1
|
Latham KE. Preimplantation embryo gene expression: 56 years of discovery, and counting. Mol Reprod Dev 2023; 90:169-200. [PMID: 36812478 DOI: 10.1002/mrd.23676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The biology of preimplantation embryo gene expression began 56 years ago with studies of the effects of protein synthesis inhibition and discovery of changes in embryo metabolism and related enzyme activities. The field accelerated rapidly with the emergence of embryo culture systems and progressively evolving methodologies that have allowed early questions to be re-addressed in new ways and in greater detail, leading to deeper understanding and progressively more targeted studies to discover ever more fine details. The advent of technologies for assisted reproduction, preimplantation genetic testing, stem cell manipulations, artificial gametes, and genetic manipulation, particularly in experimental animal models and livestock species, has further elevated the desire to understand preimplantation development in greater detail. The questions that drove enquiry from the earliest years of the field remain drivers of enquiry today. Our understanding of the crucial roles of oocyte-expressed RNA and proteins in early embryos, temporal patterns of embryonic gene expression, and mechanisms controlling embryonic gene expression has increased exponentially over the past five and a half decades as new analytical methods emerged. This review combines early and recent discoveries on gene regulation and expression in mature oocytes and preimplantation stage embryos to provide a comprehensive understanding of preimplantation embryo biology and to anticipate exciting future advances that will build upon and extend what has been discovered so far.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Wang T, Wang HQ, Yuan B, Zhao GK, Ma YR, Zhao PS, Xie WY, Gao F, Gao W, Ren WZ. Integrative Proteomics and Phosphoproteomics Analysis of the Rat Adenohypophysis after GnRH Treatment. Int J Mol Sci 2023; 24:ijms24043339. [PMID: 36834752 PMCID: PMC9961725 DOI: 10.3390/ijms24043339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The regulation of mammalian reproductive activity is tightly dependent on the HPG axis crosstalk, in which several reproductive hormones play important roles. Among them, the physiological functions of gonadotropins are gradually being uncovered. However, the mechanisms by which GnRH regulates FSH synthesis and secretion still need to be more extensively and deeply explored. With the gradual completion of the human genome project, proteomes have become extremely important in the fields of human disease and biological process research. To explore the changes of protein and protein phosphorylation modifications in the adenohypophysis after GnRH stimulation, proteomics and phosphoproteomics analyses of rat adenohypophysis after GnRH treatment were performed by using TMT markers, HPLC classification, LC/MS, and bioinformatics analysis in this study. A total of 6762 proteins and 15,379 phosphorylation sites contained quantitative information. Twenty-eight upregulated proteins and fifty-three downregulated proteins were obtained in the rat adenohypophysis after GnRH treatment. The 323 upregulated phosphorylation sites and 677 downregulated phosphorylation sites found in the phosphoproteomics implied that a large number of phosphorylation modifications were regulated by GnRH and were involved in FSH synthesis and secretion. These data constitute a protein-protein phosphorylation map in the regulatory mechanism of "GnRH-FSH," which provides a basis for future studies on the complex molecular mechanisms of FSH synthesis and secretion. The results will be helpful for understanding the role of GnRH in the development and reproduction regulated by the pituitary proteome in mammals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Gao
- Correspondence: (W.G.); (W.-Z.R.)
| | | |
Collapse
|
3
|
The nucleolus-like and precursor bodies of mammalian oocytes and embryos and their possible role in post-fertilization centromere remodelling. Biochem Soc Trans 2021; 48:581-593. [PMID: 32318710 DOI: 10.1042/bst20190847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
In nearly all somatic cells, the ribosome biosynthesis is a key activity. The same is true also for mammalian oocytes and early embryos. This activity is intimately linked to the most prominent nuclear organelles - the nucleoli. Interestingly, during a short period around fertilization, the nucleoli in oocytes and embryos transform into ribosome-biosynthesis-inactive structures termed nucleolus-like or nucleolus precursor bodies (NPBs). For decades, researchers considered these structures to be passive repositories of nucleolar proteins used by the developing embryo to rebuild fully functional, ribosome-synthesis competent nucleoli when required. Recent evidence, however, indicates that while these structures are unquestionably essential for development, the material is largely dispensable for the formation of active embryonic nucleoli. In this mini-review, we will describe some unique features of oocytes and embryos with respect to ribosome biogenesis and the changes in the structure of oocyte and embryonic nucleoli that reflect this. We will also describe some of the different approaches that can be used to study nucleoli and NPBs in embryos and discuss the different results that might be expected. Finally, we ask whether the main function of nucleolar precursor bodies might lie in the genome organization and remodelling and what the involved components might be.
Collapse
|
4
|
Van Etten J, Shumaker A, Mass T, Putnam HM, Bhattacharya D. Transcriptome analysis provides a blueprint of coral egg and sperm functions. PeerJ 2020; 8:e9739. [PMID: 32874783 PMCID: PMC7441918 DOI: 10.7717/peerj.9739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/26/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Reproductive biology and the evolutionary constraints acting on dispersal stages are poorly understood in many stony coral species. A key piece of missing information is egg and sperm gene expression. This is critical for broadcast spawning corals, such as our model, the Hawaiian species Montipora capitata, because eggs and sperm are exposed to environmental stressors during dispersal. Furthermore, parental effects such as transcriptome investment may provide a means for cross- or trans-generational plasticity and be apparent in egg and sperm transcriptome data. METHODS Here, we analyzed M. capitata egg and sperm transcriptomic data to address three questions: (1) Which pathways and functions are actively transcribed in these gametes? (2) How does sperm and egg gene expression differ from adult tissues? (3) Does gene expression differ between these gametes? RESULTS We show that egg and sperm display surprisingly similar levels of gene expression and overlapping functional enrichment patterns. These results may reflect similar environmental constraints faced by these motile gametes. We find significant differences in differential expression of egg vs. adult and sperm vs. adult RNA-seq data, in contrast to very few examples of differential expression when comparing egg vs. sperm transcriptomes. Lastly, using gene ontology and KEGG orthology data we show that both egg and sperm have markedly repressed transcription and translation machinery compared to the adult, suggesting a dependence on parental transcripts. We speculate that cell motility and calcium ion binding genes may be involved in gamete to gamete recognition in the water column and thus, fertilization.
Collapse
Affiliation(s)
- Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Alexander Shumaker
- Microbial Biology Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Tali Mass
- Department of Marine Biology, University of Haifa, Haifa, Israel
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States of America
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| |
Collapse
|
5
|
Zuo Gui Wan Alters Expression of Energy Metabolism Genes and Prevents Cell Death in High-Glucose Loaded Mouse Embryos. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2409471. [PMID: 30046334 PMCID: PMC6036835 DOI: 10.1155/2018/2409471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/15/2018] [Accepted: 04/03/2018] [Indexed: 11/17/2022]
Abstract
Background Zuo Gui Wan (ZGW) is a classic formula in traditional chinese medicine (TCM). Previous studies have shown that it is beneficial for impaired glucose tolerance (IGT) of adults and the offspring as well. This study aimed to understand the molecular mechanisms of the efficacy of ZGW on IGT. Methods We used high-glucose loaded 2-cell stage mouse embryos as a model and took advantage of single-cell RNA sequencing technology to analyze the transcriptome of the model with or without ZGW. Differential gene expression analysis was performed with DESeq2. Results High glucose can downregulate genes in the ribosome pathway, while ZGW can reverse this inhibition and as a result prevent embryo cell death caused by high glucose. Furthermore, high glucose can affect sugar metabolism and influence mitochondrial function, but ZGW can promote sugar metabolism via the tricarboxylic acid cycle mainly through upregulating the genes in the respiratory chain and oxidative phosphorylation. Conclusions ZGW had a protective effect on embryonic cell death caused by glucose loading. The reversion of inhibition of ribosome pathway and regulation of mitochondrial energy metabolism are main effects of ZGW on high-glucose loaded embryos. This research not only revealed the global gene regulation changes of high glucose affecting 2-cell stage embryos but also provided insight into the potential molecular mechanisms of ZGW on the IGT model.
Collapse
|
6
|
Reading BJ, Williams VN, Chapman RW, Williams TI, Sullivan CV. Dynamics of the striped bass (Morone saxatilis) ovary proteome reveal a complex network of the translasome. J Proteome Res 2013; 12:1691-9. [PMID: 23414552 DOI: 10.1021/pr3010293] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We evaluated changes in the striped bass (Morone saxatilis) ovary proteome during the annual reproductive cycle using label-free quantitative mass spectrometry and a novel machine learning analysis based on K-means clustering and support vector machines. Modulated modularity clustering was used to group co-variable proteins into expression modules and Gene Ontology (GO) biological process and KEGG pathway enrichment analyses were conducted for proteins within those modules. We discovered that components of the ribosome along with translation initiation and elongation factors generally decrease as the annual ovarian cycle progresses toward ovulation, concomitant with a slight increase in components of the 26S-proteasome. Co-variation within more than one expression module of components from these two multi-protein complexes suggests that they are not only co-regulated, but that co-regulation occurs through more than one sub-network. These components also co-vary with subunits of the TCP-1 chaperonin system and enzymes of intermediary metabolic pathways, suggesting that protein folding and cellular bioenergetic state play important roles in protein synthesis and degradation. We provide further evidence to suggest that protein synthesis and degradation are intimately linked, and our results support function of a proteasome-ribosome supercomplex known as the translasome.
Collapse
Affiliation(s)
- Benjamin J Reading
- Department of Biology and §Mass Spectrometry Facility, Department of Chemistry, North Carolina State University , Raleigh, North Carolina, United States
| | | | | | | | | |
Collapse
|
7
|
Monti M, Zanoni M, Calligaro A, Ko MSH, Mauri P, Redi CA. Developmental arrest and mouse antral not-surrounded nucleolus oocytes. Biol Reprod 2013; 88:2. [PMID: 23136301 DOI: 10.1095/biolreprod.112.103887] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The antral compartment in the ovary consists of two populations of oocytes that differ by their ability to resume meiosis and to develop to the blastocyst stage. For reasons still not entirely clear, antral oocytes termed surrounded nucleolus (SN; 70% of the population of antral oocytes) develop to the blastocyst stage, whereas those called not-surrounded nucleolus (NSN) arrest at two cells. We profiled transcriptomic, proteomic, and morphological characteristics of antral oocytes and observed that NSN oocyte arrest is associated with lack of cytoplasmic lattices coincident with reduced expression of MATER and ribosomal proteins. Cytoplasmic lattices have been shown to store maternally derived mRNA and ribosomes in mammalian oocytes and embryos, and MATER has been shown to be required for cytoplasmic lattice formation. Thus, we isolated antral oocytes from a Mater(tm/tm) mouse and we observed that 84% of oocytes are of the NSN type. Our results provide the first molecular evidence to account for inability of NSN-derived embryos to progress beyond the two-cell stage; these results may be relevant to naturally occurring preimplantation embryo demise in mammals.
Collapse
Affiliation(s)
- Manuela Monti
- Scientific Department, Research Center for Regenerative Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
8
|
Activation of zygotic gene expression in mammals. GENE EXPRESSION AT THE BEGINNING OF ANIMAL DEVELOPMENT 2002. [DOI: 10.1016/s1569-1799(02)12024-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Brunet-Simon A, Henrion G, Renard JP, Duranthon V. Onset of zygotic transcription and maternal transcript legacy in the rabbit embryo. Mol Reprod Dev 2001; 58:127-36. [PMID: 11139224 DOI: 10.1002/1098-2795(200102)58:2<127::aid-mrd1>3.0.co;2-a] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Onset of zygotic transcription is progressive from the one-cell stage onward in the rabbit embryo. Maternal transcripts remain fairly stable until the 8-16 cell stage when major transcriptional activation of the zygotic genome takes place. To understand the mechanisms of the maternal-to-zygotic transition in the genetic information governing development, we asked whether a progressive synthesis of zygotic transcripts takes over the maternal molecules, or whether the synthesis of zygotic transcripts is very abrupt and independent of the persistence of the maternal counterparts. To answer this question, we set up mRNA differential display experiments comparing the mRNA content of rabbit embryos at different stages during the preimplantation period. We isolated eight zygotic transcripts whose synthesis is abruptly turned on at the 8-16 cell stage. These transcripts are involved in general cellular metabolism and their maternal counterparts are still present up to the four-cell and even the 8-16 cell stage. This identification of early zygotic transcripts suggests that global long range modifications of chromatin structure result in a rapid increase in transcription rates during the major transcriptional activation of the zygotic genome.
Collapse
Affiliation(s)
- A Brunet-Simon
- Laboratoire de Biologie du Développement, INRA, Jouy en Josas Cedex, France
| | | | | | | |
Collapse
|
10
|
Zatsepina OV, Bouniol-Baly C, Amirand C, Debey P. Functional and molecular reorganization of the nucleolar apparatus in maturing mouse oocytes. Dev Biol 2000; 223:354-70. [PMID: 10882521 DOI: 10.1006/dbio.2000.9762] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammalian preovulatory oocytes, rRNA synthesis is down-regulated until egg fertilization and zygotic genome reactivation, but the underlying regulatory mechanisms of this phenomenon are poorly characterized. We examined the molecular organization of the rRNA synthesis and processing machineries in fully grown mouse oocytes in relation to ongoing rDNA transcription and oocyte progression throughout meiosis. We show that, at the germinal vesicle stage, the two RNA polymerase I (RNA pol I) subunits, RPA116 and PAF53/RPA53, and the nucleolar upstream binding factor (UBF) remain present irrespective of ongoing rDNA transcription and colocalize in stoichiometric amounts within discrete foci at the periphery of the nucleolus-like bodies. These foci are spatially associated with the early pre-rRNA processing protein fibrillarin and in part with the pre-ribosome assembly factor B23/nucleophosmin. After germinal vesicle breakdown, the RNA pol I complex disassembles in a step-wise manner from chromosomes, while UBF remains associated with chromosomes until late prometaphase I. Dislodging of UBF, but not of RNA pol I, is impaired by the phosphatase inhibitor okadaic acid, thus strengthening the idea of a relationship between UBF dynamics and protein phosphorylation. Since neither RNA pol I, UBF, fibrillarin, nor B23 is detected at metaphase II, i.e., the normal stage of fertilization, we conclude that these nucleolar proteins are not transported to fertilized eggs by maternal chromosomes. Together, these data demonstrate an essential difference in the dynamics of the major nucleolar proteins during mitosis and meiosis.
Collapse
Affiliation(s)
- O V Zatsepina
- A. N. Belozersky Institute of Physical and Chemical Biology, Moscow University, Moscow, 119899, Russia
| | | | | | | |
Collapse
|
11
|
Abstract
Ribosomal proteins have the complex task of coordinating protein biosynthesis to maintain cell homeostasis and survival. Recent evidence suggests that a number of ribosomal proteins have secondary functions independent of their involvement in protein biosynthesis. A number of these proteins function as cell proliferation regulators and in some instances as inducers of cell death. Specifically, expression of human ribosomal protein L13a has been shown to induce apoptosis, presumably by arresting cell growth in the G2/M phase of the cell cycle. In addition, inhibition of expression of L13a induces apoptosis in target cells, suggesting that this protein is necessary for cell survival. Similar results have been obtained in the yeast Saccharomyces cerevisiae, where inactivation of the yeast homologues of L13a, rp22 and rp23, by homologous recombination results in severe growth retardation and death. In addition, a closely related ribosomal protein, L7, arrests cells in G1 and also induces apoptosis. Thus, it appears that a group of ribosomal proteins may function as cell cycle checkpoints and compose a new family of cell proliferation regulators.
Collapse
Affiliation(s)
- F W Chen
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
12
|
Sasaki N, Nagaoka S, Itoh M, Izawa M, Konno H, Carninci P, Yoshiki A, Kusakabe M, Moriuchi T, Muramatsu M, Okazaki Y, Hayashizaki Y. Characterization of gene expression in mouse blastocyst using single-pass sequencing of 3995 clones. Genomics 1998; 49:167-79. [PMID: 9598303 DOI: 10.1006/geno.1998.5209] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study the gene expression profile in the mouse blastocyst and to identify embryonic stage-specific genes, we randomly selected cDNAs derived from mouse blastocysts and sequenced a total of 3995 clones from one or both ends. Excluding the uninformative clones, 3395 clones were grouped as 937 different kinds of genes. Among these, 465 and 406 species showed similarity to known genes and expressed sequence tags (ESTs), respectively, whereas 66 species showed no significant similarity to any genes in known databases. Analysis of these cDNAs revealed that this library contained a variety of functional genes as well as genes that have not been detected in the human EST database; it should provide us with a useful resource for molecular analysis of developmental mechanisms. Although the human EST project is considered to represent roughly half of all genes, our findings indicate that many early stage developmental genes remain to be identified.
Collapse
Affiliation(s)
- N Sasaki
- Genome Science Laboratory, Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Scholnick J, Sinor C, Oakes J, Outten W, Saha M. Differential expression of Xenopus ribosomal protein gene XlrpS1c. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1354:72-82. [PMID: 9375795 DOI: 10.1016/s0167-4781(97)00101-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Components of the translational machinery of the cell, including ribosomal proteins, are generally considered to be clear examples of housekeeping genes with a spatially ubiquitous distribution of messenger RNA during embryonic development. Here we present data based upon in situ hybridization experiments as well as RNase protection assays, demonstrating that Xenopus ribosomal protein gene S1 is differentially expressed in a complex and spatially distinct pattern during embryogenesis. We observed dramatically high levels of expression in some tissues, such as the branchial arches, otic vesicles, optic vesicles and somites and virtually no expression in other tissues, such as the cement gland, epidermis and notochord. Moreover, ribosomal protein genes S22, L1, and L5 display expression patterns nearly identical to S1. Our data is consistent with a model of ribosomal gene expression according to which ribosomal protein genes (or perhaps a subset of ribosomal protein genes) may be expressed at low levels in all tissues, but are abundantly expressed in other cell types reflecting a dynamic and complex pattern of transcriptional control throughout embryonic development.
Collapse
Affiliation(s)
- J Scholnick
- Department of Biology, The College of William and Mary, Williamsburg, VA 23187, USA
| | | | | | | | | |
Collapse
|
14
|
Taylor KD, Pikó L. Mitochondrial biogenesis in early mouse embryos: expression of the mRNAs for subunits IV, Vb, and VIIc of cytochrome c oxidase and subunit 9 (P1) of H(+)-ATP synthase. Mol Reprod Dev 1995; 40:29-35. [PMID: 7535541 DOI: 10.1002/mrd.1080400105] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mouse egg contains about 90,000 mitochondria which undergo a buildup of mitochondrial cristae and increase in respiratory activity during cleavage. The mitochondrial DNA does not replicate during preimplantation development but is transcribed actively from the two-cell stage onward (Pikó and Taylor, 1987: Dev Biol 123:364-374). To gain further insight into mitochondrial biogenesis, we have now determined the steady state amounts of the mRNAs for the cytochrome c oxidase (COX) subunits IV, Vb and VIIc and the H(+)-ATPase subunit 9 (P1) (all encoded by nuclear genes) in slot hybridization experiments of total RNA from oocytes and early embryos. All four mRNAs showed a similar developmental pattern of prevalence, characterized by a steady decline in mRNA copy numbers from the late growth-phase oocyte through the two-cell embryo, and an about 30-fold rise during cleavage through the blastocyst stage. However, the ATPase subunit 9 (P1) mRNA was about three times more prevalent in cleavage-stage embryos than the COX mRNAs. A similar pattern was obtained previously for the mitochondrial-encoded COX I and II mRNAs, but the latter accumulate at a 30-50-fold excess over the nuclear-encoded COX subunit mRNAs during the cleavage stages. The results suggest a coordinated activation and transcription of the mitochondrial and nuclear genes for the components of the respiratory apparatus beginning with the two-cell stage. It is estimated that new respiratory chains are produced at a rate of 50-100 chains hr-1/mitochondrion in the early blastocyst, accounting for 3.5-7% of the total protein synthetic activity at this stage.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K D Taylor
- Developmental Biology Laboratory, Veterans Administration Medical Center, Sepulveda, CA 91343
| | | |
Collapse
|
15
|
Abstract
Zygotic gene activation (ZGA) is the critical event that governs the transition from maternal to embryonic control of development. In the mouse, ZGA occurs during the 2-cell stage and appears to be regulated by the time following fertilization, i.e. a zygotic clock, rather than by progression through the first cell cycle. The onset of ZGA must depend on maternally inherited proteins, and post-translational modification of these maternally derived proteins is likely to play a role in ZGA. Consistent with this prediction is that protein phosphorylation catalyzed by the cAMP-dependent protein kinase is involved in ZGA and that protein synthesis is not required for ZGA. Recent results suggest that ZGA may occur earlier than previously thought, i.e. not during the 2-cell stage, but rather in G2 of the 1-cell embryo. Thus ZGA may comprise a period of minor gene activation in the 1-cell embryo that is followed by a period of major gene activation in the 2-cell embryo. Following ZGA, the expression of constitutively activated genes may require an enhancer.
Collapse
Affiliation(s)
- R M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018
| |
Collapse
|
16
|
Maeda N, Kenmochi N, Tanaka T. The complete nucleotide sequence of chicken ribosomal protein L7a gene and the multiple factor binding sites in its 5'-flanking region. Biochimie 1993; 75:785-90. [PMID: 8274530 DOI: 10.1016/0300-9084(93)90128-f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nucleotide sequence of the gene encoding chicken ribosomal protein L7a was determined. The gene contains eight exons and seven introns, which spread over 3613 nucleotides. The transcription initiation sites were located on four consecutive nucleotides GCCC, which are at the 5' terminus of a short polypyrimidine tract of eight base-pairs flanked by G + C-rich regions. Neither a canonical TATA nor a CAAT box was found in the 5'-flanking region. Instead, a short A + T-rich stretch was found at the position where the TATA box is expected to be. There is an intensive nuclear protein binding motif repeated four times in the region -134 to -50. This motif is common to many ribosomal protein genes and may play an important role in the control of ribosomal protein gene expression.
Collapse
Affiliation(s)
- N Maeda
- Department of Biochemistry, School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | | |
Collapse
|
17
|
Abstract
This review summarizes information on accumulation profiles of individual gene transcripts in preimplantation development. Most of the information is from the mouse, but some data from other species are reviewed as well. The principal finding is that the transcription of most genes is not temporally linked with any of the three morphogenetic transitions (compaction, cavitation, and blastocoel expansion) that characterize this period. Most genes that are expressed during preimplantation development of the mouse are already being transcribed in the 4-cell stage, and some clearly begin as early as the 2-cell stage. Once activated, a gene continues to be transcribed at least into the blastocyst stage, resulting in continuous mRNA accumulation. Thus the pattern of gene transcription established at the time of genomic activation in the 2-cell stage is perpetuated into the blastocyst, with a few additions along the way. This information is interpreted in light of previous findings concerning the sensitivity of morphogenetic transitions to inhibition of gene expression. The lack of a clear relationship between the timing of expression of most genes and the schedule of morphogenesis leads one to conclude that temporal regulation is imposed downstream of transcription and translation. This conclusion is substantiated by a consideration of factors controlling the events of compaction.
Collapse
Affiliation(s)
- G M Kidder
- Department of Zoology, University of Western Ontario, London, Canada
| |
Collapse
|