1
|
Senthilkumaran B, Sudhakumari CC, Mamta SK, Raghuveer K, Swapna I, Murugananthkumar R. "Brain sex differentiation" in teleosts: Emerging concepts with potential biomarkers. Gen Comp Endocrinol 2015; 220:33-40. [PMID: 26116093 DOI: 10.1016/j.ygcen.2015.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 12/13/2022]
Abstract
"Brain sex differentiation" in teleosts is a contentious topic of research as most of the earlier reports tend to suggest that gonadal sex differentiation drives brain sex differentiation. However, identification of sex-specific marker genes in the developing brain of teleosts signifies brain-gonadal interaction during early sexual development in lower vertebrates. In this context, the influence of gonadotropin-releasing hormone (GnRH)-gonadotropin (GTH) axis on gonadal sex differentiation, if any requires in depth analysis. Presence of seabream (sb) GnRH immunoreactivity (ir-) in the brain of XY Nile tilapia was found as early as 5days post hatch (dph) followed by qualitative reduction in the preoptic area-hypothalamus region. In contrast, in the XX female brain a steady ir- of sbGnRH was evident from 15dph. Earlier studies using sea bass already implied the importance of hypothalamic gonadotropic axis completion during sex differentiation period. Such biphasic pattern of localization was also seen in pituitary GTHs using heterologous antisera in tilapia. However, more recent analysis in the same species could not detect any sexually dimorphic pattern using homologous antisera for pituitary GTHs. Detailed studies on the development of hypothalamo-hypophyseal-gonadal axis in teleosts focusing on hypothalamic monoamines (MA) and MA-related enzymes demonstrated sex-specific differential expression of tryptophan hydroxylase (Tph) in the early stages of developing male and female brains of tilapia and catfish. The changes in Tph expression was in agreement with the levels of serotonin (5-HT) and 5-hydroxytryptophan in the preoptic area-hypothalamus. Considering the stimulatory influence of 5-HT on GnRH and GTH release, it is possible to propose a network association between these correlates during early development, which may bring about brain sex dimorphism in males. A recent study from our laboratory during female brain sex development demonstrated high expression of tyrosine hydroxylase in correlation with catecholamine levels, brain aromatase and its related transcription factors such as fushi tarazu factor 1, Ftz-f1 and fork head box protein L2, foxl2. Taken together, gender differences in the levels of various transcripts provide new perspectives on brain sex differentiation in lower vertebrates. Sexually dimorphic or differentially expressing genes may play an essential role at the level of brain in response to gonadal differentiation, which might consequentially or causatively respond to gonadal sex.
Collapse
Affiliation(s)
- Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Cheni-Chery Sudhakumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Sajwan-Khatri Mamta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Kavarthapu Raghuveer
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Immani Swapna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Raju Murugananthkumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| |
Collapse
|
2
|
Zhang Y, Zhang S, Lu H, Zhang L, Zhang W. Genes encoding aromatases in teleosts: evolution and expression regulation. Gen Comp Endocrinol 2014; 205:151-8. [PMID: 24859258 DOI: 10.1016/j.ygcen.2014.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 aromatases, encoded by cyp19a1 genes, catalyzes the conversion of androgens to estrogens and plays important roles in the reproduction of vertebrates. Vertebrate cyp19a1 genes showed high synteny in chromosomal locations and conservation in sequences during evolution. However, amphioxus cyp19a1 does not show synteny to vertebrate cyp19a1. Teleost fish possess two copies of the cyp19a1 gene, which were postulated to result from a fish-specific genome duplication. The duplicated copies of fish cyp19a1 genes evolved into the brain and ovarian forms of cytochrome P450 aromatase genes, cyp19a1a and cyp19a1b, respectively, with different regulatory mechanisms of expression, through subfunctionalization under long-term selective pressure. In addition to the estradiol (E2) auto-regulatory loop, there may be other mechanisms responsible for the high expression of aromatase in the teleost brain. The study of the two cyp19a1 copies in teleost fish will shed light on the general evolution, function, and regulation of vertebrate cyp19a1.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shen Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Huijie Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lihong Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Weimin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
3
|
Böhne A, Heule C, Boileau N, Salzburger W. Expression and sequence evolution of aromatase cyp19a1 and other sexual development genes in East African cichlid fishes. Mol Biol Evol 2013; 30:2268-85. [PMID: 23883521 PMCID: PMC3773371 DOI: 10.1093/molbev/mst124] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sex determination mechanisms are highly variable across teleost fishes and sexual development is often plastic. Nevertheless, downstream factors establishing the two sexes are presumably conserved. Here, we study sequence evolution and gene expression of core genes of sexual development in a prime model system in evolutionary biology, the East African cichlid fishes. Using the available five cichlid genomes, we test for signs of positive selection in 28 genes including duplicates from the teleost whole-genome duplication, and examine the expression of these candidate genes in three cichlid species. We then focus on a particularly striking case, the A- and B-copies of the aromatase cyp19a1, and detect different evolutionary trajectories: cyp19a1A evolved under strong positive selection, whereas cyp19a1B remained conserved at the protein level, yet is subject to regulatory changes at its transcription start sites. Importantly, we find shifts in gene expression in both copies. Cyp19a1 is considered the most conserved ovary-factor in vertebrates, and in all teleosts investigated so far, cyp19a1A and cyp19a1B are expressed in ovaries and the brain, respectively. This is not the case in cichlids, where we find new expression patterns in two derived lineages: the A-copy gained a novel testis-function in the Ectodine lineage, whereas the B-copy is overexpressed in the testis of the speciest-richest cichlid group, the Haplochromini. This suggests that even key factors of sexual development, including the sex steroid pathway, are not conserved in fish, supporting the idea that flexibility in sexual determination and differentiation may be a driving force of speciation.
Collapse
Affiliation(s)
- Astrid Böhne
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
4
|
Zhang W, Lu H, Jiang H, Li M, Zhang S, Liu Q, Zhang L. Isolation and characterization of cyp19a1a and cyp19a1b promoters in the protogynous hermaphrodite orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2012; 175:473-87. [PMID: 22197207 DOI: 10.1016/j.ygcen.2011.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/20/2011] [Accepted: 12/02/2011] [Indexed: 11/25/2022]
Abstract
Aromatase (CYP19A1) catalyzes the conversion of androgens to estrogens. In teleosts, duplicated copies of cyp19a1 genes, namely cyp19a1a and cyp19a1b, were identified, however, the transcriptional regulation of these two genes remains poorly understood. In the present study, the 5'-flanking regions of the orange-spotted grouper cyp19a1a (gcyp19a1a) and cyp19a1b (gcyp19a1b) genes were isolated and characterized. The proximal promoter regions of both genes were relatively conserved when compared to those of the other teleosts. Notably, a conserved FOXO transcriptional factor binding site was firstly reported in the proximal promoter of gcyp19a1a, and deletion of the region (-112 to -60) containing this site significantly decreased the promoter activities. The deletion of the region (-246 to -112) containing the two conserved FTZ-F1 sites also dramatically decreased the transcriptional activities of gcyp19a1a promoter, and both two FTZ-F1 sites were shown to be stimulatory cis-acting elements. A FTZ-F1 homologue isolated from ricefield eel (eFTZ-F1) up-regulated gcyp19a1a promoter activities possibly via the FTZ-F1 sites, however, a previously identified orange-spotted grouper FTZ-F1 homologue (gFTZ-F1) did not activate the transcription of gcyp19a1a promoter unexpectedly. As to gcyp19a1b promoter, all the deletion constructs did not show good promoter activities in either TM4 or U251-MG cells. Estradiol (100nM) up-regulated gcyp19a1b promoter activities by about 13- and 36-fold in TM4 and U251-MG cells, respectively, via the conserved ERE motif, but did not stimulate gcyp19a1a promoter activities. These results are helpful to further elucidate the regulatory mechanisms of cyp19a1a and cyp19a1b expression in the orange-spotted grouper as well as other teleosts.
Collapse
Affiliation(s)
- Weimin Zhang
- School of Life Sciences, Sun Yat-Sen University, Guanghzhou 510275, PR China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Molecular cloning and expression analysis of fushi tarazu factor 1 in the brain of air-breathing catfish, Clarias gariepinus. PLoS One 2011; 6:e28867. [PMID: 22216130 PMCID: PMC3247217 DOI: 10.1371/journal.pone.0028867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/16/2011] [Indexed: 01/15/2023] Open
Abstract
Background Fushi tarazu factor 1 (FTZ-F1) encodes an orphan nuclear receptor belonging to the nuclear receptor family 5A (NR5A) which includes adrenal 4-binding protein or steroidogenic factor-1 (Ad4BP/SF-1) and liver receptor homologue 1 (LRH-1) and plays a pivotal role in the regulation of aromatases. Methodology/Principal Findings Present study was aimed to understand the importance of FTZ-F1 in relation to brain aromatase (cyp19a1b) during development, recrudescence and after human chorionic gonadotropin (hCG) induction. Initially, we cloned FTZ-F1 from the brain of air-breathing catfish, Clarias gariepinus through degenerate primer RT-PCR and RACE. Its sequence analysis revealed high homology with other NR5A1 group members Ad4BP/SF-1 and LRH-1, and also analogous to the spatial expression pattern of the latter. In order to draw functional correlation of cyp19a1b and FTZ-F1, we analyzed the expression pattern of the latter in brain during gonadal ontogeny, which revealed early expression during gonadal differentiation. The tissue distribution both at transcript and protein levels revealed its prominent expression in brain along with liver, kidney and testis. The expression pattern of brain FTZ-F1 during reproductive cycle and after hCG induction, in vivo was analogous to that of cyp19a1b shown in our earlier study indicating its involvement in recrudescence. Conclusions/Significance Based on our previous results on cyp19a1b and the present data, it is plausible to implicate potential roles for brain FTZ-F1 in ovarian differentiation and recrudescence process probably through regulation of cyp19a1b in teleosts. Nevertheless, these interactions would require primary coordinated response from ovarian aromatase and its related transcription factors.
Collapse
|
6
|
FTZ-F1 and FOXL2 up-regulate catfish brain aromatase gene transcription by specific binding to the promoter motifs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:57-66. [PMID: 22019437 DOI: 10.1016/j.bbagrm.2011.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/06/2011] [Accepted: 10/08/2011] [Indexed: 11/23/2022]
Abstract
Cytochrome P450 aromatase (cyp19) catalyzes the conversion of androgens into estrogens. Teleosts have distinct, ovarian specific (cyp19a1a) and brain specific (cyp19a1b) cyp19 genes. Previous studies in teleosts demonstrated regulation of cyp19a1a expression by the NR5A nuclear receptor subfamily as well as a fork head transcription factor, FOXL2. In the present study, we investigated the involvement of fushi tarazu factor 1, FTZ-F1, a NR5A subfamily member, and FOXL2 in the regulation of cyp19a1b expression in brain of the air-breathing catfish, Clarias gariepinus. Based on the synchronous expression pattern of cyp19a1b, FTZ-F1 and FOXL2 in the brain, we isolated the 5' upstream region of cyp19a1b to analyse regulatory motifs. Promoter motif analysis revealed FTZ-F1/NR5A1 and FOXL2 binding nucleotide sequences. Transient transfection studies showed that FTZ-F1 and FOXL2 together enhanced the transcriptional activity of cyp19a1b gene in mammalian cell lines. Mutation in either of their putative binding sites within the cyp19a1b promoter abolished this effect. Electrophoretic gel mobility shift experiments indicated that FTZ-F1 and FOXL2 proteins bind to the synthesized radio-labelled oligomers used as probes and mobility shifted upon addition of their respective antibodies. Chromatin immunoprecipitation assay confirmed the binding of both these transcription factors to their corresponding cis-acting elements in the upstream region of cyp19a1b. To our knowledge, this study is the first report on the transcriptional regulation of cyp19a1b by FTZ-F1 and FOXL2 in a teleost fish.
Collapse
|
7
|
Diotel N, Le Page Y, Mouriec K, Tong SK, Pellegrini E, Vaillant C, Anglade I, Brion F, Pakdel F, Chung BC, Kah O. Aromatase in the brain of teleost fish: expression, regulation and putative functions. Front Neuroendocrinol 2010; 31:172-92. [PMID: 20116395 DOI: 10.1016/j.yfrne.2010.01.003] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/20/2010] [Accepted: 01/24/2010] [Indexed: 12/25/2022]
Abstract
Unlike that of mammals, the brain of teleost fish exhibits an intense aromatase activity due to the strong expression of one of two aromatase genes (aromatase A or cyp19a1a and aromatase B or cyp19a1b) that arose from a gene duplication event. In situ hybridization, immunohistochemistry and expression of GFP (green fluorescent protein) in transgenic tg(cyp19a1b-GFP) fish demonstrate that aromatase B is only expressed in radial glial cells (RGC) of adult fish. These cells persist throughout life and act as progenitors in the brain of both developing and adult fish. Although aromatase B-positive radial glial cells are most abundant in the preoptic area and the hypothalamus, they are observed throughout the entire central nervous system and spinal cord. In agreement with the fact that brain aromatase activity is correlated to sex steroid levels, the high expression of cyp19a1b is due to an auto-regulatory loop through which estrogens and aromatizable androgens up-regulate aromatase expression. This mechanism involves estrogen receptor binding on an estrogen response element located on the cyp19a1b promoter. Cell specificity is achieved by a mandatory cooperation between estrogen receptors and unidentified glial factors. Given the emerging roles of estrogens in neurogenesis, the unique feature of the adult fish brain suggests that, in addition to classical functions on brain sexual differentiation and sexual behaviour, aromatase expression in radial glial cells could be part of the mechanisms authorizing the maintenance of a high proliferative activity in the brain of fish.
Collapse
Affiliation(s)
- Nicolas Diotel
- Neurogenesis And OEstrogens, UMR CNRS 6026, IFR 140, Université de Rennes 1, Rennes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Le Page Y, Menuet A, Kah O, Pakdel F. Characterization of a cis-acting element involved in cell-specific expression of the zebrafish brain aromatase gene. Mol Reprod Dev 2008; 75:1549-57. [PMID: 18288647 DOI: 10.1002/mrd.20892] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cytochrome P450 Aromatase is the key enzyme catalyzing the conversion of androgens into estrogens. In zebrafish, the brain aromatase is encoded by cyp19b. Expression of cyp19b is restricted to radial glial cells bordering forebrain ventricles and is strongly stimulated by estrogens during development. At the promoter level, we have previously shown that an estrogen responsive element (ERE) is required for induction by estrogens. Here, we investigated the role of ERE flanking regions in the control of cell-specific expression. First, we show that a 20 bp length motif, named G x RE (glial x responsive element), acts in synergy with the ERE to mediate the estrogenic induction specifically in glial cells. Second, we demonstrate that, in vitro, this sequence binds factors exclusively present in glial or neuro-glial cells and is able to confer a glial specificity to an artificial estrogen-dependent gene. Taken together, these results contribute to the understanding of the molecular mechanisms allowing cyp19b regulation by estrogens and allowed to identify a promoter sequence involved in the strong estrogen inducibility of cyp19b which is specific for glial cells. The exceptional aromatase activity measured in the brain of teleost fish could rely on such mechanisms.
Collapse
Affiliation(s)
- Yann Le Page
- Université de Rennes 1, UMR CNRS 6026, Interactions Cellulaires et Moléculaires, Rennes, France
| | | | | | | |
Collapse
|
9
|
Zhou LY, Wang DS, Shibata Y, Paul-Prasanth B, Suzuki A, Nagahama Y. Characterization, expression and transcriptional regulation of P450c17-I and -II in the medaka, Oryzias latipes. Biochem Biophys Res Commun 2007; 362:619-25. [PMID: 17723227 DOI: 10.1016/j.bbrc.2007.08.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/04/2007] [Indexed: 11/16/2022]
Abstract
Recently we reported the isolation of two types of cytochrome P450c17s (steroid 17alpha-hydroxylase/C17, 20 lyase) encoded by two different genes, from genomes of teleost fish. In this study, we characterized the expression profile, enzymatic activity and transcriptional regulation of P450c17-I and -II in the medaka ovary. Similar to tilapia, medaka P450c17-I possessed both hydroxylase and lyase activities, while P450c17-II possessed only the hydroxylase activity. In situ hybridization and gene expression profiles during 48h prior to spawning indicated that P450c17-I is responsible for the production of estradiol-17beta during oocyte growth, while P450c17-II for the production of 17alpha, 20beta-dihydroxy-4-pregnen-3-one during oocyte maturation and cortisol production in the head kidney. Luciferase assays and expression profiles of transcription factors as revealed by real time PCR suggested that P450c17-I and -II expression are tightly controlled by Ad4BP/SF-1, Lrh-1, Foxl2, and Dax1 during the 48 h prior to spawning.
Collapse
Affiliation(s)
- Lin-Yan Zhou
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|