1
|
Brashear WA, Bredemeyer KR, Murphy WJ. Genomic architecture constrained placental mammal X Chromosome evolution. Genome Res 2021; 31:1353-1365. [PMID: 34301625 PMCID: PMC8327908 DOI: 10.1101/gr.275274.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023]
Abstract
Susumu Ohno proposed that the gene content of the mammalian X Chromosome should remain highly conserved due to dosage compensation. X Chromosome linkage (gene order) conservation is widespread in placental mammals but does not fall within the scope of Ohno's prediction and may be an indirect result of selection on gene content or selection against rearrangements that might disrupt X-Chromosome inactivation (XCI). Previous comparisons between the human and mouse X Chromosome sequences have suggested that although single-copy X Chromosome genes are conserved between species, most ampliconic genes were independently acquired. To better understand the evolutionary and functional constraints on X-linked gene content and linkage conservation in placental mammals, we aligned a new, high-quality, long-read X Chromosome reference assembly from the domestic cat (incorporating 19.3 Mb of targeted BAC clone sequence) to the pig, human, and mouse assemblies. A comprehensive analysis of annotated X-linked orthologs in public databases demonstrated that the majority of ampliconic gene families were present on the ancestral placental X Chromosome. We generated a domestic cat Hi-C contact map from an F1 domestic cat/Asian leopard cat hybrid and demonstrated the formation of the bipartite structure found in primate and rodent inactivated X Chromosomes. Conservation of gene order and recombination patterns is attributable to strong selective constraints on three-dimensional genomic architecture necessary for superloop formation. Species with rearranged X Chromosomes retain the ancestral order and relative spacing of loci critical for superloop formation during XCI, with compensatory inversions evolving to maintain these long-range physical interactions.
Collapse
Affiliation(s)
- Wesley A Brashear
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Kevin R Bredemeyer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
2
|
Taguchi A, Taylor AD, Rodriguez J, Celiktaş M, Liu H, Ma X, Zhang Q, Wong CH, Chin A, Girard L, Behrens C, Lam WL, Lam S, Minna JD, Wistuba II, Gazdar AF, Hanash SM. A search for novel cancer/testis antigens in lung cancer identifies VCX/Y genes, expanding the repertoire of potential immunotherapeutic targets. Cancer Res 2014; 74:4694-705. [PMID: 24970476 DOI: 10.1158/0008-5472.can-13-3725] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer/testis (CT) antigens are potential immunotherapeutic targets in cancer. However, the expression of particular antigens is limited to a subset of tumors of a given type. Thus, there is a need to identify antigens with complementary expression patterns for effective therapeutic intervention. In this study, we searched for genes that were distinctly expressed at a higher level in lung tumor tissue and the testes compared with other nontumor tissues and identified members of the VCX/Y gene family as novel CT antigens. VCX3A, a member of the VCX/Y gene family, was expressed at the protein level in approximately 20% of lung adenocarcinomas and 35% of squamous cell carcinomas, but not expressed in normal lung tissues. Among CT antigens with concordant mRNA and protein expression levels, four CT antigens, XAGE1, VCX, IL13RA2, and SYCE1, were expressed, alone or in combination, in about 80% of lung adenocarcinoma tumors. The CT antigen VCX/Y gene family broadens the spectrum of CT antigens expressed in lung adenocarcinomas for clinical applications.
Collapse
Affiliation(s)
- Ayumu Taguchi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Allen D Taylor
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jaime Rodriguez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Müge Celiktaş
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaotu Ma
- Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Qing Zhang
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chee-Hong Wong
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alice Chin
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. Department of Pharmacology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. Department of Pharmacology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. Department of Pathology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|