufacturing line and is coupled with computing equipment to perform chemometric modeling for result interpretation and multilayer statistical control of processes. PAT solutions are intended for understanding bioprocesses with a goal to control quality at all stages of product manufacturing and achieve quality by design (QbD). The goal of PAT implementation is to promote real-time release of products to decrease the cycle time and cost of production. This review focuses on the applications of PAT solutions at different stages of the manufacturing process for vaccine production, the advantages, challenges at present state, and the vision of the future development of biopharmaceutical industries.
Collapse
Affiliation(s)
- Gabriella Gerzon
- Department of Biology, Faculty of Science, York University, Toronto, Canada; Analytical Sciences, Sanofi Pasteur, Toronto, Canada
| | - Yi Sheng
- Department of Biology, Faculty of Science, York University, Toronto, Canada
| | | |
Collapse
|