1
|
Kweon SM, Irimia-Dominguez J, Kim G, Fueger PT, Asahina K, Lai KK, Allende DS, Lai QR, Lou CH, Tsark WM, Yang JD, Ng DS, Lee JS, Tso P, Huang W, Lai KKY. Heterozygous midnolin knockout attenuates severity of nonalcoholic fatty liver disease in mice fed a Western-style diet high in fat, cholesterol, and fructose. Am J Physiol Gastrointest Liver Physiol 2023; 325:G147-G157. [PMID: 37129245 PMCID: PMC10393367 DOI: 10.1152/ajpgi.00011.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Although midnolin has been studied for over 20 years, its biological roles in vivo remain largely unknown, especially due to the lack of a functional animal model. Indeed, given our recent discovery that the knockdown of midnolin suppresses liver cancer cell tumorigenicity and that this antitumorigenic effect is associated with modulation of lipid metabolism, we hypothesized that knockout of midnolin in vivo could potentially protect from nonalcoholic fatty liver disease (NAFLD) which has become the most common cause of chronic liver disease in the Western world. Accordingly, in the present study, we have developed and now report on the first functional global midnolin knockout mouse model. Although the overwhelming majority of global homozygous midnolin knockout mice demonstrated embryonic lethality, heterozygous knockout mice were observed to be similar to wild-type mice in their viability and were used to determine the effect of reduced midnolin expression on NAFLD. We found that global heterozygous midnolin knockout attenuated the severity of NAFLD in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism. Collectively, our results support a role for midnolin in regulating cholesterol/lipid metabolism in the liver. Thus, midnolin may represent a novel therapeutic target for NAFLD. Finally, our observation that midnolin was essential for survival underscores the broad importance of this gene beyond its role in liver biology.NEW & NOTEWORTHY We have developed and now report on the first functional global midnolin knockout mouse model. We found that global heterozygous midnolin knockout attenuated the severity of nonalcoholic fatty liver disease (NAFLD) in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism.
Collapse
Affiliation(s)
- Soo-Mi Kweon
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Jose Irimia-Dominguez
- Department of Molecular and Cellular Endocrinology and Comprehensive Metabolic Phenotyping Core, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Gayeoun Kim
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Patrick T Fueger
- Department of Molecular and Cellular Endocrinology and Comprehensive Metabolic Phenotyping Core, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States
- City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Kinji Asahina
- Central Research Laboratory, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Keith K Lai
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio, United States
- Contra Costa Pathology Associates, Pleasant Hill, California, United States
| | - Daniela S Allende
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio, United States
| | - Quincy R Lai
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Chih-Hong Lou
- Gene Editing and Viral Vector Core, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Walter M Tsark
- Transgenic/Knockout Mouse Program, Center for Comparative Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Dominic S Ng
- Departments of Medicine, Physiology, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States
- City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Keane K Y Lai
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
- City of Hope Comprehensive Cancer Center, Duarte, California, United States
| |
Collapse
|
2
|
Téteau O, Vitorino Carvalho A, Papillier P, Mandon-Pépin B, Jouneau L, Jarrier-Gaillard P, Desmarchais A, Lebachelier de la Riviere ME, Vignault C, Maillard V, Binet A, Uzbekova S, Elis S. Bisphenol A and bisphenol S both disrupt ovine granulosa cell steroidogenesis but through different molecular pathways. J Ovarian Res 2023; 16:30. [PMID: 36737804 PMCID: PMC9896735 DOI: 10.1186/s13048-023-01114-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ovarian granulosa cells (GC) are essential for the development and maturation of a proper oocyte. GC are sensitive to endocrine disruptors, including bisphenol A (BPA) and its analogue bisphenol S (BPS), plasticisers present in everyday consumer products. BPA exhibits greater binding affinity for the membrane oestrogen receptor (GPER) than for the nuclear oestrogen receptors (ERα and ERβ). Here, we analysed the effects of BPA and BPS on the steroidogenesis of ovine GC in vitro, as well as their early mechanisms of action, the ovine being a relevant model to study human reproductive impairment. Disruption of GC steroidogenesis might alter oocyte quality and consequently fertility rate. In addition, we compared the effects of a specific GPER agonist (G-1) and antagonist (G-15) to those of BPA and BPS. Ewe GC were cultured with BPA or BPS (10 or 50 µM) or G-1 (1 µM) and/or G-15 (10 µM) for 48 h to study steroidogenesis. RESULTS Both BPA and BPS (10 µM) altered the secretion of progesterone, however, only BPS (10 µM) affected oestradiol secretion. RNA-seq was performed on GC after 1 h of culture with BPA or BPS (50 µM) or G-1 (10 µM), followed by real-time PCR analyses of differentially expressed genes after 12, 24 and 48 h of culture. The absence of induced GPER target genes showed that BPA and BPS did not activate GPER in GC after 1 h of treatment. These molecules exhibited mainly independent early mechanisms of action. Gene ontology analysis showed that after 1 h of treatment, BPA mainly disrupted the expression of the genes involved in metabolism and transcription, while BPS had a smaller effect and impaired cellular communications. BPA had a transient effect on the expression of CHAC1 (NOTCH signalling and oxidative balance), JUN (linked to MAPK pathway), NR4A1 (oestradiol secretion inhibition), ARRDC4 (endocytose of GPCR) and KLF10 (cell growth, differentiation and apoptosis), while expression changes were maintained over time for the genes LSMEM1 (linked to MAPK pathway), TXNIP (oxidative stress) and LIF (cell cycle regulation) after 12 and 48 h, respectively. CONCLUSION In conclusion, although they exhibited similar effects, BPA and BPS impaired different molecular pathways in GC in vitro. New investigations will be necessary to follow the temporal changes of these genes over time, as well as the biological processes involved.
Collapse
Affiliation(s)
- Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Pascal Papillier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Luc Jouneau
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France
| | | | - Alice Desmarchais
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Virginie Maillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
- Service de Chirurgie Pédiatrique Viscérale, Urologique, Plastique Et Brûlés, CHRU de Tours, 37000, Tours, France
| | - Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France.
| |
Collapse
|
3
|
Kweon SM, Kim G, Jeong Y, Huang W, Lee JS, Lai KKY. Midnolin Regulates Liver Cancer Cell Growth In Vitro and In Vivo. Cancers (Basel) 2022; 14:1421. [PMID: 35326575 PMCID: PMC8946164 DOI: 10.3390/cancers14061421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks worldwide as one of the most lethal cancers. In spite of the vast existing knowledge about HCC, the pathogenesis of HCC is not completely understood. Discovery of novel genes that contribute to HCC pathogenesis will provide new insights for better understanding and treating HCC. The relatively obscure gene midnolin has been studied for over two decades; however, its biological roles are largely unknown. Our study is the first to demonstrate the functional significance of midnolin in HCC/cancer: Midnolin expression correlates with poor prognosis in HCC patients, and suppression of midnolin severely inhibits tumorigenicity of HCC cells in vitro and in mice and disrupts retinoic acid/lipid metabolism in these cells.
Collapse
Affiliation(s)
- Soo-Mi Kweon
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (S.-M.K.); (G.K.)
| | - Gayeoun Kim
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (S.-M.K.); (G.K.)
| | - Yunseong Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.J.); (J.-S.L.)
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.J.); (J.-S.L.)
| | - Keane K. Y. Lai
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (S.-M.K.); (G.K.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Ovarian Circular RNAs Associated with High and Low Fertility in Large White Sows during the Follicular and Luteal Phases of the Estrous Cycle. Animals (Basel) 2020. [PMCID: PMC7222767 DOI: 10.3390/ani10040696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study, the ovarian tissues of Large White pigs were mined for novel circular RNAs (circRNAs), following which, their molecular characteristics and potential mechanisms for fertility regulation were examined. RNA sequencing was used for transcriptome analysis of ovarian follicles and corpora lutea in Large White sows with high (H) and low (L) fertility during the follicular (F) and luteal (L) phases of the estrous cycle. In total, 21,386 circRNA derived from 4535 host genes were identified. Differentially expressed circRNAs were detected in the LH vs. LL (1079) and in the FH vs. FL (1077) comparisons, and their host genes were enriched in steroid biosynthesis and forkhead box O (FOXO), thyroid hormone, cell cycle, and tumor growth factor (TGF)-beta signaling pathways. Protein–protein interaction networks were constructed on the basis of the host genes that were significantly enriched in pathways related to reproductive processes, with AKT3 and PP2CB serving as the hub genes in the networks of the LH vs. LL and FH vs. FL comparisons, respectively. The microRNA (miRNA) binding sites of the differentially expressed circRNAs were predicted, and 128 (LH vs. LL) and 113 (FH vs. FL) circRNA–miRNA pairs were identified. Finally, circRNA–miRNA negative regulatory networks were established on the basis of the gene expression profiles and bioinformatic analyses. In the current study, differentially expressed circRNAs were observed in ovarian tissues between the H and L fertility groups in both F and L phases of the estrous cycle, which suggested roles in pig fertility regulation. These findings provide new clues for elucidating fertility differences in pigs.
Collapse
|
5
|
Obara Y, Imai T, Sato H, Takeda Y, Kato T, Ishii K. Midnolin is a novel regulator of parkin expression and is associated with Parkinson's Disease. Sci Rep 2017; 7:5885. [PMID: 28724963 PMCID: PMC5517452 DOI: 10.1038/s41598-017-05456-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/01/2017] [Indexed: 01/08/2023] Open
Abstract
Midnolin (MIDN) was first discovered in embryonic stem cells, but its physiological and pathological roles are, to date, poorly understood. In the present study, we therefore examined the role of MIDN in detail. We found that in PC12 cells, a model of neuronal cells, MIDN localized primarily to the nucleus and intracellular membranes. Nerve growth factor promoted MIDN gene expression, which was attenuated by specific inhibitors of extracellular signal-regulated kinases 1/2 and 5. MIDN-deficient PC12 cells created using CRISPR/Cas9 technology displayed significantly impaired neurite outgrowth. Interestingly, a genetic approach revealed that 10.5% of patients with sporadic Parkinson’s disease (PD) had a lower MIDN gene copy number whereas no copy number variation was observed in healthy people, suggesting that MIDN is involved in PD pathogenesis. Furthermore, the expression of parkin, a major causative gene in PD, was significantly reduced by CRISPR/Cas9 knockout and siRNA knockdown of MIDN. Activating transcription factor 4 (ATF4) was also down-regulated, which binds to the cAMP response element (CRE) in the parkin core promoter region. The activity of CRE was reduced following MIDN loss. Overall, our data suggests that MIDN promotes the expression of parkin E3 ubiquitin ligase, and that MIDN loss can trigger PD-related pathogenic mechanisms.
Collapse
Affiliation(s)
- Yutaro Obara
- Department of Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
| | - Toru Imai
- Department of Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Hidenori Sato
- Genome Informatics Unit, Institution for Promotion of Medical Science Research, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Yuji Takeda
- Department of Immunology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Takeo Kato
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| |
Collapse
|
6
|
Du J, Zhang J, He T, Li Y, Su Y, Tie F, Liu M, Harte PJ, Zhu AJ. Stuxnet Facilitates the Degradation of Polycomb Protein during Development. Dev Cell 2017; 37:507-19. [PMID: 27326929 DOI: 10.1016/j.devcel.2016.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Polycomb-group (PcG) proteins function to ensure correct deployment of developmental programs by epigenetically repressing target gene expression. Despite the importance, few studies have been focused on the regulation of PcG activity itself. Here, we report a Drosophila gene, stuxnet (stx), that controls Pc protein stability. We find that heightened stx activity leads to homeotic transformation, reduced Pc activity, and de-repression of PcG targets. Conversely, stx mutants, which can be rescued by decreased Pc expression, display developmental defects resembling hyperactivation of Pc. Our biochemical analyses provide a mechanistic basis for the interaction between stx and Pc; Stx facilitates Pc degradation in the proteasome, independent of ubiquitin modification. Furthermore, this mode of regulation is conserved in vertebrates. Mouse stx promotes degradation of Cbx4, an orthologous Pc protein, in vertebrate cells and induces homeotic transformation in Drosophila. Our results highlight an evolutionarily conserved mechanism of regulated protein degradation on PcG homeostasis and epigenetic activity.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junzheng Zhang
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tao He
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yajuan Li
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Su
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Feng Tie
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Min Liu
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peter J Harte
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alan Jian Zhu
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Khan MIUR, Dias FCF, Dufort I, Misra V, Sirard MA, Singh J. Stable reference genes in granulosa cells of bovine dominant follicles during follicular growth, FSH stimulation and maternal aging. Reprod Fertil Dev 2017; 28:795-805. [PMID: 25426842 DOI: 10.1071/rd14089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to determine a set of reference genes in granulosa cells of dominant follicles that are suitable for relative gene expression analyses during maternal and follicular aging. Granulosa cells of growing and preovulatory dominant follicles were collected from aged and young cows (maternal aging study) and from FSH-stimulated follicles developing under different durations of FSH treatment (follicular aging study). The mRNA levels of the two commonly used reference genes (GAPDH, ACTB) and four novel genes (UBE2D2, EIF2B2, SF3A1, RNF20) were analysed using cycle threshold values. Results revealed that mRNA levels of GAPDH, ACTB, EIF2B2, RNF20, SF3A1 and UBE2D2 were similar (P>0.05) between dominant follicle type, age and among follicles obtained after FSH-stimulation, but differed (P=0.005) due to mRNA processing (i.e. with versus without amplification). The stability of reference genes was analysed using GeNorm, DeltaCT and NormFinder programs and comprehensive ranking order was determined using RefFinder. The mRNA levels of GAPDH and ACTB were less stable than those of UBE2D2 and EIF2B2. The geometric mean of multiple genes (UBE2D2, EIF2B2, GAPDH and SF3A1) is a more appropriate reference control than the use of a single reference gene to compare relative gene expression among dominant and FSH-stimulated follicles during maternal and/or follicular aging studies.
Collapse
Affiliation(s)
- Muhammad Irfan-Ur-Rehman Khan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Fernanda Caminha Faustino Dias
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Isabelle Dufort
- Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Vikram Misra
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Marc-Andre Sirard
- Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
8
|
Romereim SM, Summers AF, Pohlmeier WE, Zhang P, Hou X, Talbott HA, Cushman RA, Wood JR, Davis JS, Cupp AS. Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions. Mol Cell Endocrinol 2017; 439:379-394. [PMID: 27693538 PMCID: PMC6711749 DOI: 10.1016/j.mce.2016.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/31/2016] [Accepted: 09/27/2016] [Indexed: 01/24/2023]
Abstract
After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these four cell types. Analysis of the RNA present in each bovine cell type using Affymetrix microarrays yielded new cell-specific genetic markers, functional insight into the behavior of each cell type via Gene Ontology Annotations and Ingenuity Pathway Analysis, and evidence of small and large luteal cell lineages using Principle Component Analysis. Enriched expression of select genes for each cell type was validated by qPCR. This expression analysis offers insight into cell-specific behaviors and the differentiation process that transforms somatic follicular cells into luteal cells.
Collapse
Affiliation(s)
- Sarah M Romereim
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2)
| | - Adam F Summers
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2).
| | - William E Pohlmeier
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2)
| | - Pan Zhang
- University of Nebraska Medical Center, Olson Center for Women's Health, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA
| | - Xiaoying Hou
- University of Nebraska Medical Center, Olson Center for Women's Health, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA
| | - Heather A Talbott
- University of Nebraska Medical Center, Olson Center for Women's Health, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA
| | - Robert A Cushman
- USDA, ARS, U.S. Meat Animal Research Center, Nutrition and Environmental Management Research, Spur 18D, Clay Center, NE 68933, USA.
| | - Jennifer R Wood
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2)
| | - John S Davis
- University of Nebraska Medical Center, Olson Center for Women's Health, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| | - Andrea S Cupp
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2).
| |
Collapse
|
9
|
Genomic portrait of ovarian follicle growth regulation in cattle. Reprod Biol 2016; 16:197-202. [DOI: 10.1016/j.repbio.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 06/30/2016] [Accepted: 07/14/2016] [Indexed: 11/22/2022]
|
10
|
ÖZSAİT SELÇUK B, KÖMÜRCÜ BAYRAK E, ERGİNEL ÜNALTUNA N. Higher expression level of Bat3 is associated with silencing of theMidn gene in primary mouse cardiomyocytes. Turk J Biol 2016. [DOI: 10.3906/biy-1602-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
11
|
Hofmeister-Brix A, Kollmann K, Langer S, Schultz J, Lenzen S, Baltrusch S. Identification of the ubiquitin-like domain of midnolin as a new glucokinase interaction partner. J Biol Chem 2013; 288:35824-39. [PMID: 24187134 DOI: 10.1074/jbc.m113.526632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucokinase acts as a glucose sensor in pancreatic beta cells. Its posttranslational regulation is important but not yet fully understood. Therefore, a pancreatic islet yeast two-hybrid library was produced and searched for glucokinase-binding proteins. A protein sequence containing a full-length ubiquitin-like domain was identified to interact with glucokinase. Mammalian two-hybrid and fluorescence resonance energy transfer analyses confirmed the interaction between glucokinase and the ubiquitin-like domain in insulin-secreting MIN6 cells and revealed the highest binding affinity at low glucose. Overexpression of parkin, an ubiquitin E3 ligase exhibiting an ubiquitin-like domain with high homology to the identified, diminished insulin secretion in MIN6 cells but had only some effect on glucokinase activity. Overexpression of the elucidated ubiquitin-like domain or midnolin, containing exactly this ubiquitin-like domain, significantly reduced both intrinsic glucokinase activity and glucose-induced insulin secretion. Midnolin has been to date classified as a nucleolar protein regulating mouse development. However, we could not confirm localization of midnolin in nucleoli. Fluorescence microscopy analyses revealed localization of midnolin in nucleus and cytoplasm and co-localization with glucokinase in pancreatic beta cells. In addition we could show that midnolin gene expression in pancreatic islets is up-regulated at low glucose and that the midnolin protein is highly expressed in pancreatic beta cells and also in liver, muscle, and brain of the adult mouse and cell lines of human and rat origin. Thus, the results of our study suggest that midnolin plays a role in cellular signaling of adult tissues and regulates glucokinase enzyme activity in pancreatic beta cells.
Collapse
Affiliation(s)
- Anke Hofmeister-Brix
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany and
| | | | | | | | | | | |
Collapse
|
12
|
Christenson LK, Gunewardena S, Hong X, Spitschak M, Baufeld A, Vanselow J. Research resource: preovulatory LH surge effects on follicular theca and granulosa transcriptomes. Mol Endocrinol 2013; 27:1153-71. [PMID: 23716604 DOI: 10.1210/me.2013-1093] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The molecular mechanisms that regulate the pivotal transformation processes observed in the follicular wall following the preovulatory LH surge, are still not established, particularly for cells of the thecal layer. To elucidate thecal cell (TC) and granulosa cell (GC) type-specific biologic functions and signaling pathways, large dominant bovine follicles were collected before and 21 hours after an exogenous GnRH-induced LH surge. Antral GCs (aGCs; aspirated by follicular puncture) and membrane-associated GCs (mGCs; scraped from the follicular wall) were compared with TC expression profiles determined by mRNA microarrays. Of the approximately 11 000 total genes expressed in the periovulatory follicle, only 2% of thecal vs 25% of the granulosa genes changed in response to the LH surge. The majority of the 203 LH-regulated thecal genes were also LH regulated in GCs, leaving a total of 57 genes as LH-regulated TC-specific genes. Of the 57 thecal-specific LH-regulated genes, 74% were down-regulated including CYP17A1 and NR5A1, whereas most other genes are being identified for the first time within theca. Many of the newly identified up-regulated thecal genes (eg, PTX3, RND3, PPP4R4) were also up-regulated in granulosa. Minimal expression differences were observed between aGCs and mGCs; however, transcripts encoding extracellular proteins (NID2) and matrix modulators (ADAMTS1, SASH1) dominated these differences. We also identified large numbers of unknown LH-regulated GC genes and discuss their putative roles in ovarian function. This Research Resource provides an easy-to-access global evaluation of LH regulation in TCs and GCs that implicates numerous molecular pathways heretofore unknown within the follicle.
Collapse
Affiliation(s)
- Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3075 HLSIC, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Walsh SW, Matthews D, Browne JA, Forde N, Crowe MA, Mihm M, Diskin M, Evans ACO. Acute dietary restriction in heifers alters expression of genes regulating exposure and response to gonadotrophins and IGF in dominant follicles. Anim Reprod Sci 2012; 133:43-51. [PMID: 22771244 DOI: 10.1016/j.anireprosci.2012.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 06/07/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
Dietary restriction in growing cattle and severe negative energy balance in lactating cows have been associated with altered gonadotropin secretion, reduced follicle diameter, reduced circulating oestradiol concentrations and anovulation. Therefore, we hypothesised that acute dietary restriction would influence the fate and function of the dominant follicle by altering the expression for genes regulating gonadotrophin and IGF response in ovarian follicles. Newly selected dominant follicles were collected 7-8 days after prostaglandin F(2α) (PGF) administration from heifers (n=25) that were individually fed a diet supplying 1.2 maintenance (M; control, n=8) or 0.4 M (restricted, n=17) for a total duration of 18-19 days. Heifers within 0.4 M were ovulatory (n=11) or anovulatory (n=6) depending on whether the dominant follicle present at PGF ovulated or became atretic following luteolysis. Control animals were all ovulatory. Acute dietary restriction decreased IGF-I (P<0.001) and insulin (P<0.05) in circulation; oestradiol (P<0.01) and IGF-I (P<0.01) in follicular fluid; and mRNA for FSHR (P<0.01) in granulosa cells but increased mRNA for IGFBP2 (P<0.05) in theca cells of the newly selected dominant follicle. However, this only led to anovulation when dietary restriction also decreased mRNA for CYP19A1 (P<0.05), IGF2 (P<0.01) and IGF1R (P<0.05) in granulosa cells and LHCGR (P<0.05) in theca cells of follicles collected from heifers fed 0.4 M. These results suggest that the catabolic environment induced by dietary restriction may ultimately cause anovulation by reducing oestradiol synthesis, FSH-responsiveness and IGF signaling in granulosa, and LH-responsiveness in theca cells of dominant follicles.
Collapse
Affiliation(s)
- S W Walsh
- School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Walsh SW, Mehta JP, McGettigan PA, Browne JA, Forde N, Alibrahim RM, Mulligan FJ, Loftus B, Crowe MA, Matthews D, Diskin M, Mihm M, Evans ACO. Effect of the metabolic environment at key stages of follicle development in cattle: focus on steroid biosynthesis. Physiol Genomics 2012; 44:504-17. [PMID: 22414914 DOI: 10.1152/physiolgenomics.00178.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cellular mechanisms that contribute to low estradiol concentrations produced by the preovulatory ovarian follicle in cattle with a compromised metabolic status are largely unknown. To gain insight into the main metabolic mechanisms affecting preovulatory follicle function, two different animal models were used. Experiment 1 compared Holstein-Friesian nonlactating heifers (n = 17) and lactating cows (n = 16) at three stages of preovulatory follicle development: 1) newly selected dominant follicle in the luteal phase (Selection), 2) follicular phase before the LH surge (Differentiation), and 3) preovulatory phase after the LH surge (Luteinization). Experiment 2 compared newly selected dominant follicles in the luteal phase in beef heifers fed a diet of 1.2 times maintenance (M, n = 8) or 0.4 M (n = 11). Lactating cows and 0.4 M beef heifers had higher concentrations of β-hydroxybutyrate, and lower concentrations of glucose, insulin, and IGF-I compared with dairy heifers and 1.2 M beef heifers, respectively. In lactating cows this altered metabolic environment was associated with reduced dominant follicle estradiol and progesterone synthesis during Differentiation and Luteinization, respectively, and in 0.4 M beef heifers with reduced dominant follicle estradiol synthesis. Using a combination of RNA sequencing, Ingenuity Pathway Analysis, and qRT-PCR validation, we identified several important molecular markers involved in steroid biosynthesis, such as the expression of steroidogenic acute regulatory protein (STAR) within developing dominant follicles, to be downregulated by the catabolic state. Based on this, we propose that the adverse metabolic environment caused by lactation or nutritional restriction decreases preovulatory follicle function mainly by affecting cholesterol transport into the mitochondria to initiate steroidogenesis.
Collapse
Affiliation(s)
- S W Walsh
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dean M, Dailey RA. The ability of subordinate follicles of the second follicular wave to become dominant is lost by day 15 of the estrous cycle in cattle. Anim Reprod Sci 2011; 126:162-7. [PMID: 21757303 DOI: 10.1016/j.anireprosci.2011.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 06/08/2011] [Accepted: 06/17/2011] [Indexed: 11/25/2022]
Abstract
Generally, unilateral ovariectomy before a critical period in the latter part of the estrous cycle induces a transitory increase in plasma FSH, which causes subordinate follicles to develop and maintain ovulation rates characteristic of the species. A limiting period for subordinate follicles to assume dominance and from which ovulation occurs has not been shown for cattle. Growth and/or regression of subordinate follicles were characterized following removal of the dominant follicle at different days of the luteal phase of the estrous cycle in cattle in this study. In the mid-luteal phase (Day 13 or 15), the ovary with the dominant follicle of the second wave was ablated via unilateral ovariectomy; the corpus luteum also was removed. In the late luteal phase (Day 17 or 19), the dominant follicle was ablated with an ultrasonically guided 20 gauge needle. When the dominant follicle was removed on Day 13, the largest subordinate follicle of the second wave of follicular development became dominant and ovulation occurred from this follicle in 4 of 4 animals. However, when the dominant follicle was removed on Day 15, 17 or 19, a new wave of follicular development was induced in 14 of 15 animals. Moreover, the recovered subordinate follicle of the second wave of follicular development had similar growth characteristics to naturally occurring dominant follicles. In conclusion, the subordinate follicle in the second follicular wave in cattle retained the ability to become dominant, but this ability was lost by Day 15 of the estrous cycle. However, cattle then were able to maintain ovulation by developing a new wave of follicular growth.
Collapse
Affiliation(s)
- M Dean
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | | |
Collapse
|
16
|
Yu J, Yaba A, Kasiman C, Thomson T, Johnson J. mTOR controls ovarian follicle growth by regulating granulosa cell proliferation. PLoS One 2011; 6:e21415. [PMID: 21750711 PMCID: PMC3130037 DOI: 10.1371/journal.pone.0021415] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 06/01/2011] [Indexed: 11/22/2022] Open
Abstract
We have shown that inhibition of mTOR in granulosa cells and ovarian follicles results in compromised granulosa proliferation and reduced follicle growth. Further analysis here using spontaneously immortalized rat granulosa cells has revealed that mTOR pathway activity is enhanced during M-phase of the cell cycle. mTOR specific phosphorylation of p70S6 kinase and 4E-BP, and expression of Raptor are all enhanced during M-phase. The predominant effect of mTOR inhibition by the specific inhibitor Rapamycin (RAP) was a dose-responsive arrest in the G1 cell cycle stage. The fraction of granulosa cells that continued to divide in the presence of RAP exhibited a dose-dependent increase in aberrant mitotic figures known as anaphase bridges. Strikingly, estradiol consistently decreased the incidence of aberrant mitotic figures. In mice treated with RAP, the mitotic index was reduced compared to controls, and a similar increase in aberrant mitotic events was noted. RAP injected during a superovulation regime resulted in a dose-dependent reduction in the numbers of eggs ovulated. Implications for the real-time regulation of follicle growth and dominance, including the consequences of increased numbers of aneuploid granulosa cells, are discussed.
Collapse
Affiliation(s)
- James Yu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Aylin Yaba
- Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| | - Corinna Kasiman
- Smith College, Northampton, Massachusetts, United States of America
| | - Travis Thomson
- Program in Molecular Medicine and Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Joshua Johnson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hayashi KG, Ushizawa K, Hosoe M, Takahashi T. Differential gene expression of serine protease inhibitors in bovine ovarian follicle: possible involvement in follicular growth and atresia. Reprod Biol Endocrinol 2011; 9:72. [PMID: 21619581 PMCID: PMC3117774 DOI: 10.1186/1477-7827-9-72] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/27/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND SERPINs (serine protease inhibitors) regulate proteases involving fibrinolysis, coagulation, inflammation, cell mobility, cellular differentiation and apoptosis. This study aimed to investigate differentially expressed genes of members of the SERPIN superfamily between healthy and atretic follicles using a combination of microarray and quantitative real-time PCR (QPCR) analysis. In addition, we further determined mRNA and protein localization of identified SERPINs in estradiol (E2)-active and E2-inactive follicles by in situ hybridization and immunohistochemistry. METHODS We performed microarray analysis of healthy (10.7 +/- 0.7 mm) and atretic (7.8 +/- 0.2 mm) follicles using a custom-made bovine oligonucleotide microarray to screen differentially expressed genes encoding SERPIN superfamily members between groups. The expression profiles of six identified SERPIN genes were further confirmed by QPCR analysis. In addition, mRNA and protein localization of four SERPINs was investigated in E2-active and E2-inactive follicles using in situ hybridization and immunohistochemistry. RESULTS We have identified 11 SERPIN genes expressed in healthy and atretic follicles by microarray analysis. QPCR analysis confirmed that mRNA expression of four SERPINs (SERPINA5, SERPINB6, SERPINE2 and SERPINF2) was greater in healthy than in atretic follicles, while two SERPINs (SERPINE1 and SERPING1) had greater expression in atretic than in healthy follicles. In situ hybridization showed that SERPINA5, SERPINB6 and SERPINF2 mRNA were localized in GCs of E2-active follicles and weakly expressed in GCs of E2-inactive follicles. SERPING1 mRNA was localized in both GCs and the theca layer (TL) of E2-inactive follicles and a weak hybridization signal was also detected in both GCs and TL of E2-active follicles. Immunohistochemistry showed that SERPINA5, SERPINB6 and SERPINF2 were detected in GCs of E2-active and E2-inactive follicles. SERPING1 protein was localized in both GCs and the TL of E2-active and E2-inactive follicles. CONCLUSIONS Our results demonstrate a characteristic expression of SERPIN superfamily member genes in bovine healthy and atretic follicles. The cell-type-and stage-specific expression of SERPINs may be associated with bovine follicular growth and atresia.
Collapse
Affiliation(s)
- Ken-Go Hayashi
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Koichi Ushizawa
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Misa Hosoe
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Toru Takahashi
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| |
Collapse
|
18
|
Abstract
This study represents a first review of contemporarily knowledge concerning involvement of transcription factors in control of different ovarian functions. After introduction of basic functions and classification of transcription factors, the available data concerning involvement of transcription factors in control of the following ovarian events are present: follicular development and selection, ovarian cell proliferation and cancerogenesis, ovarian cell apoptosis, ovarian secretory activity, oocyte/cumulus maturation, ovulation and luteogenesis, mediation effect of hormones, growth factors, and cytokines. The importance of transcription factors of Smad family, of forkhead transcription factor (Fox) family, of breast cancer-associated genes/transcription factor, hypoxia-induced transcription factors and of other transcription factors in control of these processes has been demonstrated.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Institute of Animal Genetics and Reproduction, Animal Production Research Centre Nitra, Nitra, Slovakia.
| |
Collapse
|
19
|
Hayashi KG, Ushizawa K, Hosoe M, Takahashi T. Differential genome-wide gene expression profiling of bovine largest and second-largest follicles: identification of genes associated with growth of dominant follicles. Reprod Biol Endocrinol 2010; 8:11. [PMID: 20132558 PMCID: PMC2833166 DOI: 10.1186/1477-7827-8-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/05/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Bovine follicular development is regulated by numerous molecular mechanisms and biological pathways. In this study, we tried to identify differentially expressed genes between largest (F1) and second-largest follicles (F2), and classify them by global gene expression profiling using a combination of microarray and quantitative real-time PCR (QPCR) analysis. The follicular status of F1 and F2 were further evaluated in terms of healthy and atretic conditions by investigating mRNA localization of identified genes. METHODS Global gene expression profiles of F1 (10.7 +/- 0.7 mm) and F2 (7.8 +/- 0.2 mm) were analyzed by hierarchical cluster analysis and expression profiles of 16 representative genes were confirmed by QPCR analysis. In addition, localization of six identified transcripts was investigated in healthy and atretic follicles using in situ hybridization. The healthy or atretic condition of examined follicles was classified by progesterone and estradiol concentrations in follicular fluid. RESULTS Hierarchical cluster analysis of microarray data classified the follicles into two clusters. Cluster A was composed of only F2 and was characterized by high expression of 31 genes including IGFBP5, whereas cluster B contained only F1 and predominantly expressed 45 genes including CYP19 and FSHR. QPCR analysis confirmed AMH, CYP19, FSHR, GPX3, PlGF, PLA2G1B, SCD and TRB2 were greater in F1 than F2, while CCL2, GADD45A, IGFBP5, PLAUR, SELP, SPP1, TIMP1 and TSP2 were greater in F2 than in F1. In situ hybridization showed that AMH and CYP19 were detected in granulosa cells (GC) of healthy as well as atretic follicles. PlGF was localized in GC and in the theca layer (TL) of healthy follicles. IGFBP5 was detected in both GC and TL of atretic follicles. GADD45A and TSP2 were localized in both GC and TL of atretic follicles, whereas healthy follicles expressed them only in GC. CONCLUSION We demonstrated that global gene expression profiling of F1 and F2 clearly reflected a difference in their follicular status. Expression of stage-specific genes in follicles may be closely associated with their growth or atresia. Several genes identified in this study will provide intriguing candidates for the determination of follicular growth.
Collapse
Affiliation(s)
- Ken-Go Hayashi
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Koichi Ushizawa
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Misa Hosoe
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Toru Takahashi
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| |
Collapse
|
20
|
Liu Z, Youngquist RS, Garverick HA, Antoniou E. Molecular mechanisms regulating bovine ovarian follicular selection. Mol Reprod Dev 2009; 76:351-66. [PMID: 18932212 DOI: 10.1002/mrd.20967] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription profiling of ovarian follicles. Understanding the mechanisms by which a single follicle is selected for further ovulation is important to control fertility in mammals. However, development of new treatments is limited by our poor understanding of molecular mechanisms regulating follicular selection. Our hypothesis is that genes involved in the control of cell proliferation and apoptosis are differentially regulated during follicular selection. Our objective was to identify these new genes. Bovine follicles were collected and gene expression levels were measured using microarrays. First, follicles were allocated to three groups, according to the time spent from the initiation of follicular wave to surgery (24 H, 36 H, and 48-60 H). Fifty-seven genes are differentially expressed at a false discovery rate of 5%. These genes are involved in the control of lipid metabolism (P-value = 0.0005), cell proliferation (0.007), cell death (0.003), cell morphology (0.003), and immune response (0.003). Follicles were also grouped into four categories, according to the expected time of deviation (early deviation; 8 mm, mid-deviation; 8.5 mm, late deviation; 9 mm, dominant follicles; >or=10 mm). One hundred and twenty eight genes are differentially expressed between these four groups, including genes involved in cell proliferation (0.00002), cell death (0.0006), cell-to-cell signaling (0.003), cell morphology (0.003), lipid metabolism (0.0004), and immune response (0.00007). The expression levels of 10 genes were confirmed using quantitative real time PCR. As expected, we identified new differentially regulated genes involved in the control of cell growth and apoptosis. We also discovered a potential role for immune cells, and in particular macrophages, in follicular selection.
Collapse
Affiliation(s)
- Zhilin Liu
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
21
|
Ireland JJ, Zielak-Steciwko AE, Jimenez-Krassel F, Folger J, Bettegowda A, Scheetz D, Walsh S, Mossa F, Knight PG, Smith GW, Lonergan P, Evans ACO. Variation in the ovarian reserve is linked to alterations in intrafollicular estradiol production and ovarian biomarkers of follicular differentiation and oocyte quality in cattle. Biol Reprod 2009; 80:954-64. [PMID: 19164170 DOI: 10.1095/biolreprod.108.073791] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mechanisms whereby the high variation in numbers of morphologically healthy oocytes and follicles in ovaries (ovarian reserve) may have an impact onovarian function, oocyte quality, and fertility are poorly understood. The objective was to determine whether previously validated biomarkers for follicular differentiation and function, as well as oocyte quality differed between cattle with low versus a high antral follicle count (AFC). Ovaries were removed (n = 5 per group) near the beginning of the nonovulatory follicular wave, before follicles could be identified via ultrasonography as being dominant, from heifers with high versus a low AFC. The F1, F2, and F3 follicles were dissected and diameters determined. Follicular fluid and thecal, granulosal, and cumulus cells and the oocyte were isolated and subjected to biomarker analyses. Although the size and numerous biomarkers of differentiation, such as mRNAs for the gonadotropin receptors, were similar, intrafollicular concentrations of estradiol and the abundance of mRNAs for CYP19A1 in granulosal cells and ESR1, ESR2, and CTSB in cumulus cells were greater, whereas mRNAs for AMH in granulosal cells and TBC1D1 in thecal cells were lower for animals with low versus a high AFC during follicle waves. Hence, variation in the ovarian reserve may have an impact on follicular function and oocyte quality via alterations in intrafollicular estradiol production and expression of key genes involved in follicle-stimulating hormone action (AMH) and estradiol (CYP19A1) production by granulosal cells, function and survival of thecal cells (TBC1D1), responsiveness of cumulus cells to estradiol (ESR1, ESR2), and cumulus cell determinants of oocyte quality (CTSB).
Collapse
Affiliation(s)
- J J Ireland
- School of Agriculture Food Science and Veterinary Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Forde N, Mihm M, Canty MJ, Zielak AE, Baker PJ, Park S, Lonergan P, Smith GW, Coussens PM, Ireland JJ, Evans ACO. Differential expression of signal transduction factors in ovarian follicle development: a functional role for betaglycan and FIBP in granulosa cells in cattle. Physiol Genomics 2008; 33:193-204. [PMID: 18285519 DOI: 10.1152/physiolgenomics.00274.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ovarian follicles develop in groups yet individual follicles follow different growth trajectories. This growth and development are regulated by endocrine and locally produced growth factors that use a myriad of receptors and signal transduction pathways to exert their effects on theca and granulosa cells. We hypothesize that differential growth may be due to differences in hormonal responsiveness that is partially mediated by differences in expression of genes involved in signal transduction. We used the bovine dominant follicle model, microarrays, quantitative real-time PCR and RNA interference to examine this. We identified 83 genes coding for signal transduction molecules and validated a subset of them associated with different stages of the follicle wave. We suggest important roles for CAM kinase-1 and EphA4 in theca cells and BCAR1 in granulosa cells for the development of dominant follicles and for betaglycan and FIBP in granulosa cells of regressing subordinate follicles. Inhibition of genes for betaglycan and FIBP in granulosa cells in vitro suggests that they inhibit estradiol production in regressing subordinate follicles.
Collapse
Affiliation(s)
- N Forde
- School of Agriculture Food Science and Veterinary Medicine and Conway Institute for Biomolecular and Biomedical Research, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|