1
|
Marine Nemertean Worms for Immunoblotting Studies of Oocyte Aging. Methods Mol Biol 2021. [PMID: 33074538 DOI: 10.1007/978-1-0716-0974-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Immunoblotting analyses employing phospho-specific antibodies can help elucidate potential roles played by protein kinases as oocytes age and lose their ability to undergo normal fertilization. This chapter updates a previously published protocol for conducting immunoblotting analyses of oocyte maturation in marine nemertean worms by adding general methods for obtaining adult worms and for handling their gametes in experiments assessing oocyte aging.
Collapse
|
2
|
Stricker SA. Marine Nemertean Worms for Studies of Oocyte Maturation and Aging. Results Probl Cell Differ 2018; 65:3-14. [PMID: 30083912 DOI: 10.1007/978-3-319-92486-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many marine invertebrates are capable of providing an abundant supply of oocytes that are fertilized external to the female body, thereby making these specimens well suited for studies of development. Along with intensively analyzed model systems belonging to such groups as echinoderms, tunicates, mollusks, and annelids, various lesser-studied taxa can undergo an external mode of fertilization. For example, nemertean worms constitute a relatively small phylum of marine protostome worms whose optically clear oocytes are easily collected and fertilized in the laboratory. Thus, to help promote the use of nemertean oocytes as a potential model in embryological analyses, this chapter begins by describing general methods for obtaining adults and for handling their gametes. After presenting such protocols, this chapter concludes with some representative results obtained with these specimens by summarizing the roles played by adenosine monophosphate-activated kinase (AMPK) during oocyte maturation and by c-Jun N-terminal kinase (JNK) during oocyte aging and death.
Collapse
|
3
|
The potential roles of c-Jun N-terminal kinase (JNK) during the maturation and aging of oocytes produced by a marine protostome worm. ZYGOTE 2017; 25:686-696. [PMID: 29032774 DOI: 10.1017/s0967199417000533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previous investigations have indicated that c-Jun N-terminal kinase (JNK) regulates the maturation and aging of oocytes produced by deuterostome animals. In order to assess the roles of this kinase in a protostome, oocytes of the marine nemertean worm Cerebratulus were stimulated to mature and subsequently aged before being probed with phospho-specific antibodies against active forms of JNK and maturation-promoting factor (MPF). Based on blots of maturing oocytes, a 40-kD putative JNK is normally activated during germinal vesicle breakdown (GVBD), which begins at 30 min post-stimulation with seawater, whereas treating immature oocytes with JNK inhibitors downregulates both the 40-kD JNK signal and GVBD, collectively suggesting a 40-kD JNK may facilitate oocyte maturation. Along with this JNK activity, mature oocytes also exhibit high levels of MPF at 2 h post-stimulation. However, by ~6-8 h post-GVBD, mature oocytes lose the 40-kD JNK signal, and at ~20-30 h of aging, an ~48-kD phospho-JNK band arises as oocytes deactivate MPF and begin to lyse during a necroptotic-like mode of death. Accordingly, JNK inhibitors reduce the aging-related 48-kD JNK phosphorylation while maintaining MPF activity and retarding oocyte degradation. Such findings suggest that a 48-kD JNK may help deactivate MPF and trigger death. Possible mechanisms by which JNK activation either together with, or independently of, protein neosynthesis might stimulate oocyte degradation are discussed.
Collapse
|
4
|
Stricker SA, Beckstrom B, Mendoza C, Stanislawski E, Wodajo T. Oocyte aging in a marine protostome worm: The roles of maturation-promoting factor and extracellular signal regulated kinase form of mitogen-activated protein kinase. Dev Growth Differ 2016; 58:250-9. [PMID: 26918273 DOI: 10.1111/dgd.12269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/29/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
The roles of maturation-promoting factor (MPF) and an extracellular signal regulated kinase form of mitogen-activated protein kinase (ERK MAPK) are analyzed during oocyte aging in the marine protostome worm Cerebratulus. About a day after removal from the ovary, unfertilized metaphase-I-arrested oocytes of Cerebratulus begin to flatten and swell before eventually lysing, thereby exhibiting characteristics of a necroptotic mode of regulated cell death. Based on immunoblots probed with phospho-specific antibodies, MPF and ERK are initially active in freshly mature specimens. However, as oocytes age, both kinase activities decline, with ERK deactivation occurring well before MPF downregulation. Experiments using pharmacological modulators indicate that oocyte degradation is promoted by the maturation-initiated activation of ERK as well as by the deactivation of MPF that occurs in extensively aged specimens. The potential significance of these findings is discussed relative to previously published results for apoptotic eggs and oocytes of echinoderm and vertebrate deuterostomes.
Collapse
Affiliation(s)
- Stephen A Stricker
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Bradley Beckstrom
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Cristina Mendoza
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Emma Stanislawski
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Tewodros Wodajo
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
5
|
Escalona JR, Stricker SA. Immunoblotting analyses of changes in protein phosphorylations during oocyte maturation in marine nemertean worms. Methods Mol Biol 2014; 1128:237-247. [PMID: 24567219 DOI: 10.1007/978-1-62703-974-1_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Immunoblotting analyses combined with phospho-specific antibodies can provide a powerful means for assessing protein activity states in various cellular extracts. This chapter describes a traditional, film-based immunoblotting method for monitoring the phosphorylation status of proteins in marine nemertean oocytes undergoing maturation. Similarly, with minor modifications, the protocol could potentially be applied to a wider variety of cellular processes and extract types that might be analyzed in other investigations of marine invertebrate development.
Collapse
Affiliation(s)
- Jose R Escalona
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | |
Collapse
|
6
|
Stricker SA, Cline C, Goodrich D. Oocyte maturation and fertilization in marine nemertean worms: using similar sorts of signaling pathways as in mammals, but often with differing results. THE BIOLOGICAL BULLETIN 2013; 224:137-155. [PMID: 23995739 DOI: 10.1086/bblv224n3p137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In marine worms belonging to the phylum Nemertea, oocyte maturation and fertilization are regulated by the same general kinds of signals that control such processes in mammals. However, unlike mammalian oocytes that develop within follicles, nemertean oocytes characteristically lack a surrounding sheath of follicle cells and often respond differently to maturation-related cues than do mammalian oocytes. For example, elevators of cyclic adenosine monophosphate (cAMP) or cyclic guanosine monophosphate (cGMP) levels promote the resumption of meiotic maturation (=germinal vesicle breakdown, GVBD) in nemertean oocytes, whereas increasing intraoocytic cAMP and cGMP typically blocks GVBD in mammals. Similarly, AMP-activated kinase (AMPK) signaling keeps nemertean oocytes from maturing, but in mouse oocytes, AMPK activation triggers GVBD. In addition, protein kinase C (PKC) activity is required for seawater-induced GVBD in nemerteans, whereas some PKCs have been shown to inhibit GVBD in mammals. Furthermore, although fertilization causes both types of oocytes to reorganize their endoplasmic reticulum and generate calcium oscillations that can involve soluble sperm factor activity and inositol 1,4,5-trisphosphate signaling, some discrepancies in the spatiotemporal patterns and underlying mechanisms of fertilization are also evident in nemerteans versus mammals. Thus, to characterize differences and similarities in gamete biology more fully, aspects of oocyte maturation and fertilization in marine nemertean worms are reviewed and briefly compared with related findings that have been published for mammalian oocytes. In addition, possible causes of the alternative responses displayed by oocytes in these two animal groups are addressed.
Collapse
Affiliation(s)
- Stephen A Stricker
- Department of Biology, University of New Mexico, Albuquerque, 87131, USA
| | | | | |
Collapse
|
7
|
Deguchi R, Takeda N, Stricker SA. Comparative biology of cAMP-induced germinal vesicle breakdown in marine invertebrate oocytes. Mol Reprod Dev 2011; 78:708-25. [PMID: 21774023 DOI: 10.1002/mrd.21346] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/31/2011] [Indexed: 01/11/2023]
Abstract
During maturation, oocytes must undergo a process of nuclear disassembly, or "germinal vesicle breakdown" (GVBD), that is regulated by signaling pathways involving cyclic AMP (cAMP). In vertebrate and starfish oocytes, cAMP elevation typically prevents GVBD. Alternatively, increased concentrations of intra-oocytic cAMP trigger, rather than inhibit, GVBD in several groups of marine invertebrates. To integrate what is known about the stimulation of GVBD by intra-oocytic cAMP, this article reviews published data for ascidian, bivalve, brittle star, jellyfish, and nemertean oocytes. The bulk of the review concentrates on the three most intensively analyzed groups known to display cAMP-induced GVBD-nemerteans, ascidians, and jellyfish. In addition, this synopsis also presents some previously unpublished findings regarding the stimulatory effects of intra-oocytic cAMP on GVBD in jellyfish and the annelid worm Pseudopotamilla occelata. Finally, factors that may account for the currently known distribution of cAMP-induced GVBD across animal groups are discussed.
Collapse
Affiliation(s)
- Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Sendai, Miyagi, Japan
| | | | | |
Collapse
|
8
|
Stricker SA. Potential upstream regulators and downstream targets of AMP-activated kinase signaling during oocyte maturation in a marine worm. Reproduction 2011; 142:29-39. [DOI: 10.1530/rep-10-0509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Unlike in mice, where the onset of oocyte maturation (germinal vesicle breakdown, GVBD) is blocked by cAMP and triggered by AMP-activated kinase (AMPK), oocytes of the marine nemertean wormCerebratulusundergo GVBD in response to cAMP elevations and AMPK deactivation. Since the pathways underlying AMPK's effects on mammalian or nemertean GVBD have not been fully defined, follicle-free nemertean oocytes were treated with pharmacological modulators and subsequently analyzed via immunoblotting methods using phospho-specific antibodies to potential regulators and targets of AMPK. Based on such phosphorylation patterns, immature oocytes possessed an active LKB1-like kinase that phosphorylated AMPK's T172 site to activate AMPK, whereas during oocyte maturation, AMPK and LKB1-like activities declined. In addition, given that MAPK can deactivate AMPK in somatic cells, oocytes were treated with inhibitors of ERK1/2 MAPK activation. However, these assays indicated that T172 dephosphorylation during maturation-associated AMPK deactivation did not require MAPK and that an observed inhibition of GVBD elicited by the MAPK kinase blocker U0126 was actually due to ectopic AMPK activation rather than MAPK inactivation. Similarly, based on tests using an inhibitor of maturation-promoting factor (MPF), T172 dephosphorylation occurred upstream to, and independently of, MPF activation. Alternatively, active MPF and MAPK were necessary for fully phosphorylating a presumably inhibitory S485/491 site on AMPK. Furthermore, in assessing signals possibly linking AMPK deactivation to MPF activation, evidence was obtained for maturing oocytes upregulating target-of-rapamycin activity and downregulating the cyclin-dependent kinase inhibitor Kip1. Collectively, these findings are discussed relative to multiple pathways potentially mediating AMPK signaling during GVBD.
Collapse
|
9
|
Pharmacological analyses of protein kinases regulating egg maturation in marine nemertean worms: a review and comparison with Mammalian eggs. Mar Drugs 2010; 8:2417-34. [PMID: 20948915 PMCID: PMC2953411 DOI: 10.3390/md8082417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/24/2010] [Accepted: 08/20/2010] [Indexed: 01/29/2023] Open
Abstract
For development to proceed normally, animal eggs must undergo a maturation process that ultimately depends on phosphorylations of key regulatory proteins. To analyze the kinases that mediate these phosphorylations, eggs of marine nemertean worms have been treated with pharmacological modulators of intracellular signaling pathways and subsequently probed with immunoblots employing phospho-specific antibodies. This article both reviews such analyses and compares them with those conducted on mammals, while focusing on how egg maturation in nemerteans is affected by signaling pathways involving cAMP, mitogen-activated protein kinases, Src-family kinases, protein kinase C isotypes, AMP-activated kinase, and the Cdc2 kinase of maturation-promoting factor.
Collapse
|
10
|
Stricker SA, Swiderek L, Nguyen T. Stimulators of AMP-activated kinase (AMPK) inhibit seawater- but not cAMP-induced oocyte maturation in a marine worm: Implications for interactions between cAMP and AMPK signaling. Mol Reprod Dev 2010; 77:497-510. [PMID: 20336704 DOI: 10.1002/mrd.21177] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have shown that elevations in intraoocytic cAMP prevent mammalian oocytes from maturing, whereas cAMP degradation allows these oocytes to begin maturation, as evidenced by the onset of oocyte nuclear disassembly (="germinal vesicle breakdown", GVBD). Moreover, such cAMP degradation not only reduces cAMP levels but also generates AMP, which in turn can stimulate AMP-activated kinase (AMPK), a well-documented inducer of GVBD in mice. Alternatively, in some marine invertebrates, intraoocytic cAMP triggers, rather than blocks, GVBD, and whether AMPK up- or downregulates maturation in these species has not been tested. Thus, AMPK was monitored in the nemertean worm Cerebratulus during GVBD stimulated by seawater (SW) or cAMP elevators. In oocytes lacking surrounding follicle cells, AMPK activity was initially elevated in immature oocytes but subsequently reduced during SW- or cAMP-induced GVBD, given that the catalytic alpha-subunit of AMPK in maturing oocytes displayed a decreased stimulatory phosphorylation at T172 and an increased inhibitory phosphorylation at S485/491. Accordingly, AMPK-mediated phosphorylation of acetyl-CoA carboxylase, a known target of active AMPK, also declined during maturation. Moreover, treatments with either ice-cold calcium-free seawater (CaFSW) or AMPK agonists dissolved in SW maintained AMPK activity and inhibited GVBD. Conversely, adding cAMP elevators to CaFSW- or SW-solutions of AMPK activators restored GVBD while promoting S485/491 phosphorylation and AMPK deactivation. Collectively, such findings not only demonstrate for the first time that intraoocytic AMPK can block GVBD in the absence of surrounding follicle cells, but these results also provide evidence for a novel GVBD-regulating mechanism involving AMPK deactivation by cAMP-mediated S485/491 phosphorylation.
Collapse
Affiliation(s)
- Stephen A Stricker
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA.
| | | | | |
Collapse
|
11
|
Stricker SA. Interactions between mitogen-activated protein kinase and protein kinase C signaling during oocyte maturation and fertilization in a marine worm. Mol Reprod Dev 2009; 76:708-21. [DOI: 10.1002/mrd.21032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Stricker SA. Roles of protein kinase C isotypes during seawater-versus cAMP-induced oocyte maturation in a marine worm. Mol Reprod Dev 2009; 76:693-707. [DOI: 10.1002/mrd.20993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Carroll DJ, Hua W. Combining microinjection and immunoblotting to analyze MAP kinase phosphorylation in single starfish oocytes and eggs. Methods Mol Biol 2009; 518:57-66. [PMID: 19085132 DOI: 10.1007/978-1-59745-202-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The starfish oocyte has proven useful for studies involving microinjection because it is relatively large (190 mum) and optically clear. These oocytes are easily obtained from the ovary arrested at prophase of meiosis I, making them useful as a model system for the study of cell cycle-related events. In this chapter, a method for combining microinjection with immunoblotting of single cells is described. Individual starfish oocytes are injected, removed from the microinjection chamber, and analyzed by immunoblotting for the dual-phosphorylated form of mitogen-activated protein kinase (MAPK). This method will allow for experiments testing the regulation of MAPK in single cells and for the manipulation of these cells by a quantitative microinjection technique.
Collapse
Affiliation(s)
- David J Carroll
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | | |
Collapse
|
14
|
Liang CG, Su YQ, Fan HY, Schatten H, Sun QY. Mechanisms Regulating Oocyte Meiotic Resumption: Roles of Mitogen-Activated Protein Kinase. Mol Endocrinol 2007; 21:2037-55. [PMID: 17536005 DOI: 10.1210/me.2006-0408] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractOocyte meiotic maturation is one of the important physiological requirements for species survival. However, little is known about the detailed events occurring during this process. A number of studies have demonstrated that MAPK plays a pivotal role in the regulation of meiotic cell cycle progression in oocytes, but controversial findings have been reported in both lower vertebrates and mammals. In this review, we summarized the roles of MAPK cascade and related signal pathways in oocyte meiotic reinitiation in both lower vertebrates and mammals. We also tried to reconcile the paradoxical results and highlight the new findings concerning the function of MAPK in both oocytes and the surrounding follicular somatic cells. The unresolved questions and future research directions regarding the role of MAPK in meiotic resumption are addressed.
Collapse
Affiliation(s)
- Cheng-Guang Liang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang Beijing 100101, China
| | | | | | | | | |
Collapse
|
15
|
Stricker SA, Smythe TL. Differing mechanisms of cAMP- versus seawater-induced oocyte maturation in marine nemertean worms II. The roles of tyrosine kinases and phosphatases. Mol Reprod Dev 2006; 73:1564-77. [PMID: 16902949 DOI: 10.1002/mrd.20596] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Instead of blocking oocyte maturation as it does in most animals, cAMP causes oocytes of marine nemertean worms to initiate maturation (=germinal vesicle breakdown, "GVBD"). To characterize cAMP-induced GVBD in nemerteans, inhibitors of tyrosine kinase signaling were tested on Cerebratulus sp. oocytes that had been incubated in cAMP-elevating drugs versus seawater (SW) alone. Such tests yielded similar results for Src-like tyrosine kinase blockers, as the inhibitors prevented mitogen-activated protein kinase (MAPK) activation without stopping either GVBD or maturation-promoting factor (MPF) activation in both SW and cAMP-elevating treatments. Alternatively, genistein, a general tyrosine kinase antagonist, and piceatannol, an inhibitor of the tyrosine kinase Syk, reduced GVBD and MAPK/MPF activities in SW-, but not cAMP-induced maturation. Similarly, inhibitors of the human epidermal growth factor receptor-2 (HER-2) tyrosine kinase prevented GVBD and MAPK/MPF activations in oocytes treated with SW, but not with cAMP-elevating drugs. Antagonists of either protein tyrosine phosphatases (PTPs) or the dual-specificity phosphatase Cdc25 also reduced GVBD and MAPK/MPF activities in SW-treated oocytes without generally affecting cAMP-induced maturation. Collectively, these data suggest cAMP triggers GVBD via pathways that do not require MAPK activation or several components of tyrosine kinase signaling. In addition, such differences in tyrosine kinase cascades, coupled with the dissimilar patterns of Ser/Thr kinase signaling described in the accompanying study, indicate that nemertean oocytes are capable of utilizing multiple mechanisms to activate MPF during GVBD.
Collapse
Affiliation(s)
- Stephen A Stricker
- Department of Biology, University of New Mexcio, Albuquerque, 87131, USA.
| | | |
Collapse
|
16
|
Stricker SA, Smythe TL. Differing mechanisms of cAMP- versus seawater-induced oocyte maturation in marine nemertean worms I. The roles of serine/threonine kinases and phosphatases. Mol Reprod Dev 2006; 73:1578-90. [PMID: 16902952 DOI: 10.1002/mrd.20597] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Unlike in most animals, oocytes of marine nemertean worms initiate maturation (=germinal vesicle breakdown, GVBD) following an increase, rather than a decrease, in intraoocytic cAMP. To analyze how serine/threonine (Ser/Thr) kinase cascades involving mitogen-activated protein kinase (MAPK), maturation-promoting factor (MPF), cAMP-dependent protein kinase (PKA), and phosphatidylinositol 3-kinase (PI3K) regulate nemertean GVBD, oocytes of Cerebratulus sp. were treated with pharmacological modulators and stimulated with cAMP-elevating drugs or seawater (SW) alone. Both cAMP elevators and SW triggered GVBD while activating MAPK, its target p90Rsk, and MPF. Similarly, neither cAMP- nor SW-induced GVBD was affected by several Ser/Thr phosphatase inhibitors, and both stimuli apparently accelerated GVBD via a MAPK-independent, PI3K-dependent mechanism. However, inhibitors of Raf-1, a kinase that activates MAPK kinase, blocked GVBD and MAPK activation during SW-, but not cAMP-induced maturation. In addition, MPF blockers more effectively reduced GVBD and MAPK activity in SW versus in cAMP-elevating treatments. Moreover, the two maturation-inducing stimuli yielded disparate patterns of PKA-related MAPK activations and phosphorylations of putative PKA substrates. Collectively, such findings suggest that in maturing oocytes of Cerebratulus sp., Ser/Thr kinase cascades differ during cAMP- versus SW-induced GVBD in several ways, including MAPK activation modes, MPF-feedback loops, and PKA-related signaling pathways. Additional differences in cAMP- versus SW-induced oocyte maturation are also described in the accompanying study that deals with the roles of tyrosine kinase signaling during GVBD.
Collapse
Affiliation(s)
- Stephen A Stricker
- Department of Biology, University of New Mexcio, Albuquerque, 87131, USA.
| | | |
Collapse
|
17
|
Kondoh E, Tachibana K, Deguchi R. Intracellular Ca2+ increase induces post-fertilization events via MAP kinase dephosphorylation in eggs of the hydrozoan jellyfish Cladonema pacificum. Dev Biol 2006; 293:228-41. [PMID: 16530749 DOI: 10.1016/j.ydbio.2006.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 02/03/2006] [Accepted: 02/03/2006] [Indexed: 11/24/2022]
Abstract
Naturally spawned eggs of the hydrozoan jellyfish Cladonema pacificum are arrested at G1-like pronuclear stage until fertilization. Fertilized eggs of Cladonema undergo a series of post-fertilization events, including loss of sperm-attracting ability, expression of adhesive materials on the egg surface, and initiation of cell cycle leading to DNA synthesis and cleavage. Here, we investigate whether these events are regulated by changes in intracellular Ca2+ concentration and mitogen-activated protein kinase (MAP kinase) activity in Cladonema eggs. We found that MAP kinase is maintained in the phosphorylated form in unfertilized eggs. Initiation of sperm-induced Ca2+ increase, which is the first sign of fertilization, was immediately followed by MAP kinase dephosphorylation within a few minutes of fertilization. The fertilized eggs typically stopped sperm attraction by an additional 5 min and became sticky around this time. They further underwent cytokinesis yielding 2-cell embryos at approximately 1 h post-fertilization, which was preceded by DNA synthesis evidenced by BrdU incorporation into the nuclei. Injection of inositol 1,4,5-trisphosphate (IP3) into unfertilized eggs, which produced a Ca2+ increase similar to that seen at fertilization, triggered MAP kinase dephosphorylation and the above post-fertilization events without insemination. Conversely, injection of BAPTA/Ca2+ into fertilized eggs at approximately 10 s after the initiation of Ca2+ increase immediately lowered the elevating Ca2+ level and inhibited the subsequent post-fertilization events. Treatment with U0126, an inhibitor of MAP kinase kinase (MEK), triggered the post-fertilization events in unfertilized eggs, where MAP kinase dephosphorylation but not Ca2+ increase was generated. Conversely, preinjection of the glutathione S-transferase (GST) fusion protein of MAP kinase kinase kinase (Mos), which maintained the phosphorylated state of MAP kinase, blocked the post-fertilization events in fertilized eggs without preventing a Ca2+ increase. These results strongly suggest that all of the three post-fertilization events, cessation of sperm attraction, expression of surface adhesion, and progression of cell cycle, lie downstream of MAP kinase dephosphorylation that is triggered by a Ca2+ increase.
Collapse
Affiliation(s)
- Eri Kondoh
- Department of Biology, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan
| | | | | |
Collapse
|
18
|
Prodon F, Chenevert J, Sardet C. Establishment of animal–vegetal polarity during maturation in ascidian oocytes. Dev Biol 2006; 290:297-311. [PMID: 16405883 DOI: 10.1016/j.ydbio.2005.11.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 10/21/2005] [Accepted: 11/09/2005] [Indexed: 11/20/2022]
Abstract
Mature ascidian oocytes are arrested in metaphase of meiosis I (Met I) and display a pronounced animal-vegetal polarity: a small meiotic spindle lies beneath the animal pole, and two adjacent cortical and subcortical domains respectively rich in cortical endoplasmic reticulum and postplasmic/PEM RNAs (cER/mRNA domain) and mitochondria (myoplasm domain) line the equatorial and vegetal regions. Symmetry-breaking events triggered by the fertilizing sperm remodel this primary animal-vegetal (a-v) axis to establish the embryonic (D-V, A-P) axes. To understand how this radial a-v polarity of eggs is established, we have analyzed the distribution of mitochondria, mRNAs, microtubules and chromosomes in pre-vitellogenic, vitellogenic and post-vitellogenic Germinal Vesicle (GV) stage oocytes and in spontaneously maturing oocytes of the ascidian Ciona intestinalis. We show that myoplasm and postplasmic/PEM RNAs move into the oocyte periphery at the end of oogenesis and that polarization along the a-v axis occurs after maturation in several steps which take 3-4 h to be completed. First, the Germinal Vesicle breaks down, and a meiotic spindle forms in the center of the oocyte. Second, the meiotic spindle moves in an apparently random direction towards the cortex. Third, when the microtubular spindle and chromosomes arrive and rotate in the cortex (defining the animal pole), the subcortical myoplasm domain and cortical postplasmic/PEM RNAs are excluded from the animal pole region, thus concentrating in the vegetal hemisphere. The actin cytoskeleton is required for migration of the spindle and subsequent polarization, whereas these events occur normally in the absence of microtubules. Our observations set the stage for understanding the mechanisms governing primary axis establishment and meiotic maturation in ascidians.
Collapse
Affiliation(s)
- François Prodon
- BioMarCell, UMR7009, CNRS/UPMC, Station Zoologique, Observatoire Océanologique, Villefranche sur Mer 06230, France.
| | | | | |
Collapse
|