1
|
Moros-Nicolás C, Chevret P, Izquierdo-Rico MJ, Holt WV, Esteban-Díaz D, López-Béjar M, Martínez-Nevado E, Nilsson MA, Ballesta J, Avilés M. Composition of marsupial zona pellucida: a molecular and phylogenetic approach. Reprod Fertil Dev 2019; 30:721-733. [PMID: 29162213 DOI: 10.1071/rd16519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 09/20/2017] [Indexed: 11/23/2022] Open
Abstract
The zona pellucida (ZP) is an extracellular matrix that surrounds mammalian oocytes. In eutherians it is formed from three or four proteins (ZP1, ZP2, ZP3, ZP4). In the few marsupials that have been studied, however, only three of these have been characterised (ZP2, ZP3, ZP4). Nevertheless, the composition in marsupials may be more complex, since a duplication of the ZP3 gene was recently described in one species. The aim of this work was to elucidate the ZP composition in marsupials and relate it to the evolution of the ZP gene family. For that, an in silico and molecular analysis was undertaken, focusing on two South American species (gray short-tailed opossum and common opossum) and five Australian species (brushtail possum, koala, Bennett's wallaby, Tammar wallaby and Tasmanian devil). This analysis identified the presence of ZP1 mRNA and mRNA from two or three paralogues of ZP3 in marsupials. Furthermore, evidence for ZP1 and ZP4 pseudogenes in the South American subfamily Didelphinae and for ZP3 pseudogenes in two marsupials is provided. In conclusion, two different composition models are proposed for marsupials: a model with four proteins (ZP1, ZP2 and ZP3 (two copies)) for the South American species and a model with six proteins (ZP1, ZP2, ZP3 (three copies) and ZP4) for the Australasian species.
Collapse
Affiliation(s)
- Carla Moros-Nicolás
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Campus Mare Nostrum and IMIB, Murcia 30100, Spain
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - María José Izquierdo-Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Campus Mare Nostrum and IMIB, Murcia 30100, Spain
| | | | - Daniela Esteban-Díaz
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Campus Mare Nostrum and IMIB, Murcia 30100, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Eva Martínez-Nevado
- Veterinary Department, Zoo-Aquarium Madrid, Casa de Campo s/n., Madrid 28011, Spain
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt am Main D-60325, Germany
| | - José Ballesta
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Campus Mare Nostrum and IMIB, Murcia 30100, Spain
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Campus Mare Nostrum and IMIB, Murcia 30100, Spain
| |
Collapse
|
2
|
Putative germline and pluripotent stem cells in adult mouse ovary and their in vitro differentiation potential into oocyte-like and somatic cells. ZYGOTE 2017; 25:358-375. [PMID: 28669362 DOI: 10.1017/s0967199417000235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
According to classical knowledge of reproductive biology, in the ovary of female mammals there is a limited number of oocytes and there is no possibility of renewal if the oocytes are lost due to disease or injury. However, in recent years, the results of some studies on renewal and formation of oocytes and follicles in the adult mammalian ovary have led to the questioning of this opinion. The aim of our study is to demonstrate the presence of putative germline and pluripotent stem cells in the adult mouse ovary and their differentiation potential into germ and somatic cells. In ovary tissues and cells harvested from pre-differentiation step, the expression of pluripotent and germline stem cell markers was analysed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and western blotting. Embryoid bodies that formed in this step were analysed using immunofluorescence staining and transmission electron microscopy. Ovarian stem cells were induced to differentiate into oocyte, osteoblast, chondrocyte and neural cells. Besides morphological observation, differentiated cells were analysed by RT-PCR, histochemical and immunofluorescence staining. Expression of germline and pluripotent stem cell markers both in mRNA and at the protein level were detected in the pre-differentiated cells and ovary tissues. As a result of the differentiation process, the formation of oocyte-like cells, osteoblasts, chondrocytes and neural cells was observed and characteristics of differentiated cells were confirmed using the methods mentioned above. Our study results revealed that the adult mouse ovary contains germline and pluripotent stem cells with the capacity to differentiate into oocyte-like cells, osteoblasts, chondrocytes and neural cells.
Collapse
|
4
|
Au PCK, Frankenberg S, Selwood L, Familari M. A novel marsupial pri-miRNA transcript has a putative role in gamete maintenance and defines a vertebrate miRNA cluster paralogous to the miR-15a/miR-16-1 cluster. Reproduction 2011; 142:539-50. [DOI: 10.1530/rep-11-0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Successful maintenance, survival and maturation of gametes rely on bidirectional communication between the gamete and its supporting cells. Before puberty, factors from the gamete and its supporting cells are necessary for spermatogonial stem cell and primordial follicle oocyte maintenance. Following gametogenesis, gametes rely on factors and nutrients secreted by cells of the reproductive tracts, the epididymis and/or oviduct, to complete maturation. Despite extensive studies on female and male reproduction, many of the molecular mechanisms of germ cell maintenance remain relatively unknown, particularly in marsupial species. We present the first study and characterisation of a novel primary miRNA transcript, pri-miR-16c, in the marsupial, the stripe-faced dunnart. Bioinformatic analysis showed that its predicted processed miRNA – miR-16c – is present in a wide range of vertebrates, but not eutherians. In situ hybridisation revealed dunnart pri-miR-16c expression in day 4 (primordial germ cells) and day 7 (oogonia) pouch young, in primary oocytes and follicle cells of primordial follicles but then only in follicle cells of primary, secondary and antral follicles in adult ovaries. In the adult testis, pri-miR-16c transcripts were present in the cytoplasm of spermatogonial cells. The oviduct and the epididymis both showed expression, but not any other somatic tissues examined or conceptuses during early embryonic development. This pattern of expression suggests that pri-miR-16c function may be associated with gamete maintenance, possibly through mechanisms involving RNA transfer, until the zygote enters the uterus at the pronuclear stage.
Collapse
|
5
|
Humann FC, Hartfelder K. Representational Difference Analysis (RDA) reveals differential expression of conserved as well as novel genes during caste-specific development of the honey bee (Apis mellifera L.) ovary. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:602-612. [PMID: 21477651 DOI: 10.1016/j.ibmb.2011.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/18/2011] [Accepted: 03/29/2011] [Indexed: 05/28/2023]
Abstract
In highly eusocial insects, such as the honey bee, Apis mellifera, the reproductive bias has become embedded in morphological caste differences. These are most expressively denoted in ovary size, with adult queens having large ovaries consisting of 150-200 ovarioles each, while workers typically have only 1-20 ovarioles per ovary. This morphological differentiation is a result of hormonal signals triggered by the diet change in the third larval instar, which eventually generate caste-specific gene expression patterns. To reveal these we produced differential gene expression libraries by Representational Difference Analysis (RDA) for queen and worker ovaries in a developmental stage when cell death is a prominent feature in the ovarioles of workers, whereas all ovarioles are maintained and extend in length in queens. In the queen library, 48% of the gene set represented homologs of known Drosophila genes, whereas in the worker ovary, the largest set (59%) were ESTs evidencing novel genes, not even computationally predicted in the honey bee genome. Differential expression was confirmed by quantitative RT-PCR for a selected gene set, denoting major differences for two queen and two worker library genes. These included two unpredicted genes located in chromosome 11 (Group11.35 and Group11.31, respectively) possibly representing long non-coding RNAs. Being candidates as modulators of ovary development, their expression and functional analysis should be a focal point for future studies.
Collapse
Affiliation(s)
- Fernanda C Humann
- Departamento de Biologia Celular e Molecular e de Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | | |
Collapse
|
6
|
Xie Y, Yu Y, Nie C, Cao Z. Mouse granulosa cells contribute more to the mRNA synthesis of mZP2 than oocyte does. Cell Biochem Funct 2010; 28:661-7. [DOI: 10.1002/cbf.1704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|