1
|
Kaneko T, Toh S, Mochida I, Iwamori N, Inai T, Iida H. Identification of TMCO2 as an acrosome-associated protein during rat spermiogenesis. Mol Reprod Dev 2020; 87:808-818. [PMID: 32592233 DOI: 10.1002/mrd.23396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/29/2022]
Abstract
We isolated the transmembrane and coiled-coil domains 2 (Tmco2) gene using a polymerase chain reaction-based subtraction technique. Tmco2 is predominantly expressed in rat testes starting from 4 weeks of age. Rat TMCO2 consists of 187 amino acids with a predicted molecular mass of 20.6 kDa. When expressed in COS7 cells, TMCO2 was found as vesicle-like structures in the cytoplasm, whereas TMCO2ΔTM lacking the transmembrane (TM) region was found diffused in the cytoplasm. These results suggest that the TM region in TMCO2 is essential for its specificity of localization. Immunocytochemical analyzes indicated that rat TMCO2 was localized as small semiluminate bodies or cap-like structures in the vicinity of round spermatid nuclei and as curved lines associated with nuclei of elongated spermatids and caput epididymal spermatozoa. However, it was detected in only a small part of cauda epididymal spermatozoa. Double immunolabeling of the spermatids and spermatozoa with the anti-TMCO2 antibody and the monoclonal anti-MN7 antibody showed that TMCO2 was predominantly associated with the inner acrosomal membrane in spermatids and caput epididymal spermatozoa. Our findings suggest that TMCO2 might be involved in the process of acrosome biogenesis, especially binding of acrosome to a nucleus, during spermiogenesis.
Collapse
Affiliation(s)
- Takane Kaneko
- Department of Bioresource Sciences, Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Saori Toh
- Department of Bioresource Sciences, Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Izumi Mochida
- Department of Bioresource Sciences, Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Naoki Iwamori
- Department of Bioresource Sciences, Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Iida
- Department of Bioresource Sciences, Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Kaneko T, Minohara T, Shima S, Yoshida K, Fukuda A, Iwamori N, Inai T, Iida H. A membrane protein, TMCO5A, has a close relationship with manchette microtubules in rat spermatids during spermiogenesis. Mol Reprod Dev 2019; 86:330-341. [DOI: 10.1002/mrd.23108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Takane Kaneko
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Taisuke Minohara
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Sakurako Shima
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Kaori Yoshida
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Atsuko Fukuda
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Naoki Iwamori
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology; Fukuoka Dental College; Fukuoka Japan
| | - Hiroshi Iida
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| |
Collapse
|
3
|
Tsukamoto M, Hiyama E, Hirotani K, Gotoh T, Inai T, Iida H. Translocation of Tektin 3 to the equatorial segment of heads in bull spermatozoa exposed to dibutyryl cAMP and calyculin A. Mol Reprod Dev 2016; 84:30-43. [PMID: 27883267 DOI: 10.1002/mrd.22763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/17/2016] [Indexed: 11/06/2022]
Abstract
Tektins (TEKTs) are filamentous proteins associated with microtubules in cilia, flagella, basal bodies, and centrioles. Five TEKTs (TEKT1, -2, -3, -4, and -5) have been identified as components of mammalian sperm flagella. We previously reported that TKET1 and -3 are also present in the heads of rodent spermatozoa. The present study clearly demonstrates that TEKT2 is present at the acrosome cap whereas TEKT3 resides just beneath the plasma membrane of the post-acrosomal region of sperm heads in unactivated bull spermatozoa, and builds on the distributional differences of TEKT1, -2, and -3 on sperm heads. We also discovered that hyperactivation of bull spermatozoa by cell-permeable cAMP and calyculin A, a protein phosphatase inhibitor, promoted translocation of TEKT3 from the post-acrosomal region to the equatorial segment in sperm heads, and that TEKT3 accumulated at the equatorial segment is lost upon acrosome reaction. Thus, translocation of TEKT3 to the equatorial segment may be a capacitation- or hyperactivation-associated phenomenon in bull spermatozoa. Mol. Reprod. Dev. 84: 30-43, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mariko Tsukamoto
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Erina Hiyama
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Karen Hirotani
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takafumi Gotoh
- Kuju Agriculture Research Center, Kyushu University, Oita, Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Iida
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Kargar- Dastjerdy P, Tavalaee M, Salehi M, Falahati M, Izadi T, Nasr Esfahani MH. Altered expression of KLC3 may affect semen parameters. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
5
|
Oiki S, Hiyama E, Gotoh T, Iida H. Localization of Tektin 1 at Both Acrosome and Flagella of Mouse and Bull Spermatozoa. Zoolog Sci 2014; 31:101-7. [DOI: 10.2108/zsj.31.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sayoko Oiki
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Higashiku Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Erina Hiyama
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Higashiku Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Takafumi Gotoh
- Kuju Agriculture Research Center, Kyushu University, Oita 878-0201, Japan
| | - Hiroshi Iida
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Higashiku Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| |
Collapse
|
6
|
Zhang Y, Ou Y, Cheng M, Saadi HS, Thundathil JC, van der Hoorn FA. KLC3 is involved in sperm tail midpiece formation and sperm function. Dev Biol 2012; 366:101-10. [PMID: 22561200 DOI: 10.1016/j.ydbio.2012.04.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/31/2022]
Abstract
Kinesin light chain 3 (KLC3) is the only known kinesin light chain expressed in post-meiotic male germ cells. We have reported that in rat spermatids KLC3 associates with outer dense fibers and mitochondrial sheath. KLC3 is able to bind to mitochondria in vitro and in vivo employing the conserved tetratrico-peptide repeat kinesin light chain motif. The temporal expression and association of KLC3 with mitochondria coincides with the stage in spermatogenesis when mitochondria move from the spermatid cell periphery to the developing midpiece suggesting a role in midpiece formation. In fibroblasts, expression of KLC3 results in formation of large KLC3 aggregates close to the nucleus that contain mitochondria. However, the molecular basis of the aggregation of mitochondria by KLC3 and its role in sperm tail midpiece formation are not clear. Here we show that KLC3 expression from an inducible system causes mitochondrial aggregation within 6h in a microtubule dependent manner. We identified the mitochondrial outer membrane porin protein VDAC2 as a KLC3 binding partner. To analyze a role for KLC3 in spermatids we developed a transgenic mouse model in which a KLC3ΔHR mutant protein is specifically expressed in spermatids: this KLC3 mutant protein binds mitochondria and causes aggregate formation, but cannot bind outer dense fibers. Male transgenic mice display significantly reduced reproductive efficiency siring small sized litters. We observed defects in the mitochondrial sheath structure in a number of transgenic spermatids. Transgenic males have a significantly reduced sperm count and produce spermatozoa that exhibit abnormal motility parameters. Our results indicate that KLC3 plays a role during spermiogenesis in the development of the midpiece and in the normal function of spermatozoa.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
7
|
Puri P, Acker-Palmer A, Stahler R, Chen Y, Kline D, Vijayaraghavan S. Identification of testis 14-3-3 binding proteins by tandem affinity purification. SPERMATOGENESIS 2011; 1:354-365. [PMID: 22332119 DOI: 10.4161/spmg.1.4.18902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 01/23/2023]
Abstract
The 14-3-3 family of proteins interacts with various cellular phosphoproteins and regulates multiple cell signaling cascades. Identification of 14-3-3 interactors is important to define 14-3-3 functions in various biological pathways. The binding partners of protein 14-3-3 in testis are not known. The main goal of this study was to identify the 14-3-3 interactome in testis to determine the 14-3-3 regulated cellular processes in testis. We used transgenic mice expressing tandem affinity tagged 14-3-3ζ (TAP-14-3-3ζ) driven by the ubiquitin promoter to isolate 14-3-3 binding proteins. The 14-3-3 complexes in testis were isolated using a two-step tandem affinity purification (TAP) followed by identification with liquid chromatography/tandem mass spectrometry (LC-MS/MS). A total of 135 proteins were found to be associated with 14-3-3 in vivo in testis. Comparison of the testis 14-3-3 proteome with known 14-3-3 binding proteins showed that 71 of the proteins identified in this study are novel 14-3-3 interactors. Eight of these novel 14-3-3 interacting proteins are predominantly expressed in testis. The 14-3-3 interactors predominant in testis are: protein phosphatase1γ2 (PP1γ2), spermatogenesis associated 18 (SPATA18), phosphoglycerate kinase-2 (PGK2), testis specific gene A-2 (TSGA-2), dead box polypeptide 4 (DDX4), piwi homolog 1, protein kinase NYD-SP25 and EAN57. The fact that some of these proteins are indispensable for spermatogenesis suggests that their binding to 14-3-3 may be important for their function in germ cell division and maturation. These findings are discussed in context of the putative functions of 14-3-3 in spermatogenesis.
Collapse
Affiliation(s)
- Pawan Puri
- Department of Biological Sciences; Kent State University; Kent, OH
| | | | | | | | | | | |
Collapse
|
8
|
Takiguchi H, Murayama E, Kaneko T, Kurio H, Toshimori K, Iida H. Characterization and subcellular localization of Tektin 3 in rat spermatozoa. Mol Reprod Dev 2011; 78:611-20. [DOI: 10.1002/mrd.21352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/11/2011] [Indexed: 11/10/2022]
|
9
|
Kaneko T, Iwamoto S, Murayama E, Kurio H, Inai T, Oda S, Iida H. Immunolocalization of spetex-1 at the connecting piece in spermatozoa of the musk shrew (Suncus murinus). Zoolog Sci 2011; 28:444-52. [PMID: 21627455 DOI: 10.2108/zsj.28.444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spetex-1, which has been isolated by differential display and rat cDNA library screening as a haploid spermatid-specific gene, encodes a protein with two coiled-coil motifs that locates at both the segmented column in the connecting piece and outer dense fibers-affiliated satellite fibrils in rat sperm flagella. Orthologs of Spetex-1 are identified in many animal species, including human, chimpanzee, macaque, cow, dog, African clawed frog, green spotted puffer, and zebrafish. In this study, we used RT-PCR in combination with 5' and 3' RACE (Rapid Amplification of cDNA End) technique to isolate Spetex-1 ortholog of the musk shrew (Suneus murinus), which yielded a full-length Suncus Spetex-1 gene containing an open reading frame of 1,908 base pairs encoding a protein of 636 amino acids with the predicted molecular mass of 72,348 Da. Suncus Spetex-1 has two coiled-coil motifs at 118-184 and 242-276 amino acid residues, which is a characteristic shared by mammalian Spetex-1 proteins. To examine the subcellular localization of Spetex-1 in Suncus spermatozoa, we produced the anti-Suncus Spetex-1 antibody and carried out immunocytochemistry. In spite of that the primary structure of Suncus Spetex-1 is basically similar to that of rat and mouse Spetex-1, confocal laser scanning microscopy and immunoelectron microscopy revealed that Spetex-1 was restricted to the segmented column and capitulum in the connecting piece of Suncus spermatozoa and was not detected in other parts of flagella, suggesting a diversity of Spetex-1 localization in mammalian spermatozoa.
Collapse
Affiliation(s)
- Takane Kaneko
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Higashiku Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Bornstein C, Brosh R, Molchadsky A, Madar S, Kogan-Sakin I, Goldstein I, Chakravarti D, Flores ER, Goldfinger N, Sarig R, Rotter V. SPATA18, a spermatogenesis-associated gene, is a novel transcriptional target of p53 and p63. Mol Cell Biol 2011; 31:1679-89. [PMID: 21300779 PMCID: PMC3126342 DOI: 10.1128/mcb.01072-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/29/2011] [Indexed: 12/18/2022] Open
Abstract
The transcription factor p53 functions not only to suppress tumorigenesis but also to maintain normal development and homeostasis. Although p53 was implicated in different aspects of fertility, including spermatogenesis and implantation, the mechanism underlying p53 involvement in spermatogenesis is poorly resolved. In this study we describe the identification of a spermatogenesis-associated gene, SPATA18, as a novel p53 transcriptional target and show that SPATA18 transcription is induced by p53 in a variety of cell types of both human and mouse origin. p53 binds a consensus DNA motif that resides within the first intron of SPATA18. We describe the spatiotemporal expression patterns of SPATA18 in mouse seminiferous tubules and suggest that SPATA18 transcription is regulated in vivo by p53. We also demonstrate the induction of SPATA18 by p63 and suggest that p63 can compensate for the loss of p53 activity in vivo. Our data not only enrich the known collection of p53 targets but may also provide insights on spermatogenesis defects that are associated with p53 deficiency.
Collapse
Affiliation(s)
- Chamutal Bornstein
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ran Brosh
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shalom Madar
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ira Kogan-Sakin
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ido Goldstein
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Deepavali Chakravarti
- Department of Molecular and Cellular Oncology, Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Elsa R. Flores
- Department of Molecular and Cellular Oncology, Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rachel Sarig
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
11
|
Shimasaki S, Yamamoto E, Murayama E, Kurio H, Kaneko T, Shibata Y, Inai T, Iida H. Subcellular localization of Tektin2 in rat sperm flagellum. Zoolog Sci 2010; 27:755-61. [PMID: 20822404 DOI: 10.2108/zsj.27.755] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tektins are evolutionarily conserved filament-forming proteins localized in flagella and cilia, and have been reported to be involved in the stability and structural complexity of axonemal microtubules. Five mammalian Tektins (Tektin1-5) have been reported. Of these, Tektin2 (TEKT2) has been found to be required for normal flagellum structure and function. Tekt2-null sperm display flagellum bending and reduced motility, probably due to disruption of the dynein inner arm. However, the subcellular localization of TEKT2 in spermatozoa has not been clarified at the ultrastructural level. To elucidate the molecular localization of TEKT2 in flagella of rat spermatozoa, we performed confocal laser scanning microscopy, extraction of flagella followed by immunoblot analysis, and immunogold electron microscopy. Extraction of sperm flagella by SDS-EDTA resulted in complete extraction of axonemal tubulins, while TEKT2 was only partially released from flagella, suggesting that TEKT2 might be present in the peri-axonemal component, not directly associated with axonemal tubulins. Confocal laser scanning microscopy and pre-embedding immunoelectron microscopy revealed that TEKT2 is associated with the surface of outer dense fibers (ODFs). TEKT2 may function as an ODF-affiliated molecule required for flagellum stability and sperm motility.
Collapse
Affiliation(s)
- Sayaka Shimasaki
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Higashiku Hakozaki, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kaneko T, Murayama E, Kurio H, Yamaguchi A, Iida H. Characterization of Spetex-1, a new component of satellite fibrils associated with outer dense fibers in the middle piece of rodent sperm flagella. Mol Reprod Dev 2010; 77:363-72. [PMID: 20108326 DOI: 10.1002/mrd.21154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spetex-1, which has been isolated by differential display as a haploid spermatid-specific gene, encodes a protein with two coiled-coil motifs located in the middle piece of flagella in rodent spermatozoa. The middle piece of flagella is composed of axoneme and peri-axonemal elements including outer dense fibers (ODFs) and satellite fibrils. Pre-embedding immunoelectron microscopy clearly demonstrated that Spetex-1 is located at satellite fibrils associated with ODFs in the middle piece of flagella of rat spermatozoa. Extraction of Spetex-1 from spermatozoa by SDS or urea required dithiothreitol, suggesting crosslinking by disulfide bond is involved in the assembly of satellite fibrils containing Spetex-1. We identified putative Spetex-1 orthologs in many animal species, and both cysteine residues and coiled-coil motifs were well conserved in mammalian orthologs of Spetex-1. When Spetex-1 was co-transfected into COS-7 cells with myc-tagged Tektin4, another filamentous protein associated with ODFs, the two molecules were co-localized in various sizes of aggregates in the cells. These data suggested that Spetex-1, a new component of satellite fibrils, might be involved in the structural stability of the sperm flagellar middle piece and functions in co-operation with Tektin4.
Collapse
Affiliation(s)
- Takane Kaneko
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
13
|
Kurio H, Murayama E, Kaneko T, Shibata Y, Inai T, Iida H. Intron Retention Generates a Novel Isoform of CEACAM6 That May Act as an Adhesion Molecule in the Ectoplasmic Specialization Structures Between Spermatids and Sertoli Cells in Rat Testis1. Biol Reprod 2008; 79:1062-73. [DOI: 10.1095/biolreprod.108.069872] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
14
|
Ito D, Fujisawa T, Iida H, Suzuki N. Characterization of seipin/BSCL2, a protein associated with spastic paraplegia 17. Neurobiol Dis 2008; 31:266-77. [PMID: 18585921 DOI: 10.1016/j.nbd.2008.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 04/17/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022] Open
Abstract
Seipin, which is encoded by the BSCL2 gene, is a glycoprotein of unknown biochemical function that is associated with dominant hereditary motor neuron diseases. Mutations in the N-glycosylation site of seipin are associated with the disease states and result in accumulation of unfolded protein in the endoplasmic reticulum (ER), leading to the unfolded protein response (UPR) and cell death, suggesting that these diseases are tightly associated with ER stress. Here, we determined the subcellular localization, functional domains, and distribution of seipin in tissues. Our studies show that the transmembrane domains in seipin are critical for ER retention, ubiquitination, formation of inclusions, and activation of UPR. Using immunohistochemistry, seipin expression is detected in neurons in the spinal cord and in the frontal lobe cortex of the brain. The present study provides new insights into the biology of seipin protein that should help our understanding of the pathogenesis of seipin-related diseases.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | |
Collapse
|
15
|
Murayama E, Yamamoto E, Kaneko T, Shibata Y, Inai T, Iida H. Tektin5, a new Tektin family member, is a component of the middle piece of flagella in rat spermatozoa. Mol Reprod Dev 2008; 75:650-8. [DOI: 10.1002/mrd.20804] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Murayama E, Katoh M, Kanebayashi A, Kaneko T, Shibata Y, Inai T, Iida H. Germ cell-less like-2 protein is a new component of outer dense fibers in rat sperm flagella. Reproduction 2007; 134:749-56. [DOI: 10.1530/rep-07-0358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have analyzed the expression profiles of ten genes in terms of testis development and organ specificity in rat, which were selected from 215 round spermatid-specific transcripts listed in a database. Out of the ten genes, we directed our attention to one gene, a germ cell-less like-2 gene (gcl-2), a homolog ofDrosophilagcl gene (gcl), which is a component of the germ plasma and required for primordial germ cell formation. Rat genome contains duplicate rat gcl-2 (rgcl-2) genes,rgcl-2Aandrgcl-2B, both of which are located at Xq13. RT-PCR analysis showed that the expression of the two genes was up-regulated during testis development and that they were predominantly expressed in the testis. Bothrgcl-2Aandrgcl-2Bencode a protein of 498 amino acid residues, showing 90.56% identity at the amino acid level. Confocal laser scanning microscopy revealed that rgcl-2 protein was synthesized in the cytoplasm of elongating spermatids and at least a part of it was integrated into the middle piece of spermatozoa during spermiogenesis. Immunogold electron microscopy uncovered that rgcl-2 was localized at the abaxial (convex) surface of outer dense fibers (ODF) of rat sperm flagella. Therefore, we concluded that rgcl-2 is a new component of ODF in sperm flagella.
Collapse
|
17
|
Doiguchi M, Kaneko T, Urasoko A, Nishitani H, Iida H. Identification of a heat-shock protein Hsp40, DjB1, as an acrosome- and a tail-associated component in rodent spermatozoa. Mol Reprod Dev 2007; 74:223-32. [PMID: 16955402 DOI: 10.1002/mrd.20609] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Iba1 is a 17-kDa EF-hand protein highly expressed in the cytoplasm of elongating spermatids in testis. Using Iba1 as a bait, we performed yeast Two-hybrid screening and isolated a heat-shock protein Hsp40, DjB1, from cDNA library of mouse testis. To characterize DjB1 that is encoded by Dnajb1 gene, we carried out immunoblot analyses, in situ hybridization, and immunohistochemistry. Immunoblot analyses showed that DjB1was constitutively expressed in mouse testis and that its expression level was not changed by heat shock. Dnajb1 mRNA was exclusively expressed in spermatocytes and round spermatids in mouse testis, and Dnajb1 protein DjB1 was predominantly expressed in the cytoplasm of spermatocytes, round spermatids, and elongating spermatids. In mature mouse spermatozoa, DjB1 was localized in the middle and the end pieces of flagella as well as in association with the head (acrosomal region). Association of DjB1 with the acrosomal region in sperm head was also observed in rat spermatozoa. These data suggested that DjB1, which was constitutively expressed in postmeiotic spermatogenic cells in testis, was integrated into spermatozoa as at least two components, that is, sperm head and tail of rodent spermatozoa.
Collapse
Affiliation(s)
- Masamichi Doiguchi
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Higashiku Hakozaki, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
18
|
Roy A, Lin YN, Agno JE, DeMayo FJ, Matzuk MM. Absence of tektin 4 causes asthenozoospermia and subfertility in male mice. FASEB J 2007; 21:1013-25. [PMID: 17244819 DOI: 10.1096/fj.06-7035com] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sperm flagellar motion is the outcome of a dynamic interplay between the axonemal cytoskeleton, the peri-axonemal accessory structures, and multiple regulatory networks that coordinate to produce flagellar beat and waveform. Tektins are conserved components of the flagellar proteome in evolutionarily diverse species and are believed to play essential roles in the mechanics of sperm motility. Using database mining, we identified multiple new paralogs of previously annotated tektins, including tektin 4 (TEKT4), which shares 77.1% identity with its nearest human homologue. Mouse Tekt4 is a germ cell-enriched gene, most abundantly expressed in haploid round spermatids in the testis, and the protein is localized to the sperm flagella. Male mice lacking TEKT4 on a 129S5/SvEvBrd inbred background are subfertile. Tekt4-null sperm exhibit drastically reduced forward progressive velocity and uncoordinated waveform propagation along the flagellum. In Tekt4-null sperm, flagellar ultrastructure is grossly unaltered as revealed by transmission electron microscopy. However, the ineffective flagellar strokes lead to approximately 10-fold higher consumption of intracellular ATP in Tekt4-null sperm as compared to wild-type, and null spermatozoa rapidly lose progressive motility when incubated for > or = 1.5 h. Our studies demonstrate that TEKT4 is necessary for the proper coordinated beating of the sperm flagellum and male reproductive physiology.
Collapse
Affiliation(s)
- Angshumoy Roy
- Department of Pathology, One Baylor Plaza, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
19
|
Iida H, Honda Y, Matsuyama T, Shibata Y, Inai T. Tektin 4 is located on outer dense fibers, not associated with axonemal tubulins of flagella in rodent spermatozoa. Mol Reprod Dev 2006; 73:929-36. [PMID: 16596631 DOI: 10.1002/mrd.20486] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tektins, which are thought to be the constitutive proteins of microtubules in cilia, flagella, basal bodies, and centrioles, have been reported to be involved in the stability and structural complexity of axonemal microtubules. Four types of mammalian Tektins have been reported, and at least two types of Tektins, Tektin 2 and Tektin 4, have been verified to be present in sperm flagella. To elucidate the molecular localization of Tektin 4 in flagella of rodent spermatozoa, we performed immunocytochemistry, fractionation study followed by immunoblot analysis, and immunogold electron microscopy. Confocal laser scanning microscopy and immunogold electron microscopy indicated that Tektin 4 was associated with outer dense fibers (ODFs) in both the middle and principal piece of flagella in rat and mouse spermatozoa. Tektin 4 in rat spermatozoa is completely released by 6 M urea treatment, but not extracted by 1% Triton X-100 and 0.6 M potassium thiocyanate. Pre-embedding immunoelectron microscopy demonstrated that Tektin 4 located on the abaxial (convex) surface of ODFs in flagella, not associate with axonemal microtubules. Our data strongly suggested that Tektin 4 is not associated with axonemal tubulins but an ODFs-affiliated molecule in rodent spermatozoa.
Collapse
Affiliation(s)
- Hiroshi Iida
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|