1
|
Jamioł M, Sozoniuk M, Wawrzykowski J, Kankofer M. Changes in plasma PLAC-1 concentration and its expression during early-mid pregnancy in bovine placental tissues - a pilot study. BMC Vet Res 2024; 20:59. [PMID: 38378537 PMCID: PMC10877859 DOI: 10.1186/s12917-024-03898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Placenta-specific protein 1 (PLAC1) is a small secreted protein considered to be a molecule with a significant role in the development of the placenta and the establishment of the mother-foetus interface. This study aimed to confirm the presence of bovine PLAC1 and to examine its profile in the placenta and plasma in the first six months of pregnancy. The expression pattern of PLAC1 was analysed by RT-qPCR and Western Blotting. Quantitative evaluation was carried out using ELISA. RESULTS PLAC1 concentrations in the plasma of pregnant cows were significantly higher (p < 0.05) than those obtained from non-pregnant animals. PLAC1 protein concentrations in the placental tissues of the foetal part were significantly (p < 0.05) higher than in the tissues of the maternal part of the placenta. PLAC1 transcripts were detected in both placental tissue samples and epithelial cell cultures. CONCLUSIONS In conclusion, the results of the present preliminary study suggest that PLAC1 is involved in the development of bovine placenta. The presence of this protein in the plasma of pregnant animals as early as the first month may make it a potential candidate as a pregnancy marker in cows. Further studies on exact mechanisms of action of PLAC1 in bovine placenta are necessary.
Collapse
Affiliation(s)
- Monika Jamioł
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka Street 12, Lublin, 20-033, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka Street 15, Lublin, 20-950, Poland
| | - Jacek Wawrzykowski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka Street 12, Lublin, 20-033, Poland
| | - Marta Kankofer
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka Street 12, Lublin, 20-033, Poland.
| |
Collapse
|
2
|
Zheng H, Choi H, Oh D, Kim M, Cai L, Jawad A, Kim S, Lee J, Hyun SH. Supplementation with fibroblast growth factor 7 during in vitro maturation of porcine cumulus-oocyte complexes improves oocyte maturation and early embryonic development. Front Vet Sci 2023; 10:1250551. [PMID: 38026656 PMCID: PMC10662523 DOI: 10.3389/fvets.2023.1250551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
In vitro generation of porcine embryos is an indispensable method in the realms of both agriculture and biomedicine. Nonetheless, the extant procedures encounter substantial obstacles pertaining to both the caliber and efficacy of the produced embryos, necessitating extensive research to in vitro maturation (IVM), the seminal commencement phase. One potentially fruitful approach may lie in refining the media and supplements composition utilized for oocyte maturation. Fibroblast growth factor-7 (FGF7), alternatively termed keratinocyte growth factor, is a theca-derived cytokine integral to folliculogenesis. This study aimed to examine the ramifications of supplementing FGF7 during the IVM phase. To determine the FGF7 location and its receptor in porcine ovaries, immunohistochemistry was executed based on follicle size categories (1-2, 3-6, and 7-9 mm). Regardless of follicle size, it was determined that FGF7 was expressed in theca and granulosa cells (GCs), whereas the FGF7 receptor was only expressed in the GCs of the larger follicles. During the IVM process, the maturation medium was supplied with various concentrations of FGF7, aiming to mature porcine cumulus-oocyte complexes (COCs). The data indicated a significant augmentation in the nuclear maturation rate only within the group treated with 10 ng/mL of FGF7 (p < 0.05). Post-IVM, the oocytes diameter exhibited a significant expansion in all groups that received FGF7 supplementation (p < 0.05). Additionally, all FGF7-supplemented groups exhibited a substantial elevation in intracellular glutathione levels, coupled with a noticeable reduction in reactive oxygen species levels (p < 0.05). With respect to gene expressions related to apoptosis, FGF7 treatment elicited a downregulation of pro-apoptotic genes and an upregulation of anti-apoptotic genes. The expression of genes associated with antioxidants underwent a significant enhancement (p < 0.05). In terms of the FGF7 signaling pathway-associated genes, there was a significant elevation in the mRNA expression of ERK1, ERK2, c-kit, and KITLG (p < 0.05). Remarkably, the group of 10 ng/mL of FGF7 demonstrated an appreciable uptick in the blastocyst formation rate during embryonic development post-parthenogenetic activation (p < 0.05). In conclusion, the FGF7 supplementation during IVM substantially augments the quality of matured oocytes and facilitates the subsequent development of parthenogenetically activated embryos. These results offer fresh perspectives on improved maturation and following in vitro evolution of porcine oocytes.
Collapse
Affiliation(s)
- Haomiao Zheng
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, United States
| | - Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Sohee Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
3
|
Oliveira MDMS, Salgado CDM, Viana LR, Gomes-Marcondes MCC. Pregnancy and Cancer: Cellular Biology and Mechanisms Affecting the Placenta. Cancers (Basel) 2021; 13:1667. [PMID: 33916290 PMCID: PMC8037654 DOI: 10.3390/cancers13071667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer during pregnancy is rarely studied due to its low incidence (1:1000). However, as a result of different sociocultural and economic changes, women are postponing pregnancy, so the number of pregnant women with cancer has been increasing in recent years. The importance of studying cancer during pregnancy is not only based on maternal and foetal prognosis, but also on the evolutionary mechanisms of the cell biology of trophoblasts and neoplastic cells, which point out similarities between and suggest new fields for the study of cancer. Moreover, the magnitude of how cancer factors can affect trophoblastic cells, and vice versa, in altering the foetus's nutrition and health is still a subject to be understood. In this context, the objective of this narrative review was to show that some researchers point out the importance of supplementing branched-chain amino acids, especially leucine, in experimental models of pregnancy associated with women with cancer. A leucine-rich diet may be an interesting strategy to preserve physiological placenta metabolism for protecting the mother and foetus from the harmful effects of cancer during pregnancy.
Collapse
Affiliation(s)
| | | | - Lais Rosa Viana
- Nutrition and Cancer Laboratory, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Sao Paulo 13083-862, Brazil; (M.d.M.S.O.); (C.d.M.S.)
| | - Maria Cristina Cintra Gomes-Marcondes
- Nutrition and Cancer Laboratory, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Sao Paulo 13083-862, Brazil; (M.d.M.S.O.); (C.d.M.S.)
| |
Collapse
|
4
|
Mahmoudi AR, Ghods R, Rakhshan A, Madjd Z, Bolouri MR, Mahmoudian J, Rahdan S, Shokri MR, Dorafshan S, Shekarabi M, Zarnani AH. Discovery of a potential biomarker for immunotherapy of melanoma: PLAC1 as an emerging target. Immunopharmacol Immunotoxicol 2020; 42:604-613. [PMID: 33106058 DOI: 10.1080/08923973.2020.1837865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Melanoma has increased in incidence worldwide prompting investigators to search for new biomarkers for targeted immunotherapy of this disease. Placenta specific 1 (PLAC1) is a new member of cancer-testis antigens with widespread expression in many types of cancer. Here, we aimed to study for the first time the expression pattern of PLAC1 in skin cancer samples including cutaneous melanoma, basal cell carcinoma (BCC), squamous cell carcinoma (SCC) in comparison to normal skin and nevus tissues and potential therapeutic effect of anti-PLAC1 antibody in melanoma cancer cell lines in vitro. MATERIALS AND METHODS Polyclonal and monoclonal antibodies were applied for immunohistochemical profiling of PLAC1 expression using tissue microarray. The cytotoxic action of anti-PLAC1 antibody alone or as an antibody drug conjugate (with anti-neoplastic agent SN38) was investigated in melanoma cell lines. RESULTS We observed that 100% (39 of 39) of melanoma tissues highly expressed PLAC1 with both cytoplasmic and surface expression pattern. Investigation of PLAC1 expression in BCC (n = 110) samples showed negative results. Cancer cells in SCC samples (n = 66) showed very weak staining. Normal skin tissues and nevus samples including congenital melanocytic nevus failed to express PLAC1. Anti-PLAC1-SN38 exerted a specific pattern of cytotoxicity in a dose- and time-dependent manner in melanoma cells expressing surface PLAC1. CONCLUSIONS Our findings re-inforce the concept of re-expression of embryonic/placental tissue antigens in cancer and highlight the possibility of melanoma targeted therapy by employing anti-PLAC1 antibodies. The data presented here should lead to the future research on targeted immunotherapy of patients with melanoma.
Collapse
Affiliation(s)
- Ahmad-Reza Mahmoudi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rakhshan
- Department of Pathology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Bolouri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Shaghayegh Rahdan
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Dorafshan
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Roldán DB, Grimmler M, Hartmann C, Hubich-Rau S, Beißert T, Paret C, Cagna G, Rohde C, Wöll S, Koslowski M, Türeci Ö, Sahin U. PLAC1 is essential for FGF7/FGFRIIIb-induced Akt-mediated cancer cell proliferation. Oncotarget 2020; 11:1862-1875. [PMID: 32499871 PMCID: PMC7244013 DOI: 10.18632/oncotarget.27582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/14/2020] [Indexed: 12/20/2022] Open
Abstract
PLAC1 (placenta enriched 1) is a mammalian trophoblast-specific protein. Aberrant expression of PLAC1 is observed in various human cancers, where it is involved in the motility, migration, and invasion of tumor cells, which are associated with the phosphoinositide 3-kinase (PI3K)/AKT pathway. We previously demonstrated that AKT activation mediates the downstream effects of PLAC1; however, the molecular mechanisms of PLAC1-induced AKT-mediated tumor-related processes are unclear. We studied human choriocarcinoma and breast cancer cell lines to explore the localization and receptor-ligand interactions, as well as the downstream effects of PLAC1. We show secretion and adherence of PLAC1 to the extracellular matrix, where it forms a trimeric complex with fibroblast growth factor 7 (FGF7) and its receptor, FGF receptor 2 IIIb (FGFR2IIIb). We further show that PLAC1 signaling via FGFR2IIIb activates AKT phosphorylation in cancer cell lines. As the FGF pathway is of major interest in anticancer therapeutic strategies, these data further promote PLAC1 as a promising anticancer drug target.
Collapse
Affiliation(s)
- Diana Barea Roldán
- TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- These authors contributed equally to this work
| | - Matthias Grimmler
- Formerly of TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Current address: DiaSys Diagnostic Systems GmbH, Holzheim, Germany
- These authors contributed equally to this work
| | - Christoph Hartmann
- Formerly of TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Current address: Merck KGaA, Darmstadt, Germany
- These authors contributed equally to this work
| | - Stefanie Hubich-Rau
- TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- These authors contributed equally to this work
| | - Tim Beißert
- TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Paret
- Formerly of TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Giuseppe Cagna
- Formerly of Ganymed Pharmaceuticals AG, Mainz, Germany
- Current address: Lonza Pharma & Biotech, Cologne, Germany
| | - Christoph Rohde
- Formerly of Ganymed Pharmaceuticals AG, Mainz, Germany
- Current address: Merck KGaA, Darmstadt, Germany
| | - Stefan Wöll
- Formerly of Ganymed Pharmaceuticals AG, Mainz, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Michael Koslowski
- Formerly of TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Formerly of Ganymed Pharmaceuticals AG, Mainz, Germany
- Formerly of University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Current address: GammaDelta Therapeutics, London, United Kingdom
| | - Özlem Türeci
- Formerly of TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Formerly of Ganymed Pharmaceuticals AG, Mainz, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
- Ci3 Cluster for Individualized Immune Intervention, Mainz, Germany
| | - Ugur Sahin
- TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
- University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Mahmoudian J, Ghods R, Nazari M, Jeddi-Tehrani M, Ghahremani MH, Ghaffari-Tabrizi-Wizsy N, Ostad SN, Zarnani AH. PLAC1: biology and potential application in cancer immunotherapy. Cancer Immunol Immunother 2019; 68:1039-1058. [PMID: 31165204 PMCID: PMC11028298 DOI: 10.1007/s00262-019-02350-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
Abstract
The emergence of immunotherapy has revolutionized medical oncology with unprecedented advances in cancer treatment over the past two decades. However, a major obstacle in cancer immunotherapy is identifying appropriate tumor-specific antigens to make targeted therapy achievable with fewer normal cells being impaired. The similarity between placentation and tumor development and growth has inspired many investigators to discover antigens for effective immunotherapy of cancers. Placenta-specific 1 (PLAC1) is one of the recently discovered placental antigens with limited normal tissue expression and fundamental roles in placental function and development. There is a growing body of evidence showing that PLAC1 is frequently activated in a wide variety of cancer types and promotes cancer progression. Based on the restricted expression of PLAC1 in testis, placenta and a wide variety of cancers, we have designated this molecule with new terminology, cancer-testis-placenta (CTP) antigen, a feature that PLAC1 shares with many other cancer testis antigens. Recent reports from our lab provide compelling evidence on the preferential expression of PLAC1 in prostate cancer and its potential utility in prostate cancer immunotherapy. PLAC1 may be regarded as a potential CTP antigen for targeted cancer immunotherapy based on the available data on its promoting function in cancer development and also its expression in cancers of different histological origin. In this review, we will summarize current data on PLAC1 with emphasis on its association with cancer development and immunotherapy.
Collapse
Affiliation(s)
- Jafar Mahmoudian
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Pharmacology Building, Enghelab St., Tehran, 1417614411, Iran
| | | | - Seyed Nasser Ostad
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Pharmacology Building, Enghelab St., Tehran, 1417614411, Iran.
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Nafisi Building, Enghelab St., Tehran, 1417613151, Iran.
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Shi LY, Ma Y, Zhu GY, Liu JW, Zhou CX, Chen LJ, Wang Y, Li RC, Yang ZX, Zhang D. Placenta‐specific 1 regulates oocyte meiosis and fertilization through furin. FASEB J 2018; 32:5483-5494. [DOI: 10.1096/fj.201700922rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Li-Ya Shi
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yang Ma
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Gang-Yi Zhu
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Jin-Wei Liu
- Department of GynecologyZhejiang Provincial People's HospitalHangzhouChina
| | - Chun-Xiang Zhou
- Prenatal Diagnosis Center of Jiangsu ProvinceAffiliated Drum Tower Hospital, Nanjing University Medical SchoolNanjingChina
| | - Liang-Jian Chen
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yang Wang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | | | - Zhi-Xia Yang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Dong Zhang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
8
|
Yang L, Zha TQ, He X, Chen L, Zhu Q, Wu WB, Nie FQ, Wang Q, Zang CS, Zhang ML, He J, Li W, Jiang W, Lu KH. Placenta-specific protein 1 promotes cell proliferation and invasion in non-small cell lung cancer. Oncol Rep 2017; 39:53-60. [PMID: 29138842 PMCID: PMC5783604 DOI: 10.3892/or.2017.6086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/26/2017] [Indexed: 01/08/2023] Open
Abstract
Pulmonary carcinoma-associated proteins have emerged as crucial players in governing fundamental biological processes such as cell proliferation, apoptosis and metastasis in human cancers. Placenta-specific protein 1 (PLAC1) is a cancer-related protein, which is activated and upregulated in a variety of malignant tissues, including prostate cancer, gastric adenocarcinoma, colorectal, epithelial ovarian and breast cancer. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression are still unknown. In the present study, we found that PLAC1 was significantly upregulated in NSCLC tissues, and its expression level was associated with advanced pathological stage and it was also correlated with shorter progression-free survival of lung cancer patients. Furthermore, knockdown of PLAC1 expression by siRNA inhibited cell proliferation, induced apoptosis and impaired invasive ability in NSCLC cells partly via regulation of epithelial-mesenchymal transition (EMT)-related protein expression. Our findings present that increased PLAC1 could be identified as a negative prognostic biomarker in NSCLC and regulate cell proliferation and invasion. Thus, we conclusively demonstrated that PLAC1 plays a key role in NSCLC development and progression, which may provide novel insights on the function of tumor-related gene-driven tumorigenesis.
Collapse
Affiliation(s)
- Li Yang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Tian-Qi Zha
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Xiang He
- Department of Digestive, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Liang Chen
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Quan Zhu
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Wei-Bing Wu
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Feng-Qi Nie
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Qian Wang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Chong-Shuang Zang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Mei-Ling Zhang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Jing He
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Jiang
- Department of Biochemistry, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Kai-Hua Lu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
9
|
Liso A, Massenzio F, Stracci F. PLAC1 immunization does not induce infertility in mice. Immunotherapy 2017; 9:481-486. [DOI: 10.2217/imt-2017-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Placenta specific 1 (PLAC1) is a protein rarely expressed in normal cells, except it is important for placental development, with a possible role in the establishment of the mother–fetus interface. The gene is also highly active in a wide variety of cancers and therefore, immunization with PLAC1 peptides could possibly be part of future immunotherapeutic strategies. We investigated whether vaccination against PLAC1 could induce infertility. Materials & methods: We inoculated female mice with PLAC1 peptides, put them in mating, measured antibody response (ELISA assay) and checked, in immunohistochemistry, binding of the induced antibodies to the native antigen. Results: We demonstrated that mice consistently develop antibody responses. We also demonstrated that female mice, after being inoculated with the PLAC1 peptide mix, do became pregnant and can give birth to normal infants. Conclusion: PLAC1 antigens as a specific anti-cancer vaccine could induce anti-PLAC1 antibodies which do not necessarily cause infertility.
Collapse
Affiliation(s)
- Arcangelo Liso
- Department of Medicine & Surgery, University of Foggia, viale L. Pinto,1 71122 – Foggia, Italy
| | - Francesca Massenzio
- Department of Medicine & Surgery, University of Foggia, viale L. Pinto,1 71122 – Foggia, Italy
| | - Fabrizio Stracci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Abnormal gene expression in regular and aggregated somatic cell nuclear transfer placentas. BMC Biotechnol 2017; 17:34. [PMID: 28347305 PMCID: PMC5368936 DOI: 10.1186/s12896-017-0355-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 03/18/2017] [Indexed: 12/30/2022] Open
Abstract
Background Placental defects in somatic cell nuclear transfer (SCNT) are a major cause of complications during pregnancy. One of the most critical factors for the success of SCNT is the successful epigenetic reprogramming of donor cells. Recently, it was reported that the placental weight in mice cloned with the aggregated SCNT method was significantly reduced. Here, we examine the profile of abnormal gene expression using microarray technology in both regular SCNT and aggregated SCNT placentas as well as in vivo fertilization placentas. One SCNT embryo was aggregated with two 2 to 4 -cell stage tetraploid embryos from B6D2F1 mice (C57BL/6 × DBA/2). Results In SCNT placentas, 206 (1.6%) of the 12,816 genes probed were either up-regulated or down-regulated by more than two-fold. However, 52 genes (0.4%) showed differential expression in aggregated SCNT placentas compared to that in controls. In comparison of both types of SCNT placentas with the controls, 33 (92%) out of 36 genes were found to be up-regulated (>2-fold) in SCNT placentas. Among 36 genes, 13 (36%) genes were up-regulated in the aggregated SCNT placentas. Eighty-five genes were down-regulated in SCNT placentas compared with the controls. However, only 9 (about 10.5%) genes were down-regulated in the aggregated SCNT placentas. Of the 34 genes known as imprinted genes, expression was lower in SCNT placentas than that in the controls. Thus, these genes may be the cause of placentomegaly in mice produced post SCNT. Conclusions These results suggest that placentomegaly in the SCNT placentas was probably caused by abnormal expression of multiple genes. Taken together, these results suggest that abnormal gene expression in cloned placentas was reduced in a genome-wide manner using the aggregation method with tetraploid embryos. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0355-4) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Wu Y, Lin X, Di X, Chen Y, Zhao H, Wang X. Oncogenic function of Plac1 on the proliferation and metastasis in hepatocellular carcinoma cells. Oncol Rep 2016; 37:465-473. [PMID: 27878289 DOI: 10.3892/or.2016.5272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/31/2016] [Indexed: 11/06/2022] Open
Abstract
Placenta-specific protein 1 (Plac1), which is selectively expressed in the placental syncytiotrophoblast in adult normal tissues, plays an essential role in normal placental and embryonic development. Accumulating evidence suggests that enhanced Plac1 expression is closely associated with the progression of human cancer. Whether Plac1 contributes to the pathophysiology of hepatocellular carcinoma (HCC) remains unclear. In the present study, our data revealed that the expression of Plac1 in human HCC tissues was upregulated, which significantly correlated with metastasis of HCC. Knockdown of Plac1 by small interfering RNA (siRNA) in Bel-7402 and HepG2 cells resulted in decreasing tumor cell proliferation and increasing apoptosis, which implied the oncogenic potential of Plac1. Moreover, silencing of Plac1 induced G1 cell cycle arrest through suppression of cyclin D1 and CDK4 expression. Furthermore, depletion of Plac1 repressed epithelial-mesenchymal transition (EMT), with decreased cell migration and invasion, supporting upregulated E-cadherin expression and downregulated vimentin, twist and snail expression that characterize EMT. Further study suggested that decreased Plac1 expression attenuated the phosphorylation of Akt. These findings have uncovered that Plac1 plays a pivotal role in the progression of HCC, and may serve as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Microbiology and Immunology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaocong Lin
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaoqing Di
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yonghua Chen
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hanning Zhao
- Department of Microbiology and Immunology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xin Wang
- Department of Microbiology and Immunology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
12
|
Chang WL, Wang H, Cui L, Peng NN, Fan X, Xue LQ, Yang Q. PLAC1 is involved in human trophoblast syncytialization. Reprod Biol 2016; 16:218-224. [PMID: 27692364 DOI: 10.1016/j.repbio.2016.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022]
Abstract
Placenta specific protein 1 (PLAC1) is thought to be important for murine and human placentation because of its abundant expression in placenta; however, the trophoblast subtypes that express PLAC1 at the fetomaternal interface and the major role of PLAC1 in placentation are still unclear. This study investigated the expression pattern of PLAC1 at the human fetomaternal interface and its involvement in trophoblast syncytialization. Localization of PLAC1 at the fetomaternal interface was studied using in situ hybridization (ISH) and immunohistochemistry (IHC) assays. Real time RT-PCR and Western Blot were employed to exhibit the expression pattern of PLAC1 during human spontaneous syncytialization of term primary cytotrophoblast cells (CTBs). Spontaneous syncytialization of a primary term CTBs model transfected with siRNA specific to PLAC1 was used to investigate the role of PLAC1 during human trophoblast syncytialization. The results showed that PLAC1 was mainly expressed in the human villous syncytiotrophoblast (STB) layer throughout gestation, and the expression level of PLAC1 was significantly elevated during human trophoblast syncytialization. Down-regulation of PLAC1 via specific PLAC1 siRNA transfection attenuated spontaneous syncytialization of primary term CTBs (p<0.05) as indicated by cell fusion index and the expression patterns of the corresponding markers. These data demonstrate the facilitative role of PLAC1 in normal human trophoblast syncytialization.
Collapse
Affiliation(s)
- Wen-Lin Chang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKUHKUST Medical Center, Shenzhen, China
| | - Huiying Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Lina Cui
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Nan-Ni Peng
- Reproductive Medical Center of Luohu Hospital Shenzhen, Shenzhen, Guangdong, China
| | - Xiujun Fan
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Li-Qun Xue
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
| | - Qing Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
13
|
Maxwell JR, Denson JL, Joste NE, Robinson S, Jantzie LL. Combined in utero hypoxia-ischemia and lipopolysaccharide administration in rats induces chorioamnionitis and a fetal inflammatory response syndrome. Placenta 2015; 36:1378-84. [PMID: 26601766 DOI: 10.1016/j.placenta.2015.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/16/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Preterm birth is a major cause of infant morbidity and long-term disability, and is associated with numerous central nervous system (CNS) deficits. Infants exposed to intrauterine inflammation, specifically chorioamnionitis, are at risk for very early preterm birth and neurological complications including cerebral palsy, epilepsy, and behavioral and cognitive deficits. However, placenta-brain axis abnormalities and their relationship to subsequent permanent CNS injury remain poorly defined. METHODS Intrauterine injury was induced in rats on embryonic day 18 (E18) by transient systemic hypoxia-ischemia (TSHI) and intra-amniotic lipopolysaccharide (LPS) injection. Placenta, brain and serum were collected from E19 to postnatal day 0 (P0). Histology, TUNEL staining, western blot and multiplex immunoassays were used to quantify placental and brain abnormalities, and fetal serum cytokine levels. RESULTS Prenatal TSHI + LPS caused acute and subacute placental injury hallmarked by inflammatory infiltrate, edema, hemorrhage and cell death along with placental increases in IL-1β and TNFα. TSHI + LPS increased a diverse array of circulating inflammatory proteins including IL-1β, TNFα, IL-6, IL-10, IL-4, IFNγ and CXCL1, both immediately after TSHI + LPS and in live born pups. CNS inflammation was characterized by increased CXCL1. DISCUSSION Prenatal TSHI + LPS in rats induces placental injury and inflammation histologically consistent with chorioamnionitis, concomitant with elevated serum and CNS pro-inflammatory cytokines. This model accurately recapitulates key pathophysiological processes observed in extremely preterm infants including placental, fetal, and CNS inflammation. Further investigation into the mechanism of CNS injury following chorioamnionitis and the placental-brain axis will guide the use of future interventions.
Collapse
Affiliation(s)
- Jessie R Maxwell
- Departments of Pediatrics and Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | - Jesse L Denson
- Departments of Pediatrics and Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | - Nancy E Joste
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Shenandoah Robinson
- Departments of Neurosurgery and Neurology, Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston MA, USA
| | - Lauren L Jantzie
- Departments of Pediatrics and Neurosciences, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
14
|
Liu F, Shen D, Kang X, Zhang C, Song Q. New tumour antigen PLAC1/CP1, a potentially useful prognostic marker and immunotherapy target for gastric adenocarcinoma. J Clin Pathol 2015; 68:913-6. [PMID: 26157147 DOI: 10.1136/jclinpath-2015-202978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/21/2015] [Indexed: 11/04/2022]
Abstract
AIM To evaluate protein expression and clinical significance of PLAC1/CP1 antigen in primary gastric adenocarcinoma. METHODS Protein expression of PLAC1/CP1 was analysed by tissue chip and immunohistochemistry in surgical specimens obtained from 119 patients with gastric cancer. The data were analysed using SPSS V.16.0 software applying the χ(2) test and Kaplan-Meier method. RESULTS The positive expression frequency of PLAC1/CP1 protein was 61.3% (73/119 patients). The overall survival of patients with PLAC1/CP1 protein-positive expression was significantly lower than that of patients with PLAC1/CP1 protein-negative expression (p<0.05). There was no significant relationship between PLAC1/CP1 expression and patient gender, age, tumour position, tumour size, differentiation, gross type, lymph node or TNM stage. CONCLUSIONS PLAC1/CP1 protein is expressed in over half of cases of primary gastric cancer, and PLAC1/CP1 protein expression is inversely correlated with patient survival. The data indicate that PLAC1/CP1 provides a marker for identifying gastric cancers with poor prognosis, and suggest that PLAC1/CP1 may provide a useful target for immunotherapy.
Collapse
Affiliation(s)
- Fangfang Liu
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Danhua Shen
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Xiaoping Kang
- Department of Statistics Office, Peking University Health Science Center, Beijing, China
| | - Chunfang Zhang
- Department of Clinical Epidemiology, Peking University People's Hospital, Beijing, China
| | - Qiujing Song
- Department of Pathology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
15
|
Ghods R, Ghahremani MH, Madjd Z, Asgari M, Abolhasani M, Tavasoli S, Mahmoudi AR, Darzi M, Pasalar P, Jeddi-Tehrani M, Zarnani AH. High placenta-specific 1/low prostate-specific antigen expression pattern in high-grade prostate adenocarcinoma. Cancer Immunol Immunother 2014; 63:1319-27. [PMID: 25186610 PMCID: PMC11029513 DOI: 10.1007/s00262-014-1594-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/05/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND The scarcity of effective therapeutic approaches for prostate cancer (PCa) has encouraged steadily growing interest for the identification of novel antigenic targets. Placenta-specific 1 (PLAC1) is a novel cancer-testis antigen with reported ectopic expression in a variety of tumors and cancer cell lines. The purpose of the present study was to investigate for the first time the differential expression of PLAC1 in PCa tissues. METHODS We investigated the differential expression of PLAC1 in PCa, high-grade prostatic intraepithelial neoplasia (HPIN), benign prostatic hyperplasia (BPH), and nonneoplastic/nonhyperplastic prostate tissues using microarray-based immunohistochemistry (n = 227). The correlation of PLAC1 expression with certain clinicopathological parameters and expression of prostate-specific antigen (PSA), as a prostate epithelial cell differentiation marker, were investigated. RESULTS Placenta-specific 1 (PLAC1) expression was increased in a stepwise manner from BPH to PCa, which expressed highest levels of this molecule, while in a majority of normal tissues, PLAC1 expression was not detected. Moreover, PLAC1 expression was positively associated with Gleason score (p ≤ 0.001). Interestingly, there was a negative correlation between PLAC1 and PSA expression in patients with PCa and HPIN (p ≤ 0.01). Increment of PLAC1 expression increased the odds of PCa and HPIN diagnosis (OR 49.45, 95 % CI for OR 16.17-151.25). CONCLUSION Our findings on differential expression of PLAC1 in PCa plus its positive association with Gleason score and negative correlation with PSA expression highlight the potential usefulness of PLAC1 for targeted PC therapy especially for patients with advanced disease.
Collapse
Affiliation(s)
- Roya Ghods
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, TUMS, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad-Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, TUMS, Tehran, Iran
- Department of Pharmacology-Toxicology, Faculty of Medicine, Tehran University of Medical Sciences, TUMS, Tehran, Iran
- School of Advanced Technologies in Medicine, Eastern side of Tehran University, 88, Italia St, P.O. box: 1417755469, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, IUMS, Tehran, Iran
| | - Mojgan Asgari
- Oncopathology Research Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
- Department of Pathology, Hasheminejad Kidney Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
- Department of Pathology, Hasheminejad Kidney Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
| | - Sanaz Tavasoli
- Department of Nutrition, Science and Research Branch, Azad University, Tehran, Iran
| | - Ahmad-Reza Mahmoudi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Maryam Darzi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Parvin Pasalar
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, TUMS, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Immunology Research Center, Iran University of Medical Sciences, IUMS, Hemmat Highway, P.O. box: 1449614535, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
16
|
Chang WL, Yang Q, Zhang H, Lin HY, Zhou Z, Lu X, Zhu C, Xue LQ, Wang H. Role of placenta-specific protein 1 in trophoblast invasion and migration. Reproduction 2014; 148:343-52. [PMID: 24989904 DOI: 10.1530/rep-14-0052] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Placenta-specific protein 1 (PLAC1), a placenta-specific gene, is known to be involved in the development of placenta in both humans and mice. However, the precise role of PLAC1 in placental trophoblast function remains unclear. In this study, the localization of PLAC1 in human placental tissues and its physiological significance in trophoblast invasion and migration are investigated by technical studies including real-time RT-PCR, in situ hybridization, immunohistochemistry, and functional studies by utilizing cell invasion and migration assays in the trophoblast cell line HTR8/SVneo as well as the primary inducing extravillous trophoblasts (EVTs). The results show that PLAC1 is mainly detected in the trophoblast columns and syncytiotrophoblast of the first-trimester human placental villi, as well as in the EVTs that invade into the maternal decidua. Knockdown of PLAC1 by RNA interference significantly suppresses the invasion and migration of HTR8/SVneo cells and shortens the distance of the outgrowth of the induced EVTs from the cytotrophoblast column of the explants. All the above data suggests that PLAC1 plays an important role in human placental trophoblast invasion and migration.
Collapse
Affiliation(s)
- Wen-Lin Chang
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Qing Yang
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Hui Zhang
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Hai-Yan Lin
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Zhi Zhou
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Xiaoyin Lu
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Cheng Zhu
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Li-Qun Xue
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| | - Hongmei Wang
- College of Veterinary MedicineHunan Agricultural University, Changsha 410128, ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, ChinaBeijing Obstetrics and Gynecology HospitalCapital Medical University, Beijing 100069, ChinaGraduate School of Chinese Academy of SciencesBeijing 100039, China
| |
Collapse
|
17
|
Wang X, Baddoo MC, Yin Q. The placental specific gene, PLAC1, is induced by the Epstein-Barr virus and is expressed in human tumor cells. Virol J 2014; 11:107. [PMID: 24912876 PMCID: PMC4072619 DOI: 10.1186/1743-422x-11-107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Epstein-Barr virus (EBV) is a causal agent in a number of malignancies in humans including hematopoietic tumors and non-hematopoietic tumors. Burkitt's lymphoma cell lines containing the Epstein-Barr virus have been shown to form tumors in nude mice while clonal derivatives of such cell lines in which the viral genome has been lost do not (JID 177: 1194-1201, 1998; JV 72: 9150-9156, 1998; JV 68: 6069-6073, 1994). The re-introduction of EBV into these EBV negative BLs reconstitutes the tumor phenotype. Thus, EBV-induced cellular genes play critical role in EBV-related tumors. METHODS AND RESULTS In an attempt to identify cellular genes regulated by EBV that may contribute to its tumorigenic properties, we have enforced genome loss in the Burkitt's lymphoma (BL) line, MutuI, by introducing a dominant negative form of the episomal replication factor, EBNA1 and carried out gene array analysis. One of the genes identified by this analysis is PLAC1, a gene originally identified as being expressed exclusively in placental tissue. Real time RT-PCR analysis verified higher expression in EBV positive vs. EBV negative Mutu clones. Analysis of a panel of RNAs from 20 normal tissues demonstrated the highest level of expression in placenta but significant expression was also observed in testis and brain cerebellum. PLAC1 expression was also observed in non-BL tumor cell lines derived from breast, ovary, and prostate. Lastly, expression of PLAC1 was found to be higher in some primary breast tumors compared to normal adjacent tissues. CONCLUSION This data suggests that the EBV-induced PLAC1 is a member of the cancer/testis group of tumor antigens.
Collapse
Affiliation(s)
| | | | - Qinyan Yin
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, SL9, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
18
|
Ghods R, Ghahremani MH, Darzi M, Mahmoudi AR, Yeganeh O, Bayat AA, Pasalar P, Jeddi-Tehrani M, Zarnani AH. Immunohistochemical characterization of novel murine monoclonal antibodies against human placenta-specific 1. Biotechnol Appl Biochem 2014; 61:363-9. [PMID: 24237073 DOI: 10.1002/bab.1177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/08/2013] [Indexed: 11/08/2022]
Abstract
Human PLAC1 (placenta-specific 1) is a new member of cancer-testis antigens with 212 amino acids, and its expression is restricted to placenta and at much lower levels to testis. Recently, ectopic expression of the PLAC1 transcript has been demonstrated in a wide range of human tumors and cancer cell lines with a proposed function in tumor cell growth. No monoclonal anti-PLAC1 antibody applicable to immunohis-tochemical staining is available so far. To better understand the PLAC1 expression and localization, we aimed to produce monoclonal antibodies (mAbs) against the extracellular region of PLAC1. Mice were immunized with a synthetic peptide corresponding to the C-terminal 11 amino acids of PLAC1 conjugated with a carrier protein. Hybridomas were produced by standard protocol and screened for positive reactivity by enzyme-linked immunosorbent assay. Reactivity of final two clones was then assessed by Western blotting (WB), immunohistochemistry (IHC), and immunocytochemistry (ICC). Both clones showed a specific immunostaining pattern in human term placenta as the positive control. Reactivity was mostly localized to the cytoplasm of syncytiotrophoblasts. One of the clones showed an excellent staining signal in breast, ovary, and prostate cancer cell lines. Importantly, no reactivity was observed with human lymph node cells or prostate. None of the mAbs were able to detect PLAC1 in Western blot. Based on the present results, these mAbs can be used for detection of PLAC1 in IHC and ICC techniques.
Collapse
Affiliation(s)
- Roya Ghods
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Placenta-specific protein 1: a potential key to many oncofetal-placental OB/GYN research questions. Obstet Gynecol Int 2014; 2014:678984. [PMID: 24757447 PMCID: PMC3976915 DOI: 10.1155/2014/678984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/23/2014] [Accepted: 02/10/2014] [Indexed: 12/19/2022] Open
Abstract
Placenta-specific protein 1 (PLAC1) is a secreted protein found in trophoblasts. Several reports implicate a central role for PLAC1 in establishment and maintenance of the placenta. In addition to placentae PLAC1 is expressed in a variety of solids including breast, endometrial, and ovarian cancers. In order to show that PLAC1 is potentially relevant to a number of research questions in OB/GYN, we report on PLAC1 expression in a selected panel that includes two choriocarcinoma cell lines, normal placental tissues, and endometrial and ovarian tumors. We report for the first time that PLAC1 is also expressed in human fetal tissues. PLAC1 is transcriptionally heterogeneous with one promoter (P1) generating two transcripts with alternately spliced 5' UTRs and the other promoter (P2) generating a third transcript. Placental tissues favor P2 transcripts, while P1 is favored in most of the other cells. Mechanisms determining multiple PLAC1 transcripts and promoter preferences are as yet unknown, but it is clear that this protein is likely to be important in a variety of phenomena relevant to both gynecologic oncology and maternal-fetal medicine.
Collapse
|
20
|
Fant ME, Fuentes J, Kong X, Jackman S. The nexus of prematurity, birth defects, and intrauterine growth restriction: a role for plac1-regulated pathways. Front Pediatr 2014; 2:8. [PMID: 24600606 PMCID: PMC3930911 DOI: 10.3389/fped.2014.00008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/24/2014] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies have demonstrated an increased prevalence of birth defects and intrauterine growth restriction (IUGR) among infants born prematurely suggesting they share common biological determinants. The identification of key regulatory pathways contributing to this nexus is essential to ongoing efforts to develop effective intervention strategies. Plac1 is a paternally imprinted and X-linked gene that conforms to this paradigm. Examination of a mutant mouse model has confirmed that Plac1 is essential for normal placental development and function. Moreover, it is expressed throughout the developing embryo indicating that it also has broad relevance to embryogenesis. Most notably, its absence in the developing embryo is associated with abnormal brain development and an increased risk of lethal, postnatal hydrocephalus identifying it as a novel, X-linked determinant of brain development. The essential and non-redundant roles of Plac1 in placental and neurological development represent a novel regulatory paradigm for embryonic growth and pregnancy maintenance. Regulatory pathways influenced, in part, by Plac1 are likely to contribute to the observed nexus of IUGR, prematurity, and birth defects.
Collapse
Affiliation(s)
- Michael E Fant
- Department of Pediatrics, Morsani College of Medicine, University of South Florida , Tampa, FL , USA ; Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida , Tampa, FL , USA ; Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida , Tampa, FL , USA
| | - Juan Fuentes
- Department of Pediatrics, Morsani College of Medicine, University of South Florida , Tampa, FL , USA
| | - Xiaoyuan Kong
- Department of Pediatrics, Morsani College of Medicine, University of South Florida , Tampa, FL , USA
| | - Suzanne Jackman
- Department of Pediatrics, Morsani College of Medicine, University of South Florida , Tampa, FL , USA
| |
Collapse
|
21
|
Wagner M, Koslowski M, Paret C, Schmidt M, Türeci O, Sahin U. NCOA3 is a selective co-activator of estrogen receptor α-mediated transactivation of PLAC1 in MCF-7 breast cancer cells. BMC Cancer 2013; 13:570. [PMID: 24304549 PMCID: PMC4235021 DOI: 10.1186/1471-2407-13-570] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/28/2013] [Indexed: 01/01/2023] Open
Abstract
Background The placenta-specific 1 (PLAC1) gene encodes a membrane-associated protein which is selectively expressed in the placental syncytiotrophoblast and in murine fetal tissues during embryonic development. In contrast to its transcriptional repression in all other adult normal tissues, PLAC1 is frequently activated and highly expressed in a variety of human cancers, in particular breast cancer, where it associates with estrogen receptor α (ERα) positivity. In a previous study, we showed that ERα-signaling in breast cancer cells transactivates PLAC1 expression in a non-classical pathway. As the members of the p160/nuclear receptor co-activator (NCOA) family, NCOA1, NCOA2 and NCOA3 are known to be overexpressed in breast cancer and essentially involved in estrogen-mediated cancer cell proliferation we asked if these proteins are involved in the ERα-mediated transactivation of PLAC1 in breast cancer cells. Methods Applying quantitative real-time RT-PCR (qRT-PCR), Western Blot analysis and chromatin immunoprecipitation, we analyzed the involvement of NCOA1, NCOA2, NCOA3 in the ERα-mediated transactivation of PLAC1 in the breast cancer cell lines MCF-7 and SK-BR-3. RNAi-mediated silencing of NCOA3, qRT-PCR, Western blot analysis and ERα activation assays were used to examine the role of NCOA3 in the ERα-mediated regulation of PLAC1 in further detail. Transcript expression of NCOA3 and PLAC1 in 48 human breast cancer samples was examined by qRT-PCR and statistical analysis was performed using Student’s t-test. Results We detected selective recruitment of NCOA3 but not NCOA1 or NCOA2 to the PLAC1 promoter only in ERα-positive MCF-7 cells but not in ERα-negative SK-BR-3 breast cancer cells. In addition, we demonstrate that silencing of NCOA3 results in a remarkable decrease of PLAC1 expression levels in MCF-7 cells which cannot be restored by treatment with estradiol (E2). Moreover, significant higher transcript levels of PLAC1 were found only in ERα-positive human breast cancer samples which also show a NCOA3 overexpression. Conclusions In this study, we identified NCOA3 as a selective co-activator of ERα-mediated transactivation of PLAC1 in MCF-7 breast cancer cells. Our data introduce PLAC1 as novel target gene of NCOA3 in breast cancer, supporting the important role of both factors in breast cancer biology.
Collapse
Affiliation(s)
| | | | | | | | | | - Ugur Sahin
- Department of Internal Medicine III, Division of Translational and Experimental Oncology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| |
Collapse
|
22
|
T antigen transformation reveals Tp53/RB-dependent route to PLAC1 transcription activation in primary fibroblasts. Oncogenesis 2013; 2:e67. [PMID: 23999628 PMCID: PMC3816221 DOI: 10.1038/oncsis.2013.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/22/2013] [Indexed: 01/03/2023] Open
Abstract
PLAC1 (placenta-specific 1) is a gene that is placenta specific and transcribed very little, if at all, in any somatic tissue. It is nevertheless expressed in many cancer cell lines. To understand how cancer cells may activate the gene in nonexpressing cells, we found that a model is provided by classical transformation of normal fibroblasts by SV40 T antigen. T antigen derepressed the PLAC1 P1 promoter, with Tp53 and RB exerting critical and opposing actions and nuclear receptors, retinoid X receptor and liver X receptor, sharply increasing the level of expression.
Collapse
|
23
|
The oncoplacental gene placenta-specific protein 1 is highly expressed in endometrial tumors and cell lines. Obstet Gynecol Int 2013; 2013:807849. [PMID: 23935632 PMCID: PMC3723095 DOI: 10.1155/2013/807849] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/18/2013] [Indexed: 11/24/2022] Open
Abstract
Placenta-specific protein 1 (PLAC1) is a small secreted protein expressed exclusively in trophoblast cells in the mammalian placenta. PLAC1 is expressed early in gestation and is maintained throughout. It is thought to function in trophoblast invasion of the uterine epithelium and, subsequently, to anchor the placenta to the epithelium. In recent years, evidence has accumulated that PLAC1 is also expressed in a variety of human solid tumors, notably in breast cancers. We demonstrate for the first time that PLAC1 is ubiquitously expressed in tumors originating in uterine epithelium. Further, we find that PLAC1 expression is significantly higher in the more advanced, more aggressive endometrial serous adenocarcinomas and carcinosarcomas relative to endometrioid adenocarcinomas by more than 6-fold and 16-fold, respectively. We also show that PLAC1 is simultaneously transcribed from two promoters but that, in all cases, the more distal P1 promoter dominates the more proximal P2 promoter. While the function of the two PLAC1 promoters and their regulation are as yet unknown, overall expression data suggest that PLAC1 may serve as a biomarker for endometrial cancer as well as a potential prognostic indicator.
Collapse
|
24
|
Matteo M, Greco P, Levi Setti P, Morenghi E, De Rosario F, Massenzio F, Albani E, Totaro P, Liso A. Preliminary evidence for high anti-PLAC1 antibody levels in infertile patients with repeated unexplained implantation failure. Placenta 2013; 34:335-9. [DOI: 10.1016/j.placenta.2013.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/12/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
25
|
Jackman SM, Kong X, Fant ME. Plac1 (placenta-specific 1) is essential for normal placental and embryonic development. Mol Reprod Dev 2012; 79:564-72. [PMID: 22729990 DOI: 10.1002/mrd.22062] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 06/05/2012] [Indexed: 12/28/2022]
Abstract
Plac1 is a recently identified, X-linked gene whose expression is restricted primarily to cells of the trophoblast lineage. It localizes to a chromosomal locus previously implicated in placental growth. We therefore sought to determine if Plac1 is necessary for placental and embryonic development by examining a mutant mouse model. Plac1 ablation resulted in placentomegaly and mild intrauterine growth retardation (IUGR). At E16.5, knockout (KO) and heterozygous (Het) placentae of the Plac1-null allele inherited from the mother (X(m-) X) weighed approximately 100% more than wildtype (WT) placentae, whereas the corresponding embryos weighed 7-12% less. Histologically, Plac1 mutants exhibited an expanded spongiotrophoblast layer that invaded the labyrinth. By contrast, Het placentae that inherited the null allele from the father (XX(p-) ) exhibited normal growth and were histologically indistinguishable from WT placentae, consistent with paternal imprinting of Plac1. When examined across gestation, WT and X(m-) X placental weights peaked at E16.5 and decreased slightly thereafter. KO placentae (X(m-) X(p-) and X(m-) Y), however, continued to increase in weight after E16.5, consistent with a functional role for the paternal Plac1 allele. Subsequent analysis confirmed that the paternal allele partially escapes complete X-inactivation and thus contributes to placental growth regulation. Additionally, although male Plac1 KO mice can survive, they exhibit decreased viability as a consequence of events occurring late in gestation or shortly after birth. Thus, Plac1 is a paternally imprinted, X-linked gene essential for normal placental and embryonic development.
Collapse
Affiliation(s)
- Suzanne M Jackman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | |
Collapse
|
26
|
Kotto-Kome AC, Silva C, Whiteman V, Kong X, Fant ME. Circulating Anti-PLAC1 Antibodies during Pregnancy and in Women with Reproductive Failure: A Preliminary Analysis. ACTA ACUST UNITED AC 2011. [DOI: 10.5402/2011/530491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aims of this study were to determine the prevalence of anti-PLAC1 antibodies in normal pregnant women and in women with infertility or recurrent pregnancy loss (RPL). Secondary outcomes were the development of complications associated with anti-PLAC1 seropositivity and the rate of seroconversion during pregnancy. Sera from 103 healthy pregnant women and 45 women with unexplained infertility or RPL were analyzed by ELISA. The prevalence of anti-PLAC1 antibodies was 2% in healthy pregnant women and 4.5% in women with unexplained infertility or RPL (P=0.355). There was no detectable association of seropositivity with increased risk of pregnancy complications. Finally, 2% of women seroconverted during pregnancy. The prevalence of anti-PLAC1 antibodies in women with unexplained infertility or RPL is not significantly higher than the prevalence in normal pregnant women. However, the sample size in this study was too small. The exposure to the PLAC1 antigen during pregnancy can lead to the spontaneous development of antibodies.
Collapse
Affiliation(s)
- Anne C. Kotto-Kome
- Division of Neonatology, Department of Pediatrics, University of South Florida College of Medicine, Tampa, FL 33606, USA
| | - Celso Silva
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL 33606, USA
| | - Valerie Whiteman
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL 33606, USA
| | - Xiaoyuan Kong
- Division of Neonatology, Department of Pediatrics, University of South Florida College of Medicine, Tampa, FL 33606, USA
| | - Michael E. Fant
- Division of Neonatology, Department of Pediatrics, University of South Florida College of Medicine, Tampa, FL 33606, USA
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL 33606, USA
| |
Collapse
|
27
|
Chen Y, Moradin A, Schlessinger D, Nagaraja R. RXRα and LXR activate two promoters in placenta- and tumor-specific expression of PLAC1. Placenta 2011; 32:877-84. [PMID: 21937108 DOI: 10.1016/j.placenta.2011.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/19/2011] [Accepted: 08/24/2011] [Indexed: 01/05/2023]
Abstract
PLAC1 expression, first characterized as restricted to developing placenta among normal tissues, is also found in a wide range of tumors and transformed cell lines. To understand the basis for its unusual expression profile, we have analyzed the gene structure and its mode of transcription. We find that the gene has a hitherto unique feature, with two promoters, P1 and P2, separated by 105 kb. P2 has been described before. Here we define P1 and show that it and P2 are activated by RXRα in conjunction with LXRα or LXRβ. In placenta, P2 is the preferred promoter, whereas various tumor cell lines tend to express predominantly either one or the other promoter. Furthermore, when each promoter is fused to a luciferase reporter gene and transfected into cancer cell lines, the promoter corresponding to the more active endogenous promoter is preferentially transcribed. Joint expression of activating nuclear receptors can partially account for the restricted expression of PLAC1 in placenta, and may be co-opted for preferential P1 or P2 PLAC1 expression in various tumor cells.
Collapse
Affiliation(s)
- Y Chen
- Laboratory of Genetics, National Institute on Aging, Bayview Research Center, 251 Bayview Blvd, RM 10B117, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
28
|
Banister CE, Koestler DC, Maccani MA, Padbury JF, Houseman EA, Marsit CJ. Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics 2011; 6:920-7. [PMID: 21758004 PMCID: PMC3154432 DOI: 10.4161/epi.6.7.16079] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/16/2011] [Indexed: 12/23/2022] Open
Abstract
The placenta acts not only as a conduit of nutrient and waste exchange between mother and developing fetus, but also functions as a regulator of the intrauterine environment. Recent work has identified changes in the expression of candidate genes, often through epigenetic alteration, which alter the placenta's function and impact fetal growth. In this study, we used the Illumina Infinium HumanMethylation27 BeadChip array to examine genome-wide DNA methylation patterns in 206 term human placentas. Semi-supervised recursively partitioned mixture modeling was implemented to identify specific patterns of placental DNA methylation that could differentially classify intrauterine growth restriction (IUGR) and small for gestational age (SGA) placentas from appropriate for gestational age (AGA) placentas, and these associations were validated in a masked testing series of samples. Our work demonstrates that patterns of DNA methylation in human placenta are reliably and significantly associated with infant growth and serve as a proof of principle that methylation status in the human term placenta can function as a marker for the intrauterine environment, and could potentially play a critical functional role in fetal development.
Collapse
Affiliation(s)
- Carolyn E Banister
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | | | | | | | | | | |
Collapse
|
29
|
Liu W, Zhai M, Wu Z, Qi Y, Wu Y, Dai C, Sun M, Li L, Gao Y. Identification of a novel HLA-A2-restricted cytotoxic T lymphocyte epitope from cancer-testis antigen PLAC1 in breast cancer. Amino Acids 2011; 42:2257-65. [PMID: 21710262 DOI: 10.1007/s00726-011-0966-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/14/2011] [Indexed: 01/01/2023]
Abstract
Identification of cytotoxic T lymphocyte (CTL) epitopes from tumor antigens is essential for the development of peptide vaccines against tumor immunotherapy. Among all the tumor antigens, the caner-testis (CT) antigens are the most widely studied and promising targets. PLAC1 (placenta-specific 1, CT92) was considered as a novel member of caner-testis antigen, which expressed in a wide range of human malignancies, most frequently in breast cancer. In this study, three native peptides and their analogues derived from PLAC1 were predicted by T cell epitope prediction programs including SYFPEITHI, BIMAS and NetCTL 1.2. Binding affinity and stability assays in T2 cells showed that two native peptides, p28 and p31, and their analogues (p28-1Y9 V, p31-1Y2L) had more potent binding activity towards HLA-A*0201 molecule. In ELISPOT assay, the CTLs induced by these four peptides could release IFN-γ. The CTLs induced by these four peptides from the peripheral blood mononuclear cells (PBMCs) of HLA-A*02+ healthy donor could lyse MCF-7 breast cancer cells (HLA-A*0201+, PLAC1+) in vitro. When immunized in HLA-A2.1/Kb transgenic mice, the peptide p28 could induce the most potent peptide-specific CTLs among these peptides. Therefore, our results indicated that the peptide p28 (VLCSIDWFM) could serve as a novel candidate epitope for the development of peptide vaccines against PLAC1-positive breast cancer.
Collapse
Affiliation(s)
- Wei Liu
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Simonazzi G, Farina A, Curti A, Pilu G, Santini D, Zucchini C, Sekizawa A, Rizzo N. Higher circulating mRNA levels of placental specific genes in a patient with placenta accreta. Prenat Diagn 2011; 31:827-9. [DOI: 10.1002/pd.2761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/13/2011] [Accepted: 03/13/2011] [Indexed: 11/11/2022]
|
31
|
Fant M, Farina A, Nagaraja R, Schlessinger D. PLAC1 (Placenta-specific 1): a novel, X-linked gene with roles in reproductive and cancer biology. Prenat Diagn 2010; 30:497-502. [PMID: 20509147 PMCID: PMC4627609 DOI: 10.1002/pd.2506] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Placenta-specific 1 (PLAC1) is a recently described X-linked gene with expression restricted primarily to cells derived from trophoblast lineage during embryonic development. PLAC1 localizes to a region of the X chromosome thought to be important in placental development although its role in this process has not been defined. This review summarizes our current understanding of its expression, regulation, and function. PLAC1 is expressed throughout human pregnancy by the differentiated trophoblast and localizes to membranous structures in the syncytiotrophoblast, including the microvillous plasma membrane surface. Recent studies have demonstrated that PLAC1 is also expressed by a wide variety of human cancers. Studies of the PLAC1 promoter regions indicate that its expression in both normal placenta and cancer cells is driven by specific interactions involving a combination of transcription factors. Although functional insight into PLAC1 in the normal trophoblast is lacking, preliminary studies suggest that cancer-derived PLAC1 has the potential to promote tumor growth and function. In addition, it also appears to elicit a specific immunologic response that may influence survival in some cancer patients, suggesting that it may provide a therapeutic target for the treatment of some cancers. We also discuss a potential role for PLAC1 as a biomarker predictive of specific pregnancy complications, such as preeclampsia.
Collapse
Affiliation(s)
- Michael Fant
- Department of Pediatrics, University of South Florida College of Medicine, Tampa, FL 33606-350, USA.
| | | | | | | |
Collapse
|
32
|
Koslowski M, Türeci O, Biesterfeld S, Seitz G, Huber C, Sahin U. Selective activation of trophoblast-specific PLAC1 in breast cancer by CCAAT/enhancer-binding protein beta (C/EBPbeta) isoform 2. J Biol Chem 2009; 284:28607-15. [PMID: 19652226 DOI: 10.1074/jbc.m109.031120] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The trophoblast-specific gene PLAC1 (placenta-specific 1) is ectopically expressed in a wide range of human malignancies, most frequently in breast cancer, and is essentially involved in cancer cell proliferation, migration, and invasion. Here we show that basal activity of the PLAC1 promoter is selectively controlled by ubiquitous transcription factor SP1 and isoform 2 of CCAAT/enhancer-binding protein beta that we found to be selectively expressed in placental tissue and cancer cells. Binding of both factors to their respective elements within the PLAC1 promoter was essential to attain full promoter activity. Estrogen receptor alpha (ERalpha) signaling further augmented transcription and translation of PLAC1 and most likely accounts for the positive correlation between PLAC1 expression levels and the ERalpha status we observed in primary breast cancer specimens. DNA affinity precipitation and chromatin immunoprecipitation assays revealed that transactivation of the PLAC1 promoter by ligand-activated ERalpha is based on a nonclassical pathway independent of estrogen-response elements, by tethering of ERalpha to DNA-bound CCAAT/enhancer-binding protein beta-2, and SP1. Our findings provide first insight into a novel and hitherto unknown regulatory mechanism governing selective activation of trophoblast-specific gene expression in breast cancer.
Collapse
Affiliation(s)
- Michael Koslowski
- Department of Internal Medicine III, Experimental and Translational Oncology, Johannes Gutenberg University, 55131 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Liu FF, Dong XY, Pang XW, Xing Q, Wang HC, Zhang HG, Li Y, Yin YH, Fant M, Ye YJ, Shen DH, Zhang Y, Wang S, Chen WF. The specific immune response to tumor antigen CP1 and its correlation with improved survival in colon cancer patients. Gastroenterology 2008; 134:998-1006. [PMID: 18395081 DOI: 10.1053/j.gastro.2008.01.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 01/04/2008] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The present study was undertaken to determine the expression of a newly identified tumor antigen cancer-placenta 1 (CP1) in colorectal carcinoma (CRC) and explore the CP1-specific immune response in CRC patients and its correlation with patient survival. METHODS CP1 expression was determined by reverse-transcription polymerase chain reaction, immunohistochemistry, and Western blot analysis. Serum antibodies against CP1 were detected by enzyme-linked immunosorbent assay, and T-cell response was measured by interferon-gamma/granzyme-B release enzyme-linked immunospot assays. The HLA-A2-restricted epitopes in CP1 were predicted by bioinformatics and then experimentally validated by enzyme-linked immunospot assay. RESULTS CP1 expression was detected in a significant number of CRC tissues, reaching 47.6% at the messenger RNA (mRNA) level and 28.6% at the protein level. Of patients with CP1 mRNA(+) tumors, more than 50% had CP1-responsive CD4(+) and CD8(+) T cells and 30% spontaneous-occurring antibodies against CP1. Further studies revealed 2 dominant HLA-A2-restricted epitopes in the CP1 antigen: p31-39 and p58-66. In a follow-up study up to 33 months after surgery, 9 of the 10 patients with CP1-specific CD8 T-cell response survived, whereas 6 of the 8 nonresponders died. Kaplan-Meier analysis indicated a significant correlation between T-cell response and patient survival. CONCLUSIONS CP1 represents a new class of tumor-specific shared antigen. Its high expression in CRC tissues, prevalence of CP1-specific immune responses in CP1 mRNA(+) CRC patients, and positive correlation with survival suggest that the antigen may be a useful target for cancer immunotherapy.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Department of Gastroenterological Surgery, Surgical Oncology Laboratory, Peking University People's Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dong XY, Peng JR, Ye YJ, Chen HS, Zhang LJ, Pang XW, Li Y, Zhang Y, Wang S, Fant ME, Yin YH, Chen WF. Plac1 is a tumor-specific antigen capable of eliciting spontaneous antibody responses in human cancer patients. Int J Cancer 2008; 122:2038-43. [PMID: 18183594 DOI: 10.1002/ijc.23341] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immunoselection and tumor evasion constitutes one of the major obstacles in cancer immunotherapy. A potential solution to this problem is the development of polyvalent vaccines, and the identification of more tumor-specific antigens is a prerequisite for the development of cancer vaccines. To identify novel tumor-specific antigens, suppression subtractive hybridization (SSH) was performed to isolate genes differentially expressed in human hepatocellular cancer (HCC) tissues. PLAC1 (PLACenta-specific 1) was one of the genes identified highly expressed in HCC tissues but not in paired noncancerous tissues. Further analyses revealed its expression in several other types of cancer tissues as well as tumor cell lines, but not in normal tissues except for placenta. Among HCC samples tested, 32% (22/69) showed PLAC1 mRNA expression while the protein was detected in 23.3% (7/30). A serological survey revealed that 3.8% (4/101) of HCC patients had anti-PLAC1 antibody response, suggesting the immunogenicity of PLAC1 in HCC patients. PLAC1 represents a new class of tumor associated antigen with restricted expression in placenta and cancer tissues, that may serve as a target for cancer vaccination.
Collapse
Affiliation(s)
- Xue-Yuan Dong
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Koslowski M, Sahin U, Mitnacht-Kraus R, Seitz G, Huber C, Türeci O. A placenta-specific gene ectopically activated in many human cancers is essentially involved in malignant cell processes. Cancer Res 2007; 67:9528-34. [PMID: 17909063 DOI: 10.1158/0008-5472.can-07-1350] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The identification and functional characterization of tumor-specific genes is a prerequisite for the development of targeted cancer therapies. Using an integrated data mining and experimental validation approach for the discovery of new targets for antibody therapy of cancer, we identified PLAC1. PLAC1 is a placenta-specific gene with no detectable expression in any other normal human tissue. However, it is frequently aberrantly activated and highly expressed in a variety of tumor types, in particular breast cancer. RNAi-mediated silencing of PLAC1 in MCF-7 and BT-549 breast cancer cells profoundly impairs motility, migration, and invasion and induces a G1-S cell cycle block with nearly complete abrogation of proliferation. Knockdown of PLAC1 is associated with decreased expression of cyclin D1 and reduced phosphorylation of AKT kinase. Moreover, PLAC1 is localized on the surface of cancer cells and is accessible for antibodies which antagonize biological functions of this molecule. These features, in summary, make PLAC1 an attractive candidate for targeted immunotherapeutic approaches.
Collapse
Affiliation(s)
- Michael Koslowski
- Department of Internal Medicine III, Division of Experimental and Translational Oncology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Rizzo N, Banzola I, Concu M, Morano D, Sekizawa A, Giommi F, Vagnoni S, Gabrielli S, Tempesta A, Carinci P, Farina A. PLAC1 mRNA levels in maternal blood at induction of labor correlate negatively with induction–delivery interval. Eur J Obstet Gynecol Reprod Biol 2007; 132:177-81. [PMID: 16860456 DOI: 10.1016/j.ejogrb.2006.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 05/02/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE This study was conducted to determine whether, in low risk women having labor induced using prostaglandin gel (dinoprostone gel), there is a relationship between the concentration of mRNA for the PLAC1 gene (a trophoblast-specific gene) in maternal blood and the time elapsed between the first gel administration and spontaneous delivery. STUDY DESIGN Blood was collected from 49 selected women at 40.2-41.4 weeks' gestation. Total RNA was extracted by means of an ABI Prism 6100 nucleic acid Prep Station and quantitative real-time PCR analysis was performed by use of a PE Applied Biosystems 5700 Sequence Detection System. Sequence data were obtained from the Genebank Sequence Database. To determine the amount of cDNA, the PLAC1 locus was used. RESULTS Thirty women (61.2%) had a spontaneous delivery. A caesarean section, either for fetal dystocia or fetal distress, was performed in 19 (38.8%). The crude delivery rates of the women who ended up with a spontaneous delivery were 30% at 24 h and 43% at 48 h. Women (n=19) with a blood concentration of logPLAC1 mRNA>or=2.00 displayed a median time to delivery of 23.50h, (95% CI: 13.13-33.87) while those with a logPLAC1 mRNA<2.00 (n=30) had a median time of 54 h. (95% CI: 37.86-70.14; p=0.0043, log-rank test). By means of multivariate analysis, quantitative Bishop score (from 2 to 7) at the time of the first gel administration and logPLAC1 mRNA>or=2.00 were associated with a higher rate of delivery per unit of time with an odds ratio of 1.35 (95% CI: 1.07-1.71) and 3.48 (95% CI: 1.55-7.80), respectively. CONCLUSIONS In induced term pregnancies, PLAC1 mRNA in maternal blood at the beginning of the treatment correlates with the time elapsed before delivery. This evidence demonstrates that the fetomaternal trafficking of nucleic acids is more consistent when the labor is about to begin.
Collapse
Affiliation(s)
- Nicola Rizzo
- Prenatal Medicine Unit, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Purwosunu Y, Sekizawa A, Farina A, Wibowo N, Okazaki S, Nakamura M, Samura O, Fujito N, Okai T. Cell-free mRNA concentrations of CRH,PLAC1, and selectin-P are increased in the plasma of pregnant women with preeclampsia. Prenat Diagn 2007; 27:772-7. [PMID: 17554801 DOI: 10.1002/pd.1780] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To compare mRNA concentrations of corticotrophin-releasing hormone (CRH), placenta specific-1 (PLAC1), and selectin-P in preeclamptic and normal pregnancies. METHODS Peripheral blood samples were obtained from 43 pregnant women with preeclampsia and 41 control subjects. Plasma was harvested from samples and RNA extracted. Plasma RNA was analyzed using reverse transcription polymerase chain reaction (PCR) assay. Median concentrations of CRH, PLAC1, and selectin-P mRNA in plasma were compared, to assess possible differences in distribution. Data were also stratified and compared according to clinical severity of preeclampsia. Finally, CRH, PLAC1, and selectin-P were plotted against quantitative distributions of blood pressure and proteinuria. RESULTS All markers were differently distributed between cases and controls. Median values in subgroups correlated with severity of preeclampsia. All markers correlated with both. Selectin-P was identified as the marker with the highest degree of correlation. No correlation was found between any markers in the control group and proteinuria or blood pressure. CONCLUSION CRH, PLAC1, and selectin-P are distributed differently in preeclampsia cases compared to controls and correlate with signs of preeclampsia.
Collapse
Affiliation(s)
- Yuditiya Purwosunu
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fant M, Barerra-Saldana H, Dubinsky W, Poindexter B, Bick R. The PLAC1 protein localizes to membranous compartments in the apical region of the syncytiotrophoblast. Mol Reprod Dev 2007; 74:922-9. [PMID: 17186554 DOI: 10.1002/mrd.20673] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PLAC1 is a trophoblast-specific gene that maps to a locus on the X-chromosome important to placental development. We have previously shown that PLAC1 gene expression is linked to trophoblast differentiation. The objective of this study was to define the localization of the PLAC1 polypeptide as a prerequisite to understanding its function. Polyclonal antibodies specific for the putative PLAC1 polypeptide were generated. The subcellular localization of PLAC1 in the trophoblast was examined by immunohistochemical analysis of human placenta complemented by immunoblot analysis of subcellular fractions. Brightfield immunohistochemical analysis of placental tissue indicated that the PLAC1 protein localizes to the differentiated syncytiotrophoblast in the apical region of the cell. Deconvlution immunofluorescence microscopy confirmed localization to the apical region of the syncytiotrophoblast. Its distribution included both intracellular compartments as well as loci in close association with the maternal-facing, microvillous brush border membrane (MVM). These findings were supported by immunoblot analysis of subcellular fractions. A 30 kDa band was associated with the microsomal fraction of placental lysates but not the mitochondrial, nuclear, or soluble fractions, suggesting PLAC1 is targeted to a membrane location. Plasma membranes were obtained from the fetal-facing, basal surface (BM) and the maternal-facing, MVM of the syncytiotrophoblast membrane. PLAC1 immunoreactivity was only detected in membrane fractions derived from the apical MVM consistent with immunohistochemical analyses. These data demonstrate that the PLAC1 protein is restricted primarily to the differentiated trophoblast, localizing to intracellular membranous compartment(s) in the apical region of the syncytiotrophoblast and associated with its apical, microvillous membrane surface.
Collapse
Affiliation(s)
- Michael Fant
- Department of Pediatrics, University of Texas Health Science Center, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
39
|
Jovine L, Janssen WG, Litscher ES, Wassarman PM. The PLAC1-homology region of the ZP domain is sufficient for protein polymerisation. BMC BIOCHEMISTRY 2006; 7:11. [PMID: 16600035 PMCID: PMC1479692 DOI: 10.1186/1471-2091-7-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/06/2006] [Indexed: 01/01/2023]
Abstract
Background Hundreds of extracellular proteins polymerise into filaments and matrices by using zona pellucida (ZP) domains. ZP domain proteins perform highly diverse functions, ranging from structural to receptorial, and mutations in their genes are responsible for a number of severe human diseases. Recently, PLAC1, Oosp1-3, Papillote and CG16798 proteins were identified that share sequence homology with the N-terminal half of the ZP domain (ZP-N), but not with its C-terminal half (ZP-C). The functional significance of this partial conservation is unknown. Results By exploiting a highly engineered bacterial strain, we expressed in soluble form the PLAC1-homology region of mammalian sperm receptor ZP3 as a fusion to maltose binding protein. Mass spectrometry showed that the 4 conserved Cys residues within the ZP-N moiety of the fusion protein adopt the same disulfide bond connectivity as in full-length native ZP3, indicating that it is correctly folded, and electron microscopy and biochemical analyses revealed that it assembles into filaments. Conclusion These findings provide a function for PLAC1-like proteins and, by showing that ZP-N is a biologically active folding unit, prompt a re-evaluation of the architecture of the ZP domain and its polymers. Furthermore, they suggest that ZP-C might play a regulatory role in the assembly of ZP domain protein complexes.
Collapse
Affiliation(s)
- Luca Jovine
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
- Department of Biosciences and Nutrition, Center for Structural Biochemistry, Karolinska Institutet, Hälsovägen 7, Huddinge S-141 57, Sweden
| | - William G Janssen
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Eveline S Litscher
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Paul M Wassarman
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| |
Collapse
|
40
|
Abstract
Many eukaryotic proteins share a sequence designated as the zona pellucida (ZP) domain. This structural element, present in extracellular proteins from a wide variety of organisms, from nematodes to mammals, consists of approximately 260 amino acids with eight conserved cysteine (Cys) residues and is located close to the C terminus of the polypeptide. ZP domain proteins are often glycosylated, modular structures consisting of multiple types of domains. Predictions can be made about some of the structural features of the ZP domain and ZP domain proteins. The functions of ZP domain proteins vary tremendously, from serving as structural components of egg coats, appendicularian mucous houses, and nematode dauer larvae, to serving as mechanotransducers in flies and receptors in mammals and nonmammals. Generally, ZP domain proteins are present in filaments and/or matrices, which is consistent with the role of the domain in protein polymerization. A general mechanism for assembly of ZP domain proteins has been presented. It is likely that the ZP domain plays a common role despite its presence in proteins of widely diverse functions.
Collapse
Affiliation(s)
- Luca Jovine
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| | | | | | | |
Collapse
|
41
|
Massabbal E, Parveen S, Weisoly DL, Nelson DM, Smith SD, Fant M. PLAC1 expression increases during trophoblast differentiation: evidence for regulatory interactions with the fibroblast growth factor-7 (FGF-7) axis. Mol Reprod Dev 2005; 71:299-304. [PMID: 15803460 DOI: 10.1002/mrd.20272] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
PLAC1 is a recently described, trophoblast-specific gene that localizes to a region of the X-chromosome important in placental development. Immunohistochemical analysis demonstrated that PLAC1 polypeptide localizes to the differentiated syncytiotrophoblast throughout gestation (8-41 weeks) as well as a small population of villous cytotrophoblasts. Consistent with these observations, quantitative RT-PCR demonstrated that PLAC1 mRNA increases more than 300-fold during cytotrophoblast differentiation in culture to form syncytiotrophoblasts. Agents known to be relevant to trophoblast differentiation were then tested for the ability to influence PLAC1 expression. Fibroblast growth factor-7 (FGF-7), also known as keratinocyte growth factor (KGF), stimulated PLAC1 mRNA expression approximately two-fold in the BeWo(b30) trophoblast cell line. FGF-7 stimulation was significantly inhibited by PD-98059 and wortmannin suggesting mediation via MAP kinase and PI-3 kinase-dependent signaling pathways. Interestingly, epidermal growth factor (EGF) treatment of trophoblasts had no effect on PLAC1 expression alone, but potentiated the effect of FGF-7, suggesting the presence of a regulatory interaction of the two growth factors. FGF-7 and its receptor, FGFR-2b, exhibited spatial overlap with PLAC1 suggesting these regulatory interactions are physiologically relevant during gestation. These data demonstrate PLAC1 expression is upregulated during trophoblast differentiation, localizing primarily to the differentiated syncytiotrophoblast. Furthermore PLAC1 expression is specifically regulated by peptide growth factors relevant to trophoblast differentiation.
Collapse
Affiliation(s)
- Eltayab Massabbal
- Department of Pediatrics, University of Texas--Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
42
|
Farina A, Rizzo N, Concu M, Banzola I, Sekizawa A, Grotti S, Carinci P. Lower Maternal PLAC1 mRNA in Pregnancies Complicated with Vaginal Bleeding (Threatened Abortion <20 Weeks) and a Surviving Fetus. Clin Chem 2005; 51:224-7. [PMID: 15516331 DOI: 10.1373/clinchem.2004.041228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Antonio Farina
- Department of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
43
|
Concu M, Banzola I, Farina A, Sekizawa A, Rizzo N, Marini M, Caramelli E, Carinci P. Rapid Clearance of mRNA for PLAC1 Gene in Maternal Blood after Delivery. Fetal Diagn Ther 2004; 20:27-30. [PMID: 15608456 DOI: 10.1159/000081365] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Accepted: 11/26/2003] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate (1) whether the presence of mRNA for the specific trophoblast gene PLAC1 in maternal whole blood is pregnancy-specific, and (2) whether delivery would result in the clearance of mRNA from maternal blood. METHODS Sixteen pregnant women at term (41 completed weeks' gestation) were enrolled in the study. Blood samples were obtained before the onset of labor and 24 h after delivery. Eight healthy donors (3 males and 5 non-pregnant women) were used as controls. Total RNA was extracted by means of ABI Prism 6100. A quantitative evaluation was obtained by means of real-time PCR. Wilcoxon test was used to evaluate differences between time intervals. RESULTS Median concentrations of PLAC1 mRNA relative to the standardization curve (see below) were 44 (2.9-675) ng/ml and 0.48 (0.05-10.7) ng/ml respectively for pre- and post-delivery samples (p value <0.001). Male and non-pregnant female controls did not show any signal of cDNA amplification. CONCLUSION mRNA transcripts from a placenta-expressed specific gene are detectable in maternal blood and rapidly disappear after delivery. Such an mRNA provides a gender-independent marker for non-invasive prenatal gene expression profiling, and can open new perspectives to monitor those conditions associated to trophoblast damage as well as preeclampsia.
Collapse
Affiliation(s)
- Manuela Concu
- Institute of Histology and Human Embryology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|