1
|
Relative expression of the developmentally important candidate genes in immature oocytes and in vitro-produced embryos of buffalo ( Bubalus bubalis). ZYGOTE 2022; 30:509-515. [DOI: 10.1017/s0967199421000976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Summary
The study was undertaken to examine the relative abundance (RA) of the major developmental important candidate genes in different grades of immature oocytes (A-grade, B-grade, C-grade and D-grade) and various stages of in vitro-produced embryos (2-cell, 4-cell, 8–16-cell, morula, and blastocyst) of buffalo using RT-qPCR. Results showed that the RA of GLUT1, CX43, HSP70.1 and GDF9 was significantly higher (P < 0.05) in the A-grade of oocytes than the C-grade and D-grade but did not differ significantly from the B-grade of oocytes. Similarly, RA of BMP15 and Survivin were significantly higher (P < 0.05) in A-grade than the other grades of oocytes, however, poly(A) polymerase expression was not significantly different (P > 0.05) among the immature oocytes. The expression of GLUT1 was significantly higher (P < 0.05) in the blastocysts, but the expression of CX43 (P < 0.05; P > 0.05), HSP70.1 (P < 0.05; P > 0.05) and GDF9 (P > 0.05) was higher at the 2-cell stage than the other stages of embryos. Interestingly, the expression levels of poly(A) polymerase (P < 0.05), BMP15 (P < 0.05; P > 0.05) and Survivin (P > 0.05) were higher at the 8–16-cell stage than the other stages of embryos. It is concluded that A-grade of immature oocytes has shown more mRNA abundance for the major developmental important genes; therefore A-grade oocytes may be considered as the most developmentally competent and suitable for handmade cloning research in buffalo.
Collapse
|
2
|
Kumar S, Singh MK, Chauhan MS. Expression of the developmental important candidate genes in oocytes, embryos, embryonic stem cells, cumulus cells, and fibroblast cells of buffalo (Bubalus bubalis). Gene Expr Patterns 2021; 41:119200. [PMID: 34329769 DOI: 10.1016/j.gep.2021.119200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The present study was undertaken to study the expression of the developmental important gene transcripts in immature oocytes, mature oocytes, different stages of IVF produced embryos, embryonic stem (ES), cumulus (BCC), fetal fibroblast (BFF), newborn fibroblast (NBF) and adult fibroblast (BAF) cells of buffalo by semi-quantitative RT-PCR. The expression of GLUT1, HSP70.1, POL A Polymerase, GDF9, BMP15, and SURVIVIN transcripts was found in immature oocytes, mature oocytes, 2-cell, 4-cell, 8-16 cell, morula, and the blastocyst. Interestingly, the CX43 expression was found in oocytes, embryos, and other cell types, but it was not detected in the blastocyst. However, the IFNT expression was found in the blastocyst only, but not in other cells. The buffalo ES cells showed the expression of intracellular and cell surface markers (NANOG, OCT4, SOX2, FOXD3, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81) and alkaline phosphatase activity. Two ES cell lines (S-line and M-line-II) were continued to survive up to 98th passages (~630 days) and 97th passages (~624 days), respectively. It was interesting to note that GLUT1, CX43, HSP70.1, POL A Polymerase, GDF9, BMP15, and SURVIVIN transcripts (except the IFNT) were expressed in buffalo ES, BCC, BFF, NBF and BAF cells. This is the first preliminary report that the buffalo ES, BCC, BFF, NBF, and BAF cells expressed the several developmental important candidate genes. It is concluded that the expression of the major developmental important genes was not only expressed in the oocytes and embryos but also expressed in the ES, BCC, BFF, NBF, and BAF cells of buffalo.
Collapse
Affiliation(s)
- S Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - M K Singh
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - M S Chauhan
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
3
|
Comprehensive Transcriptome Analysis of mRNA Expression Patterns of Early Embryo Development in Goat under Hypoxic and Normoxic Conditions. BIOLOGY 2021; 10:biology10050381. [PMID: 33924908 PMCID: PMC8146044 DOI: 10.3390/biology10050381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Oxygen plays a vital role in the development of early embryos, no matter whether it is too high or low, it will adversely affect the early embryo development, but the mechanisms involved in these effects are still unclear. RNA-seq was performed to compare 8-cell-stage and blastocyst-stage goat embryos under hypoxic and normoxic conditions, the mRNA expression mechanisms of 8-cell- and blastocyst-stage embryos were systematically analyzed under hypoxic and normoxic conditions. Functional enrichment analysis indicated that these differentially expressed genes (DEGs) were mainly related to biological processes and function regulation. In conclusion, we can infer that oxidative stress regulates early embryo development by affecting the expression of zygotic genes and transcription factors, and those stress genes play a potential role in adaptation to normoxic environments in goat embryos. Abstract It has been reported that hypoxic environments were more suitable for the in vitro development of mammalian embryos, but the underlying mechanisms were still unclear. In the present study, RNA-seq was performed to compare 8-cell-stage and blastocyst-stage goat embryos under hypoxic and normoxic conditions; zygotes were checked at 72 and 168 h to 8-cell stage (L8C) and blastocyst stage (LM) in hypoxic conditions and 8-cell stage (H8C) and blastocyst stage (HM) in normoxic conditions. In the H8C and L8C groups, 399 DEGs were identified, including 348 up- and 51 down-regulated DEGs. In the HM and LM groups, 1710 DEGs were identified, including 1516 up- and 194 down-regulated DEGs. The expression levels of zygotic genes, transcription factors, and maternal genes, such as WEE2, GDF9, HSP70.1, BTG4, and UBE2S showed significant changes. Functional enrichment analysis indicated that these DEGs were mainly related to biological processes and function regulation. In addition, combined with the pathway–gene interaction network and protein–protein interaction network, twenty-two of the hub genes were identified and they are mainly involved in energy metabolism, immune stress response, cell cycle, receptor binding, and signal transduction pathways. The present study provides comprehensive insights into the effects of oxidative stress on early embryo development in goats.
Collapse
|
4
|
Campos LB, Silva AM, Praxedes ÉCG, Bezerra LGP, Freitas JLS, Melo LM, Pereira AF, Figueiredo JR, Silva AR. Effect of growth differentiation factor 9 (GDF-9) on in vitro development of collared peccary preantral follicles in ovarian tissues. Anim Reprod Sci 2021; 226:106717. [PMID: 33579546 DOI: 10.1016/j.anireprosci.2021.106717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/16/2022]
Abstract
The aims were to identify the effects of growth differentiation factor 9 (GDF-9) on the in vitro development of ovarian preantral follicles (PAFs) of collared peccaries. Ovarian fragments were in vitro cultured for 1 or 7 days without or with inclusion of GDF-9 in the medium (0, 50, 100, or 200 ng/mL). The non-cultured (control) and cultured fragments were evaluated for PAF viability, activation, and cell proliferation. Although there were no differences in the percentage of morphologically normal follicles, the percentage of growing follicles was greater compared to the control in all treatment groups, especially those cultured with 200 ng/mL GDF-9 for 7 days (P < 0.05). The inclusion of GDF-9 in the medium did not interfere with PAF viability (P> 0.05); however, treatment with 200 ng/mL GDF-9 resulted in greater (P < 0.05) cell proliferation in PAFs cultured for 1 or 7 days (∼2.5 nucleolar organizing regions - NORs) compared to the follicles of the control group (2.0 NORs). In addition, peccary ovarian cortexes were subjected to PCR analysis and there was detection of the mRNA GDF-9 receptor transcripts of the BMPR2 (type I receptor) and ALK-5 (type II receptor) types. In conclusion, GDF-9, especially at a 200 ng/mL inclusion in the culture medium, was actively involved in the in vitro development of collared peccary PAFs.
Collapse
Affiliation(s)
- Lívia B Campos
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil
| | - Andreia M Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil
| | - Érica C G Praxedes
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil
| | - Luana G P Bezerra
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil
| | - Jeferson L S Freitas
- Laboratory of Physiology and Control of Reproduction, Ceará State University, Fortaleza, CE, Brazil
| | - Luciana M Melo
- Laboratory of Physiology and Control of Reproduction, Ceará State University, Fortaleza, CE, Brazil
| | - Alexsandra F Pereira
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil
| | - José R Figueiredo
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles, State University of Ceará, CE, Brazil
| | - Alexandre R Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil.
| |
Collapse
|
5
|
Liu Y, Yang Y, Li W, Zhang Y, Yang Y, Li H, Geng Z, Ao H, Zhou R, Li K. NRDR inhibits estradiol synthesis and is associated with changes in reproductive traits in pigs. Mol Reprod Dev 2018; 86:63-74. [PMID: 30372551 PMCID: PMC6587779 DOI: 10.1002/mrd.23080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023]
Abstract
Cumulus cells secreting steroid hormones have important functions in oocyte development. Several members of the short-chain dehydrogenase/reductase (SDR) family are critical to the biosynthesis of steroid hormones. NADPH-dependent retinol dehydrogenase/reductase ( NRDR), a member of the SDR superfamily, is overexpressed in pig breeds that also show high levels of androstenone. However, the potential functions and regulatory mechanisms of NRDR in pig ovaries have not been reported to date. The present study demonstrated that NRDR is highly expressed in pig ovaries and is specifically located in cumulus granulosa cells. Functional studies showed that NRDR inhibition increased estradiol synthesis. Both pregnant mare serum gonadotropin and human chorionic gonadotropin downregulated the expression of NRDR in pig cumulus granulosa cells. When the relationship between reproductive traits and single-nucleotide polymorphisms (SNPs) of the NRDR gene was examined, we found that two SNPs affected reproductive traits. SNP rs701332503 was significantly associated with a decrease in the total number of piglets born during multiparity, and rs326982309 was significantly associated with an increase in the average birth weight during primiparity. Thus, NRDR has an important role in steroid hormone biosynthesis in cumulus granulosa cells, and NRDR SNPs are associated with changes in porcine reproduction traits.
Collapse
Affiliation(s)
- Ying Liu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Wentong Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Yanmin Zhang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanzhao Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hua Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Hong Ao
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhou
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kui Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Differential expression of GDF-9 and BMP- 15 during follicular development in canine ovaries evaluated by flow cytometry. Anim Reprod Sci 2016; 167:59-67. [DOI: 10.1016/j.anireprosci.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 11/22/2022]
|
7
|
Sousa ML, Silva A, Malhão F, Rocha MJ, Rocha E, Urbatzka R. Viability analysis of oocyte–follicle complexes and gonadal fragments of zebrafish as baseline for toxicity testing. Toxicol Mech Methods 2013; 24:42-9. [DOI: 10.3109/15376516.2013.846952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Expression of INHβA and INHβB proteins in porcine oocytes cultured in vitro is dependent on the follicle size. ZYGOTE 2013; 23:205-11. [PMID: 24134883 PMCID: PMC4413872 DOI: 10.1017/s0967199413000439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current study aimed to investigate differential expression of inhibin βA (INHβA) and inhibin βB (INHβB) in porcine oocytes before or after in vitro maturation (IVM) isolated from follicles of various sizes. Porcine oocytes isolated from large, medium and small follicles (40 from each) were used to study the INHβA and INHβB protein expression pattern using western blot analysis before or after 44 h of oocyte IVM. An increased expression of INHβA was found in oocytes collected from large and medium follicles compared with small follicles before or after IVM (P < 0.001, P < 0.05, respectively). Similarly, higher INHβB levels were observed in oocytes recovered from large follicles compared with small (P < 0.01). As INHβA and INHβB are expressed in both porcine follicular somatic cells and oocytes, it can be assumed that these transforming growth factor beta (TGFβ) superfamily factors are involved in the regulation of molecular bi-directional pathways during follicle and oocyte development, and can be recognized as markers of follicle and oocyte maturation. Moreover, the current study clearly demonstrated that inhibin expression is substantially associated with porcine follicle growth and development.
Collapse
|
9
|
De Los Reyes M, Rojas C, Parraguez VH, Palomino J. Expression of growth differentiation factor 9 (GDF-9) during in vitro maturation in canine oocytes. Theriogenology 2013; 80:587-96. [PMID: 23849650 DOI: 10.1016/j.theriogenology.2013.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/30/2013] [Accepted: 06/01/2013] [Indexed: 01/16/2023]
Abstract
The aim of this study was to characterize in canine oocytes and cumulus cells the dynamic expression of growth differentiation factor 9 (GDF-9) in relation to meiotic development and cumulus expansion throughout in vitro maturation (IVM). Cumulus oocytes complexes (COCs) from ovaries of adult bitches were cultured intact for IVM during 0, 48, 72, and 96 hours. At 0 hours or after IVM, COCs were divided into two groups: one group remained with their cumulus cells and in the other group the cumulus cells were extracted. The expression levels of GDF-9 were determined in both groups using indirect immunofluorescence and Western blot analysis. For immunofluorescence assay, in vivo-matured oocytes collected from oviducts were also used as a positive control. The nuclear stage was analyzed in parallel with 4'-6-diamidino-2-phenylindole staining in denuded oocytes from all maturing groups. The intensity of fluorescence, indicative of GDF-9 expression level, decreased with time (P < 0.05). High expression was observed only in germinal vesicle nonmature oocytes; in contrast, second metaphase oocytes showed only low expression. Western blot analysis showed bands of approximately 56 kd and a split band of approximately 20 kd representing the proprotein and possibly two mature protein forms of GDF-9, respectively. The proprotein was detected in all samples, and it was highly expressed before IVM and in a lesser degree, during the first 48 hours, declining thereafter in coincidence with the expansion of the cumulus cell (P < 0.05). There was a negative correlation (r = -0.97; P < 0.05) between the expression level of GDF-9 and mucification. Mature forms were evident only in COCs, before culture and up to 48 hours of IVM. It was concluded that GDF-9 is expressed in canine oocytes and cumulus cells, mainly in the early developmental states, with low levels in mature oocytes in vitro and in vivo, representing the first approach of GDF-9 dynamic in dog oocyte maturation.
Collapse
Affiliation(s)
- Monica De Los Reyes
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
10
|
Crawford JL, McNatty KP. The ratio of growth differentiation factor 9: bone morphogenetic protein 15 mRNA expression is tightly co-regulated and differs between species over a wide range of ovulation rates. Mol Cell Endocrinol 2012; 348:339-43. [PMID: 21970812 DOI: 10.1016/j.mce.2011.09.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/20/2011] [Accepted: 09/20/2011] [Indexed: 11/18/2022]
Abstract
Recent evidence suggests that the species-specific ovulation-rate phenotypes may be influenced by differences in the expression levels of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) mRNA and protein. The aim of this study was to compare GDF9 and BMP15 mRNA levels in individual denuded oocytes (DO) from a range of single (i.e. cow, red deer), single-to-triple (i.e. sheep) and high (i.e. pig, mouse, rat) ovulation-rate species. Compared to all other species studied, GDF9 mRNA levels were lower in DO of cows and deer, whilst BMP15 levels were highest in DO of pigs. There was no detectable expression of either GDF9 or BMP15 mRNA in CC from any species. The ratio of GDF9:BMP15 mRNA expression was highly correlated (R(2)>0.80) within each species but differed markedly between species (P<0.01). Thus, we conclude that the ratio of GDF9:BMP15 mRNA is species-specific across a wide range of ovulation-rate phenotypes.
Collapse
Affiliation(s)
- Janet L Crawford
- Victoria University of Wellington, School of Biological Sciences, P.O. Box 600, Wellington 6140, New Zealand.
| | | |
Collapse
|
11
|
Liu Z, Chen A, Yang Z, Wei H, Leng X. Molecular characterization of growth differentiation factor 9 and its spatio-temporal expression pattern in gibel carp (Carassius auratus gibelio). Mol Biol Rep 2011; 39:3863-70. [PMID: 21779806 DOI: 10.1007/s11033-011-1165-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/30/2011] [Indexed: 11/29/2022]
Abstract
Growth differentiation factor 9 (GDF9) is a member of the transforming growth factor β (TGF-β) superfamily with a key role in regulating follicle development. In this study, the GDF9 full-length genomic DNA and cDNA were isolated and characterized from the gibel carp ovary using rapid-amplification of cDNA ends (RACE) and LD-PCR. The full-length genomic DNA and cDNA sequences of GDF9 are 3979 and 2044 bp which code 428 amino acid residues with a specific RKKR protease cleavage site of TGF-β superfamily. Sequence analysis showed that gibel carp was similar to zebrafish and other fish species. Spatio-temporal expression analysis using real-time quantitative PCR revealed that GDF9 mRNA was largely expressed in ovary and testis. GDF9 is mainly present at stage I follicles indicating its important role in early follicles development. The same result was obtained in immunohistochemistry localization of GDF9 protein. Within the follicle, the follicle layer cells were barely expressed whereas GDF9 mRNA was mostly expressed in the oocytes. Supplemented with human chorionic gonadotropin (hCG) in isolated follicles, the expression of GDF9 mRNA was increased firstly and then decreased. The results of this study indicated that GDF9 gene played a role in fish during development of follicles, especially in the early stage follicles.
Collapse
Affiliation(s)
- Zhiwei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Huchenghuan Road 999, Lingang New District, Shanghai, 201306, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Activation of cumulus cell SMAD2/3 and epidermal growth factor receptor pathways are involved in porcine oocyte-cumulus cell expansion and steroidogenesis. Mol Reprod Dev 2011; 78:391-402. [DOI: 10.1002/mrd.21312] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 03/18/2011] [Indexed: 01/07/2023]
|
13
|
Paradis F, Novak S, Murdoch GK, Dyck MK, Dixon WT, Foxcroft GR. Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig. Reproduction 2009; 138:115-29. [DOI: 10.1530/rep-08-0538] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study aimed to describe the abundance and localization ofBMP2,BMP6,BMP15,GDF9,BMPR1A,BMPR1B,BMPR2andTGFBR1mRNA during pig preovulatory follicular development and to evaluate their implication in improving follicular maturity in the preovulatory period preceding the second versus first post-weaning oestrus. Oocytes, granulosa (GC) and theca cells (TC) were recovered from antral follicles of primiparous sows at day 1, 2 and 4 after weaning and at day 14, 16 and 20 of their subsequent oestrous cycle. Real-time PCR analysis revealed that with the exception ofBMP6mRNA, which was absent in GC, all genes were expressed in every cell type. AlthoughBMP6,BMP15andGDF9mRNA were most abundant in the oocyte, their expression remained relatively constant during follicular development. By contrast, receptorBMPR1BandTGFBR1expressions in the GC and TC were temporally regulated.BMPR1BmRNA abundance was positively correlated with plasma oestradiol (E2) suggesting that its regulation by oestrogen may be implicated in normal folliculogenesis. Interestingly, the increase inBMPR1BmRNA and protein abundance during the periovulatory period in GC and TC suggests a role for bone morphogenetic protein (BMP) 15 in the ovulatory process. Finally, expression of these ligands and receptors was not associated with potential differences in follicle maturity observed during the second versus first post-weaning preovulatory follicular wave. In conclusion, our results clearly demonstrate the presence of a complex signalling system within the pig follicle involving the transforming growth factor-β superfamily and their receptors, and provide evidence to support a role for BMP15 and BMPR1B during ovulation.
Collapse
|
14
|
van der Heyden M, van de Ven T, Opthof T. Fraud and misconduct in science: the stem cell seduction: Implications for the peer-review process. Neth Heart J 2009; 17:25-9. [PMID: 19148335 PMCID: PMC2626656 DOI: 10.1007/bf03086211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Scientific misconduct and fraud occur in science. The (anonymous) peer review process serves as goalkeeper of scientific quality rather than scientific integrity. In this brief paper we describe some limitations of the peer-review process. We describe the catastrophic facts of the 'Woo-Suk Hwang fraud case' and raise some ethical concerns about the issue. Finally, we pay attention to plagiarism, autoplagiarism and double publications. (Neth Heart J 2009;17:25-9.).
Collapse
Affiliation(s)
- M.A.G. van der Heyden
- Department of Medical Physiology, University Medical Center, Utrecht, the Netherlands
| | - T. van de Ven
- Department of Medical Physiology, University Medical Center, Utrecht, the Netherlands
| | - T. Opthof
- Department of Medical Physiology, University Medical Center, Utrecht, and Experimental Cardiology Group, Center for Heart Failure Research, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Bebbere D, Bogliolo L, Ariu F, Fois S, Leoni GG, Tore S, Succu S, Berlinguer F, Naitana S, Ledda S. Expression pattern of zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) genes in ovine oocytes and in vitro-produced preimplantation embryos. Reprod Fertil Dev 2008; 20:908-15. [DOI: 10.1071/rd08095] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 07/25/2008] [Indexed: 12/24/2022] Open
Abstract
The expression patterns of four maternal effect genes (MEG), namely zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), were determined in ovine oocytes and in vitro-produced preimplantation embryos. The existence of ZAR1 and MATER in ovine species has not been reported previously. Reverse transcription–polymerase chain reaction was performed on germinal vesicle and IVM MII oocytes, as well as in in vitro fertilised and cultured two-, four-, eight- and 12/16-cell embryos, morulae and blastocysts. Quantification of gene expression by real-time polymerase chain reaction showed the highest abundance of all transcripts analysed in the immature oocyte. During the following stages of preimplantation development, the mRNAs examined exhibited different patterns of expression, but often significant decreases were observed during maturation and maternal–embryonic transition. The transcription of the four genes did not resume with activation of the genome.
Collapse
|