1
|
Zhang J, Yao Y, Pan J, Guo X, Han X, Zhou J, Meng X. Maternal exposure to Di-(2-ethylhexyl) phthalate (DEHP) activates the PI3K/Akt/mTOR signaling pathway in F1 and F2 generation adult mouse testis. Exp Cell Res 2020; 394:112151. [PMID: 32589889 DOI: 10.1016/j.yexcr.2020.112151] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Di-(2-ethylhexyl) phthalate (diethylhexyl phthalate, DEHP) can cause male reproductive damage in rodents and human. Moreover, DEHP is known to promote transgenerational inheritance of adult-onset disease in subsequent generations after maternal exposure during fetal gonadal development. The PI3K/Akt/mTOR signaling pathway has been implicated in germ cell survival following testicular damage. In this study, a F0 gestation DEHP exposure and transgenerational inheritance testis injury model was established to study the testis injury phenotype and the expression and activation of members of PI3K/Akt/mTOR signaling pathway in the testis of F1-F3 generation mice. We found that the bodyweight and the anogenital distance (AGD) are reduced only in F1 mice, the sperm motility and deformity decreased in F1-F3 mice, and the testicular histomorphology damagedin F1-F3 mice; however the sperm motility and deformity rates are increased and the histomorphological injury is repaired during the transgenerational process. We also found the activation of PI3K/Akt/mTOR signaling pathway is enhanced in F1 and F2, and the number of apoptotic cells is decreased in F3 generation mice compared to the control group. These results suggest that the PI3K/Akt/mTOR signaling pathway may be activated to promote the proliferation and differentiation and protect testicular cells from apoptosis in the F1 and F2 generation mice after direct exposure to DEHP.
Collapse
Affiliation(s)
- Jie Zhang
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yuanyuan Yao
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Junlin Pan
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiuxiu Guo
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiaoying Han
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jun Zhou
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiaoqian Meng
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|
2
|
Roa-Espitia AL, Hernández-Rendón ER, Baltiérrez-Hoyos R, Muñoz-Gotera RJ, Cote-Vélez A, Jiménez I, González-Márquez H, Hernández-González EO. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation. Biol Open 2016; 5:1189-99. [PMID: 27402964 PMCID: PMC5051654 DOI: 10.1242/bio.017558] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. Summary: We describe the role of FAK and focal adhesion proteins in capacitation, acrosome reaction, polymerization and remodeling of actin cytoskeleton, and how inhibition of FAK affects sperm physiology.
Collapse
Affiliation(s)
- Ana L Roa-Espitia
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07360, México Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, México D.F. 09349, México
| | - Eva R Hernández-Rendón
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07360, México
| | - Rafael Baltiérrez-Hoyos
- Universidad Autónoma Benito Juárez de Oaxaca, Facultad de Medicina y Cirugía, Oaxaca, Oaxaca 68120, México
| | | | - Antonieta Cote-Vélez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México 62210, Cuernavaca, México
| | - Irma Jiménez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, México D.F. 09349, México
| | - Humberto González-Márquez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México D.F. 09349, México
| | - Enrique O Hernández-González
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07360, México
| |
Collapse
|
3
|
Shimada M, Mihara T, Kawashima I, Okazaki T. Anti-Bacterial Factors Secreted From Cumulus Cells of Ovulated COCs Enhance Sperm Capacitation DuringIn VitroFertilization. Am J Reprod Immunol 2012; 69:168-79. [DOI: 10.1111/aji.12024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/30/2012] [Indexed: 12/01/2022] Open
Affiliation(s)
- Masayuki Shimada
- Laboratory of Reproductive Endocrinology; Graduate School of Biosphere Science; Hiroshima University; Hiroshima; Japan
| | - Toshihiro Mihara
- Laboratory of Reproductive Endocrinology; Graduate School of Biosphere Science; Hiroshima University; Hiroshima; Japan
| | - Ikko Kawashima
- Laboratory of Reproductive Endocrinology; Graduate School of Biosphere Science; Hiroshima University; Hiroshima; Japan
| | - Tetsuji Okazaki
- Smaller Livestock and Environment Section; Livestock Research Institute; Oita Prefectural Agriculture; Forestry and Fisheries Research Center; Bungo-ono; Japan
| |
Collapse
|
4
|
Beverdam A, Svingen T, Bagheri-Fam S, McClive P, Sinclair AH, Harley VR, Koopman P. Protein tyrosine kinase 2 beta (PTK2B), but not focal adhesion kinase (FAK), is expressed in a sexually dimorphic pattern in developing mouse gonads. Dev Dyn 2010; 239:2735-41. [DOI: 10.1002/dvdy.22396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
5
|
González-Fernández L, Ortega-Ferrusola C, Macias-Garcia B, Salido G, Peña F, Tapia J. Identification of Protein Tyrosine Phosphatases and Dual-Specificity Phosphatases in Mammalian Spermatozoa and Their Role in Sperm Motility and Protein Tyrosine Phosphorylation1. Biol Reprod 2009; 80:1239-52. [DOI: 10.1095/biolreprod.108.073486] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
6
|
Harayama H, Nakamura K. Changes of PKA and PDK1 in the principal piece of boar spermatozoa treated with a cell-permeable cAMP analog to induce flagellar hyperactivation. Mol Reprod Dev 2008; 75:1396-407. [PMID: 18213679 DOI: 10.1002/mrd.20882] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A cAMP-induced protein tyrosine phosphorylation and flagellar hyperactivation are controlled via complicated signaling cascades in mammalian spermatozoa. For instance, these events seem to be regulated positively by the PKA-mediated signaling and negatively by the PI3K/PDK1-mediated signaling. In this article, we have shown molecular changes of PKA and PDK1 in cAMP analog (cBiMPS)-treated boar spermatozoa in order to disclose possible roles of these kinases in protein tyrosine phosphorylation and hyperactivation. Ejaculated spermatozoa were incubated with cBiMPS, and then they were used for biochemical analyses of sperm kinases by Western blotting and indirect immunofluorescence and for assessment of flagellar movement. The first 30-min incubation with cBiMPS highly activated PKA of the principal piece to the accompaniment of autophosphorylation on Thr-197 of catalytic subunits. However, protein tyrosine phosphorylation and hyperactivation were fully induced in the sperm samples after the 180-min incubation. A potentially active form of PDK1 (54/55-kDa phospho-PDK1) was detected in the principal piece of the spermatozoa during the 90-min incubation. Another potentially active form (59-kDa phospho-PDK1) gradually increased during the same incubation period. However, the PDK1 suddenly became inactive by the dephosphorylation after the 180-min incubation, namely coincidently with full induction of protein tyrosine phosphorylation and hyperactivation. Additionally, existence of PI3K-dependently suppressing mechanisms for protein tyrosine phosphorylation was confirmed in the principal piece by pharmacological experiments with LY294002 and biochemical analyses with anti-PI3K p85 antibodies. These findings suggest that dephosphorylation of PDK1 may be a molecular switch for enhancement of protein tyrosine phosphorylation and flagellar hyperactivation in boar spermatozoa.
Collapse
Affiliation(s)
- Hiroshi Harayama
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan. :
| | | |
Collapse
|
7
|
Jiang ST, Chiou YY, Wang E, Lin HK, Lee SP, Lu HY, Wang CKL, Tang MJ, Li H. Targeted disruption of Nphp1 causes male infertility due to defects in the later steps of sperm morphogenesis in mice. Hum Mol Genet 2008; 17:3368-79. [PMID: 18684731 DOI: 10.1093/hmg/ddn231] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Juvenile nephronophthisis type I is the most common genetic disorder causing end-stage renal failure in children and young adults. The defective gene responsible has been identified as NPHP1. Its gene product, nephrocystin-1, is a novel protein of uncertain function that is widely expressed in many tissues and not just confined to the kidney. To gain insight into the physiological function of nephrocystin, Nphp1-targeted mutant mice were generated by homologous recombination. Interestingly, homozygous Nphp1 mutant mice were viable without renal manifestations of nephronophthisis. They appeared normal, but males were infertile with oligoteratozoospermia. Histological analysis of the seminiferous tubules showed that spermatogenesis was blocked at the early stages of spermatid elongation, with degenerating spermatids sloughing off into the lumen. Electron microscopic analysis revealed detachment of early elongating spermatids from Sertoli cells, and a failure of sperm head and tail morphogenesis. However, a few mature spermatozoa were still deposited in the epididymis, though they were frequently dead, immotile, or malformed. These novel findings indicate that nephrocystin is critically required for the differentiation of early elongating spermatids into spermatozoa in mice. The possible roles of nephrocystin in the formation and maintenance of Sertoli-spermatid junctions are still under investigation.
Collapse
Affiliation(s)
- Si-Tse Jiang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bastián Y, Zepeda-Bastida A, Uribe S, Mújica A. In spermatozoa, Stat1 is activated during capacitation and the acrosomal reaction. Reproduction 2007; 134:425-33. [PMID: 17709561 DOI: 10.1530/rep-06-0264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A role for sperm-specific proteins during the early embryonic development has been suggested by a number of recent studies. However, little is known about the participation of transcription factors in that stage. Here, we show that the signal transducer and activator of transcription 1 (Stat1), but not Stat4, was phosphorylated in response to capacitation and the acrosomal reaction (AR). Moreover, Stat1 phosphorylation correlated with changes in its localization: during capacitation, Stat1 moved from the cytoplasm to the theca/flagellum fraction. During AR, Stat1 phosphorylation increased again. In addition, blocking protein kinase A (PKA) and PKC during capacitation abolished both phosphorylation and migration of Stat1. Our results show tight spatio-temporal rearrangements of Stat1, suggesting that after fertilization Stat1 participates in the first rounds of transcription within the male pronucleus.
Collapse
Affiliation(s)
- Yadira Bastián
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, Mexico
| | | | | | | |
Collapse
|
9
|
Meng XQ, Zheng KG, Yang Y, Jiang MX, Zhang YL, Sun QY, Li YL. Proline-rich tyrosine kinase2 is involved in F-actin organization during in vitro maturation of rat oocyte. Reproduction 2007; 132:859-67. [PMID: 17127746 DOI: 10.1530/rep.1.01212] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microfilaments (actin filaments) regulate various dynamic events during meiotic maturation. Relatively, little is known about the regulation of microfilament organization in mammalian oocytes. Proline-rich tyrosine kinase2 (Pyk2), a protein tyrosine kinase related to focal adhesion kinase (FAK) is essential in actin filaments organization. The present study was to examine the expression and localization of Pyk2, and in particular, its function during rat oocyte maturation. For the first time, by using Western blot and confocal laser scanning microscopy, we detected the expression of Pyk2 in rat oocytes and found that Pyk2 and Try402 phospho-Pyk2 were localized uniformly at the cell cortex and surrounded the germinal vesicle (GV) or the condensed chromosomes at the GV stage or after GV breakdown. At the metaphase and the beginning of anaphase, Pyk2 distributed asymmetrically both in the ooplasm and the cortex with a marked staining associated with the chromosomes and the region overlying the meiotic spindle. At telophase, Pyk2 was observed in the cleavage furrows in addition to its cortex and cytoplasm localization. The dynamics of Pyk2 were similar to that of F-actin, and this kinase was found to co-localize with microfilaments in several developmental stages during rat oocyte maturation. Microinjection of Pyk2 antibody demolished the microfilaments assembly and also inhibited the first polar body (PB1) emission. These findings suggest an important role of Pyk2 for rat oocyte maturation by regulating the organization of actin filaments.
Collapse
Affiliation(s)
- Xiao-Qian Meng
- Key Laboratory of Animal Resistance, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250002, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
10
|
Lalancette C, Faure RL, Leclerc P. Identification of the proteins present in the bull sperm cytosolic fraction enriched in tyrosine kinase activity: a proteomic approach. Proteomics 2006; 6:4523-40. [PMID: 16847872 DOI: 10.1002/pmic.200500578] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Numerous sperm proteins have been identified on the basis of their increase in tyrosine phosphorylation during capacitation. However, the tyrosine kinases present in spermatozoa that are responsible for this phosphorylation remain unknown. As spermatozoa are devoid of transcriptional and translational activities, molecular biology approaches might not reflect the transcriptional pattern in mature spermatozoa. Working directly with the proteins present in ejaculated spermatozoa is the most reliable approach to identify the tyrosine kinases potentially involved in the capacitation-associated increase in protein tyrosine phosphorylation. A combination of tyrosine kinase assays and proteomic identification tools were used as an approach to identify sperm protein tyrosine kinases. Fractionation by nitrogen cavitation showed that the majority of tyrosine kinase activity is present in the cytosolic fraction of bovine spermatozoa. By the use of Poly-Glu:Tyr(4:1)-agarose affinity chromatography, we isolated a fraction enriched in tyrosine kinase activity. Proteomics approaches permitted the identification of tyrosine kinases from three families: Src (Lyn), Csk, and Tec (Bmx, Btk). We also identified proteins implicated in different cellular events associated with sperm capacitation and acrosome reaction. These results confirm the implication of tyrosine phosphorylation in some aspects of capacitation/acrosome reaction and reveal the identity of new players potentially involved in these processes.
Collapse
Affiliation(s)
- Claudia Lalancette
- Département d'Obstétrique/Gynécologie, Centre de Recherche en Biologie de la Reproduction, Université Laval and Ontogénie et Reproduction, Centre de recherche du CHUQ, Ste-Foy, QC, Canada
| | | | | |
Collapse
|
11
|
Mariappa D, Siva AB, Shivaji S, Seshagiri PB. Tyrphostin-A47 inhibitable tyrosine phosphorylation of flagellar proteins is associated with distinct alteration of motility pattern in hamster spermatozoa. Mol Reprod Dev 2006; 73:215-25. [PMID: 16220544 DOI: 10.1002/mrd.20384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To acquire fertilizing potential, mammalian spermatozoa must undergo capacitation and acrosome reaction. Our earlier work showed that pentoxifylline (0.45 mM), a sperm motility stimulant, induced an early onset of hamster sperm capacitation associated with tyrosine phosphorylation of 45-80 kDa proteins, localized to the mid-piece of the sperm tail. To assess the role of protein tyrosine phosphorylation in sperm capacitation, we used tyrphostin-A47 (TP-47), a specific protein tyrosine kinase inhibitor. The dose-dependent (0.1-0.5 mM) inhibition of tyrosine phosphorylation by TP-47 was associated with inhibition of hyperactivated motility and 0.5 mM TP-47-treated spermatozoa exhibited a distinct circular motility pattern. This was accompanied by hypo-tyrosine phosphorylation of 45-60 kDa proteins, localized to the principal piece of the intact-sperm and the outer dense fiber-like structures in detergent treated-sperm. Sperm kinematic analysis (by CASA) of spermatozoa, exhibiting circular motility (at 1st hr), showed lower values of straight line velocity, curvilinear velocity and average path velocity, compared to untreated controls. Other TP-47 analogues, tyrphostin-AG1478 and -AG1296, had no effect either on kinematic parameters or sperm protein tyrosine phosphorylation. These studies indicate that TP-47-induced circular motility of spermatozoa is compound-specific and that the tyrosine phosphorylation status of 45-60 kDa flagellum-localized proteins could be key regulators of sperm flagellar bending pattern, associated with the hyperactivation of hamster spermatozoa.
Collapse
Affiliation(s)
- Daniel Mariappa
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
12
|
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806. [PMID: 15466940 DOI: 10.1210/er.2003-0022] [Citation(s) in RCA: 614] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
13
|
Tomes CN, Roggero CM, De Blas G, Saling PM, Mayorga LS. Requirement of protein tyrosine kinase and phosphatase activities for human sperm exocytosis. Dev Biol 2004; 265:399-415. [PMID: 14732401 DOI: 10.1016/j.ydbio.2003.09.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The acrosome is a membrane-limited granule that overlies the nucleus of the mature spermatozoon. In response to physiological or pharmacological stimuli, sperm undergo calcium-dependent exocytosis termed the acrosome reaction, which is an absolute prerequisite for fertilization. Protein tyrosine phosphorylation and dephosphorylation are a mechanisms by which multiple cellular events are regulated. Here we report that calcium induces tyrosine phosphorylation in streptolysin O (SLO)-permeabilized human sperm. As expected, pretreatment with tyrphostin A47-a tyrosine kinase inhibitor-abolishes the calcium effect. Interestingly, the calcium-induced increase in tyrosine phosphorylation has a functional correlate in sperm exocytosis. Masking of phosphotyrosyl groups with a specific antibody or inhibition of tyrosine kinases with genistein, tyrphostin A47, and tyrphostin A51 prevent the acrosome reaction. By reversibly sequestering intra-acrosomal calcium with a photo-inhibitable chelator, we show a requirement for protein tyrosine phosphorylation late in the exocytotic pathway, after the efflux of intra-acrosomal calcium. Both mouse and human sperm contain highly active tyrosine phosphatases. Importantly, this activity declines when sperm are incubated under capacitating conditions. Inhibition of tyrosine phosphatases with pervanadate, bis(N,N-dimethylhydroxoamido)hydroxovanadate, ethyl-3,4-dephostatin, and phenylarsine oxide prevents the acrosome reaction. Our results show that both tyrosine kinases and phosphatases play a central role in sperm exocytosis.
Collapse
Affiliation(s)
- C N Tomes
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM-CONICET), Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina.
| | | | | | | | | |
Collapse
|