1
|
Brunel LG, Long CM, Christakopoulos F, Cai B, Johansson PK, Singhal D, Enejder A, Myung D, Heilshorn SC. Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability. Acta Biomater 2025; 193:128-142. [PMID: 39798635 DOI: 10.1016/j.actbio.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures. First, a physically self-assembled collagen network preserves the fibrillar microstructure and enables the spreading of encapsulated human corneal mesenchymal stromal cells. Second, an amorphous collagen network covalently crosslinked with bioorthogonal chemistry fills the voids between fibrils and stabilizes the gel against cell-induced contraction. This collagen IPN balances the biofunctionality of natural collagen with the stability of covalently crosslinked, engineered polymers. Taken together, these data represent a new avenue for maintaining both the fiber-induced spreading of cells and the structural integrity of collagen hydrogels by leveraging an IPN of fibrillar and amorphous collagen networks. STATEMENT OF SIGNIFICANCE: Collagen hydrogels are widely used as scaffolds for tissue engineering due to their support of cellular activity. However, collagen hydrogels often undergo undesired changes in size and shape due to cell-generated forces, and conventional strategies to mitigate this deformation typically compromise either the fibrillar microstructure or cytocompatibility of the collagen. In this study, we introduce an innovative interpenetrating network (IPN) that combines physically self-assembled, fibrillar collagen-ideal for promoting cell adhesion and spreading-with covalently crosslinked, amorphous collagen-ideal for enhancing bulk hydrogel stability. Our IPN design maintains the native fibrillar structure of collagen while significantly improving resistance against cell-induced contraction, providing a promising solution to enhance the performance and reliability of collagen hydrogels for tissue engineering applications.
Collapse
Affiliation(s)
- Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Chris M Long
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Fotis Christakopoulos
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Patrik K Johansson
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Diya Singhal
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Annika Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - David Myung
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Brunel LG, Long CM, Christakopoulos F, Cai B, Johansson PK, Singhal D, Enejder A, Myung D, Heilshorn SC. Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612534. [PMID: 39345483 PMCID: PMC11429934 DOI: 10.1101/2024.09.11.612534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures. First, a physically self-assembled collagen network preserves the fibrillar microstructure and enables the spreading of encapsulated human corneal mesenchymal stromal cells. Second, an amorphous collagen network covalently crosslinked with bioorthogonal chemistry fills the voids between fibrils and stabilizes the gel against cell-induced contraction. This collagen IPN balances the biofunctionality of natural collagen with the stability of covalently crosslinked, engineered polymers. Taken together, these data represent a new avenue for maintaining both the fiber-induced spreading of cells and the structural integrity of collagen hydrogels by leveraging an IPN of fibrillar and amorphous collagen networks. Statement of significance Collagen hydrogels are widely used as scaffolds for tissue engineering due to their support of cellular activity. However, collagen hydrogels often undergo undesired changes in size and shape due to cell-generated forces, and conventional strategies to mitigate this deformation typically compromise either the fibrillar microstructure or cytocompatibility of the collagen. In this study, we introduce an innovative interpenetrating network (IPN) that combines physically self-assembled, fibrillar collagen-ideal for promoting cell adhesion and spreading-with covalently crosslinked, amorphous collagen-ideal for enhancing bulk hydrogel stability. Our IPN design maintains the native fibrillar structure of collagen while significantly improving resistance against cell-induced contraction, providing a promising solution to enhance the performance and reliability of collagen hydrogels for tissue engineering applications. Graphical abstract
Collapse
|
3
|
Hernandez DS, Michelson KE, Romanovicz D, Ritschdorff ET, Shear JB. Laser-imprinting of micro-3D printed protein hydrogels enables real-time independent modification of substrate topography and elastic modulus. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2022; 28:e00250. [PMID: 37601117 PMCID: PMC10438846 DOI: 10.1016/j.bprint.2022.e00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Independent control over the Young's modulus and topography of a hydrogel cell culture substrate is necessary to characterize how attributes of its adherent surface affect cellular responses. Arbitrary, real-time manipulation of these parameters at the micron scale would further provide cellular biologists and bioengineers with the tools to study and control numerous highly dynamic behaviors including cellular adhesion, motility, metastasis, and differentiation. Although physical, chemical, thermal, and light-based strategies have been developed to influence Young's modulus and topography of hydrogel substrates, independent control of these physical attributes has remained elusive, spatial resolution is often limited, and features commonly must be pre-patterned. We recently reported a strategy in which biomaterials having specified three-dimensional (3D) morphologies are micro-3D printed in a two-step process: laser-scanning bioprinting of a protein-based hydrogel, followed by biocompatible hydrogel re-scanning to create microscale imprinted features at user-defined times. In this approach, a pulsed near-infrared laser beam is focused within the printed hydrogel to promote matrix contraction through multiphoton crosslinking, where scanning the laser focus projects a user-defined topographical pattern on the surface without subjecting the hydrogel-solution interface to damaging light intensities. Here, we extend this strategy, demonstrating the ability to decouple dynamic topographical changes from changes in hydrogel Young's modulus at the substrate surface by increasing the isolation distance between the surface and re-scanning planes. Using atomic force microscopy, we show that robust topographic changes can be imposed without altering the Young's modulus measured at the substrate surface by scanning at a depth of greater than ~6 μm. Transmission electron microscopy of hydrogel thin sections reveals changes to hydrogel porosity and density distribution within scanned regions, and that such changes to the hydrogel matrix are highly localized to regions of laser exposure. These results represent valuable new capabilities for deconvolving the effects of substrate dynamic physical attributes on the behavior of adherent cells.
Collapse
Affiliation(s)
| | | | - Dwight Romanovicz
- Department of Chemistry, 1 University Station A5300, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Eric T. Ritschdorff
- Department of Chemistry, 1 University Station A5300, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Jason B. Shear
- Department of Chemistry, 1 University Station A5300, The University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
4
|
Wu X, Wang J, Liang Q, Tong R, Huang J, Yang X, Xu Y, Wang W, Sun M, Shi J. Recent progress on FAK inhibitors with dual targeting capabilities for cancer treatment. Biomed Pharmacother 2022; 151:113116. [PMID: 35598365 DOI: 10.1016/j.biopha.2022.113116] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
Focal adhesion kinase (FAK, also known as PTK2) is a tyrosine kinase that regulates integrin and growth factor signaling pathways and is involved in the migration, proliferation and survival of cancer cells. FAK is a promising target for cancer treatment. Many small molecule FAK inhibitors have been identified and proven in both preclinical and clinical studies to be effective inhibitors of tumor growth and metastasis. There are many signaling pathways, such as those involving FAK, Src, AKT, MAPK, PI3K, and EGFR/HER-2, that provide survival signals in cancer cells. Dual inhibitors that simultaneously block FAK and another factor can significantly improve efficacy and overcome some of the shortcomings of single-target inhibitors, including drug resistance. In this review, the antitumor mechanisms and research status of dual inhibitors of FAK and other targets, such as Pyk2, IGF-IR, ALK, VEGFR-3, JAK2, EGFR, S6K1, and HDAC2, are summarized, providing new ideas for the development of effective FAK dual-target preparations.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Qi Liang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
5
|
Rijal G. Understanding the Role of Fibroblasts following a 3D Tumoroid Implantation for Breast Tumor Formation. Bioengineering (Basel) 2021; 8:bioengineering8110163. [PMID: 34821729 PMCID: PMC8615023 DOI: 10.3390/bioengineering8110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
An understanding of the participation and modulation of fibroblasts during tumor formation and growth is still unclear. Among many speculates, one might be the technical challenge to reveal the versatile function of fibroblasts in tissue complexity, and another is the dynamics in tissue physiology and cell activity. The histology of most solid tumors shows a predominant presence of fibroblasts, suggesting that tumor cells recruit fibroblasts for breast tumor growth. In this review paper, therefore, the migration, activation, differentiation, secretion, and signaling systems that are associated with fibroblasts and cancer-associated fibroblasts (CAFs) after implantation of a breast tumoroid, i.e., a lab-generated tumor tissue into an animal, are discussed.
Collapse
Affiliation(s)
- Girdhari Rijal
- Department of Medical Laboratory Sciences and Public Health, Tarleton State University, a Member of Texas A & M University System, Fort Worth, TX 76104, USA
| |
Collapse
|
6
|
Loganathan R, Little CD, Rongish BJ. Extracellular matrix dynamics in tubulogenesis. Cell Signal 2020; 72:109619. [PMID: 32247774 DOI: 10.1016/j.cellsig.2020.109619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Biological tubes form in a variety of shapes and sizes. Tubular topology of cells and tissues is a widely recognizable histological feature of multicellular life. Fluid secretion, storage, transport, absorption, exchange, and elimination-processes central to metazoans-hinge on the exquisite tubular architectures of cells, tissues, and organs. In general, the apparent structural and functional complexity of tubular tissues and organs parallels the architectural and biophysical properties of their constitution, i.e., cells and the extracellular matrix (ECM). Together, cellular and ECM dynamics determine the developmental trajectory, topological characteristics, and functional efficacy of biological tubes. In this review of tubulogenesis, we highlight the multifarious roles of ECM dynamics-the less recognized and poorly understood morphogenetic counterpart of cellular dynamics. The ECM is a dynamic, tripartite composite spanning the luminal, abluminal, and interstitial space within the tubulogenic realm. The critical role of ECM dynamics in the determination of shape, size, and function of tubes is evinced by developmental studies across multiple levels-from morphological through molecular-in model tubular organs.
Collapse
Affiliation(s)
| | - Charles D Little
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Brenda J Rongish
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
7
|
Datta P, Barui A, Wu Y, Ozbolat V, Moncal KK, Ozbolat IT. Essential steps in bioprinting: From pre- to post-bioprinting. Biotechnol Adv 2018; 36:1481-1504. [PMID: 29909085 DOI: 10.1016/j.biotechadv.2018.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/15/2018] [Accepted: 06/10/2018] [Indexed: 12/17/2022]
Abstract
An increasing demand for directed assembly of biomaterials has inspired the development of bioprinting, which facilitates the assembling of both cellular and acellular inks into well-arranged three-dimensional (3D) structures for tissue fabrication. Although great advances have been achieved in the recent decade, there still exist issues to be addressed. Herein, a review has been systematically performed to discuss the considerations in the entire procedure of bioprinting. Though bioprinting is advancing at a rapid pace, it is seen that the whole process of obtaining tissue constructs from this technique involves multiple-stages, cutting across various technology domains. These stages can be divided into three broad categories: pre-bioprinting, bioprinting and post-bioprinting. Each stage can influence others and has a bearing on the performance of fabricated constructs. For example, in pre-bioprinting, tissue biopsy and cell expansion techniques are essential to ensure a large number of cells are available for mass organ production. Similarly, medical imaging is needed to provide high resolution designs, which can be faithfully bioprinted. In the bioprinting stage, compatibility of biomaterials is needed to be matched with solidification kinetics to ensure constructs with high cell viability and fidelity are obtained. On the other hand, there is a need to develop bioprinters, which have high degrees of freedom of movement, perform without failure concerns for several hours and are compact, and affordable. Finally, maturation of bioprinted cells are governed by conditions provided during the post-bioprinting process. This review, for the first time, puts all the bioprinting stages in perspective of the whole process of bioprinting, and analyzes their current state-of-the art. It is concluded that bioprinting community will recognize the relative importance and optimize the parameter of each stage to obtain the desired outcomes.
Collapse
Affiliation(s)
- Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah 711103, West Bengal, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah 711103, West Bengal, India
| | - Yang Wu
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Veli Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Ceyhan Engineering Faculty, Cukurova University, Adana 01950, Turkey
| | - Kazim K Moncal
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA; Materials Research Institute, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
8
|
Feltz KP, Growney Kalaf EA, Chen C, Martin RS, Sell SA. A review of electrospinning manipulation techniques to direct fiber deposition and maximize pore size. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/esp-2017-0002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract Electrospinning has been widely accepted for several decades by the tissue engineering and regenerative medicine community as a technique for nanofiber production. Owing to the inherent flexibility of the electrospinning process, a number of techniques can be easily implemented to control fiber deposition (i.e. electric/ magnetic field manipulation, use of alternating current, or air-based fiber focusing) and/or porosity (i.e. air impedance, sacrificial porogen/sacrificial fiber incorporation, cryo-electrospinning, or alternative techniques). The purpose of this review is to highlight some of the recent work using these techniques to create electrospun scaffolds appropriate for mimicking the structure of the native extracellular matrix, and to enhance the applicability of advanced electrospinning techniques in the field of tissue engineering.
Collapse
Affiliation(s)
- Kevin P. Feltz
- 1Department of Biomedical Engineering, Saint Louis University, United States of America
| | | | - Chengpeng Chen
- 2Department of Chemistry, Saint Louis University, United States of America
| | - R. Scott Martin
- 2Department of Chemistry, Saint Louis University, United States of America
| | - Scott A. Sell
- 3Department of Biomedical Engineering, Saint Louis University; United States of America
| |
Collapse
|
9
|
Sidhaye J, Norden C. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. eLife 2017; 6:22689. [PMID: 28372636 PMCID: PMC5380436 DOI: 10.7554/elife.22689] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/14/2017] [Indexed: 12/27/2022] Open
Abstract
Organ formation is a multi-scale event that involves changes at the intracellular, cellular and tissue level. Organogenesis often starts with the formation of characteristically shaped organ precursors. However, the cellular mechanisms driving organ precursor formation are often not clear. Here, using zebrafish, we investigate the epithelial rearrangements responsible for the development of the hemispherical retinal neuroepithelium (RNE), a part of the optic cup. We show that in addition to basal shrinkage of RNE cells, active migration of connected epithelial cells into the RNE is a crucial player in its formation. This cellular movement is driven by progressive cell-matrix contacts and actively translocates prospective RNE cells to their correct location before they adopt neuroepithelial fate. Failure of this migration during neuroepithelium formation leads to ectopic determination of RNE cells and consequently impairs optic cup formation. Overall, this study illustrates how spatiotemporal coordination between morphogenic movements and fate determination critically influences organogenesis.
Collapse
Affiliation(s)
- Jaydeep Sidhaye
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Dresden International Graduate School for Biomedicine and Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
10
|
|
11
|
Coelho NM, Llopis-Hernández V, Salmerón-Sánchez M, Altankov G. Dynamic Reorganization and Enzymatic Remodeling of Type IV Collagen at Cell-Biomaterial Interface. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:81-104. [PMID: 27567485 DOI: 10.1016/bs.apcsb.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular basement membrane remodeling involves assembly and degradation of its main constituents, type IV collagen (Col IV) and laminin, which is critical during development, angiogenesis, and tissue repair. Remodeling can also occur at cell-biomaterials interface altering significantly the biocompatibility of implants. Here we describe the fate of adsorbed Col IV in contact with endothelial cells adhering on positively charged NH2 or hydrophobic CH3 substrata, both based on self-assembly monolayers (SAMs) and studied alone or mixed in different proportions. AFM studies revealed distinct pattern of adsorbed Col IV, varying from single molecular deposition on pure NH2 to network-like assembly on mixed SAMs, turning to big globular aggregates on bare CH3. Human umbilical endothelial cells (HUVECs) interact better with Col IV adsorbed as single molecules on NH2 surface and readily rearrange it in fibril-like pattern that coincide with secreted fibronectin fibrils. The cells show flattened morphology and well-developed focal adhesion complexes that are rich on phosphorylated FAK while expressing markedly low pericellular proteolytic activity. Conversely, on hydrophobic CH3 substrata HUVECs showed abrogated spreading and FAK phosphorylation, combined with less reorganization of the aggregated Col IV and significantly increased proteolytic activity. The later involves both MMP-2 and MMP-9, as measured by zymography and FITC-Col IV release. The mixed SAMs support intermediate remodeling activity. Taken together these results show that chemical functionalization combined with Col IV preadsorption provides a tool for guiding the endothelial cells behavior and pericellular proteolytic activity, events that strongly affect the fate of cardiovascular implants.
Collapse
Affiliation(s)
- N M Coelho
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - V Llopis-Hernández
- Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Valencia, Spain; School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | | | - G Altankov
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
12
|
de Almeida PG, Pinheiro GG, Nunes AM, Gonçalves AB, Thorsteinsdóttir S. Fibronectin assembly during early embryo development: A versatile communication system between cells and tissues. Dev Dyn 2016; 245:520-35. [PMID: 26845241 DOI: 10.1002/dvdy.24391] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fibronectin extracellular matrix is essential for embryogenesis. Its assembly is a cell-mediated process where secreted fibronectin dimers bind to integrin receptors on receiving cells, which actively assemble fibronectin into a fibrillar matrix. During development, paracrine communication between tissues is crucial for coordinating morphogenesis, typically being mediated by growth factors and their receptors. Recent reports of situations where fibronectin is produced by one tissue and assembled by another, with implications on tissue morphogenesis, suggest that fibronectin assembly may also be a paracrine communication event in certain contexts. RESULTS Here we addressed which tissues express fibronectin (Fn1) while also localizing assembled fibronectin matrix and determining the mRNA expression and/or protein distribution pattern of integrins α5 and αV, α chains of the major fibronectin assembly receptors, during early chick and mouse development. We found evidence supporting a paracrine system in fibronectin matrix assembly in several tissues, including immature mesenchymal tissues, components of central and peripheral nervous system and developing muscle. CONCLUSIONS Thus, similarly to growth factor signaling, fibronectin matrix assembly during early development can be both autocrine and paracrine. We therefore propose that it be considered a cell-cell communication event at the same level and significance as growth factor signaling during embryogenesis.
Collapse
Affiliation(s)
- Patrícia Gomes de Almeida
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo G Pinheiro
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia M Nunes
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - André B Gonçalves
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sólveig Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Abstract
Although lipotransfer, or fat grafting, is a commonly used procedure in aesthetic and reconstructive surgery, there is still variability in graft survival and neoadipogenesis from one procedure to the next. A better understanding of the sequential molecular events occurring with grafting would allow us to strategize methods to improve the regenerative potency of the grafted tissue. These steps begin with an autophagic process, followed by the inclusion of stromal vascular fraction and matrix components. By tailoring and modifying each of these steps for a particular type of aesthetic or reconstructive procedure, strategic sequencing represents a dynamic approach to lipotransfer with the aim of maximizing adipocyte viability and growth. In the implementation of the strategic sequence, it remains important to consider the clinical viability of each step and its compliance with the US Food and Drug Administration regulations. This review highlights the basic science behind clinically translatable approaches to supplementing various fat grafting procedures.
Collapse
|
14
|
Novel ALK inhibitors in clinical use and development. J Hematol Oncol 2015; 8:17. [PMID: 25888090 PMCID: PMC4349797 DOI: 10.1186/s13045-015-0122-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/13/2015] [Indexed: 12/15/2022] Open
Abstract
Anaplastic lymphoma kinase 1 (ALK-1) is a member of the insulin receptor tyrosine kinase family. ALK-1 was initially found in anaplastic large cell lymphoma (ALCL). ALK mutations have also been implicated in the pathogenesis of non-small cell lung cancer (NSCLC) and other solid tumors. Multiple small molecule inhibitors with activity against ALK and related oncoproteins are under clinical development. Two of them, crizotinib and ceritinib, have been approved by FDA for treatment of locally advanced and metastatic NSCLC. More agents (alectinib, ASP3026, X396) with improved safety, selectivity, and potency are in the pipeline. Dual inhibitors targeting ALK and EGFRm (AP26113), TRK (TSR011), FAK (CEP-37440), or ROS1 (RXDX-101, PF-06463922) are under active clinical development.
Collapse
|
15
|
Deák F, Mátés L, Korpos E, Zvara A, Szénási T, Kiricsi M, Mendler L, Keller-Pintér A, Ozsvári B, Juhász H, Sorokin L, Dux L, Mermod N, Puskás LG, Kiss I. Extracellular deposition of matrilin-2 controls the timing of the myogenic program during muscle regeneration. J Cell Sci 2014; 127:3240-56. [PMID: 24895400 PMCID: PMC4117230 DOI: 10.1242/jcs.141556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 05/08/2014] [Indexed: 01/05/2023] Open
Abstract
Here, we identify a role for the matrilin-2 (Matn2) extracellular matrix protein in controlling the early stages of myogenic differentiation. We observed Matn2 deposition around proliferating, differentiating and fusing myoblasts in culture and during muscle regeneration in vivo. Silencing of Matn2 delayed the expression of the Cdk inhibitor p21 and of the myogenic genes Nfix, MyoD and Myog, explaining the retarded cell cycle exit and myoblast differentiation. Rescue of Matn2 expression restored differentiation and the expression of p21 and of the myogenic genes. TGF-β1 inhibited myogenic differentiation at least in part by repressing Matn2 expression, which inhibited the onset of a positive-feedback loop whereby Matn2 and Nfix activate the expression of one another and activate myoblast differentiation. In vivo, myoblast cell cycle arrest and muscle regeneration was delayed in Matn2(-/-) relative to wild-type mice. The expression levels of Trf3 and myogenic genes were robustly reduced in Matn2(-/-) fetal limbs and in differentiating primary myoblast cultures, establishing Matn2 as a key modulator of the regulatory cascade that initiates terminal myogenic differentiation. Our data thus identify Matn2 as a crucial component of a genetic switch that modulates the onset of tissue repair.
Collapse
Affiliation(s)
- Ferenc Deák
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701 Szeged, Hungary
| | - Lajos Mátés
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701 Szeged, Hungary Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701 Szeged, Hungary
| | - Eva Korpos
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701 Szeged, Hungary Institute of Physiological Chemistry and Pathobiochemistry, Muenster University, D-48149 Muenster, Germany
| | - Agnes Zvara
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701 Szeged, Hungary
| | - Tibor Szénási
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701 Szeged, Hungary
| | - Mónika Kiricsi
- Institute of Biochemistry, Faculty of General Medicine, University of Szeged, H-6720 Szeged, Hungary Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Luca Mendler
- Institute of Biochemistry, Faculty of General Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Anikó Keller-Pintér
- Institute of Biochemistry, Faculty of General Medicine, University of Szeged, H-6720 Szeged, Hungary
| | | | - Hajnalka Juhász
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701 Szeged, Hungary
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, Muenster University, D-48149 Muenster, Germany
| | - László Dux
- Institute of Biochemistry, Faculty of General Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Nicolas Mermod
- Institute of Biotechnology, University of Lausanne, and Center for Biotechnology of the University of Lausanne and École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - László G Puskás
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701 Szeged, Hungary Avidin Ltd., H-6726 Szeged, Hungary
| | - Ibolya Kiss
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701 Szeged, Hungary Avidin Ltd., H-6726 Szeged, Hungary
| |
Collapse
|
16
|
Coelho NM, Salmerón-Sánchez M, Altankov G. Fibroblasts remodeling of type IV collagen at a biomaterials interface. Biomater Sci 2013; 1:494-502. [DOI: 10.1039/c3bm00163f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Rifes P, Thorsteinsdóttir S. Extracellular matrix assembly and 3D organization during paraxial mesoderm development in the chick embryo. Dev Biol 2012; 368:370-81. [DOI: 10.1016/j.ydbio.2012.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 10/28/2022]
|
18
|
Fibronectin promotes migration, alignment and fusion in an in vitro myoblast cell model. Cell Tissue Res 2012; 348:569-78. [PMID: 22427060 DOI: 10.1007/s00441-012-1364-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/29/2012] [Indexed: 12/22/2022]
Abstract
Myogenesis is a complex process in which committed myogenic cells differentiate and fuse into myotubes that mature into the muscle fibres of adult organisms. This process is initiated by a cascade of myogenic regulatory factors expressed upon entry of the cells into the myogenic differentiation programme. However, external signals such as those provided by the extracellular matrix (ECM) are also important in regulating muscle differentiation and morphogenesis. In the present work, we have addressed the role of various ECM substrata on C2C12 myoblast behaviour in vitro. Cells grown on fibronectin align and fuse earlier than cells on laminin or gelatine. Live imaging of C2C12 myoblasts on fibronectin versus gelatine has revealed that fibronectin promotes a directional collective migratory behaviour favouring cell-cell alignment and fusion. We further demonstrate that this effect of fibronectin is mediated by RGD-binding integrins expressed on myoblasts, that N-cadherin contributes to this behaviour, and that it does not involve enhanced myogenic differentiation. Therefore, we suggest that the collective migration and alignment of cells seen on fibronectin leads to a more predictable movement and a positioning that facilitates subsequent fusion of myoblasts. This study highlights the importance of addressing the role of fibronectin, an abundant component of the interstitial ECM during embryogenesis and tissue repair, in the context of myogenesis and muscle regeneration.
Collapse
|
19
|
Szabó A, Rupp PA, Rongish BJ, Little CD, Czirók A. Extracellular matrix fluctuations during early embryogenesis. Phys Biol 2011; 8:045006. [PMID: 21750366 DOI: 10.1088/1478-3975/8/4/045006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Extracellular matrix (ECM) movements and rearrangements were studied in avian embryos during early stages of development. We show that the ECM moves as a composite material, whereby distinct molecular components as well as spatially separated layers exhibit similar displacements. Using scanning wide field and confocal microscopy we show that the velocity field of ECM displacement is smooth in space and that ECM movements are correlated even at locations separated by several hundred micrometers. Velocity vectors, however, strongly fluctuate in time. The autocorrelation time of the velocity fluctuations is less than a minute. Suppression of the fluctuations yields a persistent movement pattern that is shared among embryos at equivalent stages of development. The high resolution of the velocity fields allows a detailed spatio-temporal characterization of important morphogenetic processes, especially tissue dynamics surrounding the embryonic organizer (Hensen's node).
Collapse
Affiliation(s)
- A Szabó
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA. Department of Biological Physics, Eotvos University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
20
|
The extracellular matrix dimension of skeletal muscle development. Dev Biol 2011; 354:191-207. [PMID: 21420400 DOI: 10.1016/j.ydbio.2011.03.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
Abstract
Cells anchor to substrates by binding to extracellular matrix (ECM). In addition to this anchoring function however, cell-ECM binding is a mechanism for cells to sense their surroundings and to communicate and coordinate behaviour amongst themselves. Several ECM molecules and their receptors play essential roles in muscle development and maintenance. Defects in these proteins are responsible for some of the most severe muscle dystrophies at every stage of life from neonates to adults. However, recent studies have also revealed a role of cell-ECM interactions at much earlier stages of development as skeletal muscle forms. Here we review which ECM molecules are present during the early phases of myogenesis, how myogenic cells interact with the ECM that surrounds them and the potential consequences of those interactions. We conclude that cell-ECM interactions play significant roles during all stages of skeletal muscle development in the embryo and suggest that this "extracellular matrix dimension" should be added to our conceptual network of factors contributing to skeletal myogenesis.
Collapse
|
21
|
Xu K, Sacharidou A, Fu S, Chong DC, Skaug B, Chen ZJ, Davis GE, Cleaver O. Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Dev Cell 2011; 20:526-39. [PMID: 21396893 DOI: 10.1016/j.devcel.2011.02.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 01/06/2011] [Accepted: 02/23/2011] [Indexed: 01/30/2023]
Abstract
Cardiovascular function depends on patent blood vessel formation by endothelial cells (ECs). However, the mechanisms underlying vascular "tubulogenesis" are only beginning to be unraveled. We show that endothelial tubulogenesis requires the Ras interacting protein 1, Rasip1, and its binding partner, the RhoGAP Arhgap29. Mice lacking Rasip1 fail to form patent lumens in all blood vessels, including the early endocardial tube. Rasipl null angioblasts fail to properly localize the polarity determinant Par3 and display defective cell polarity, resulting in mislocalized junctional complexes and loss of adhesion to extracellular matrix (ECM). Similarly, depletion of either Rasip1 or Arhgap29 in cultured ECs blocks in vitro lumen formation, fundamentally alters the cytoskeleton, and reduces integrin-dependent adhesion to ECM. These defects result from increased RhoA/ROCK/myosin II activity and blockade of Cdc42 and Rac1 signaling. This study identifies Rasip1 as a unique, endothelial-specific regulator of Rho GTPase signaling, which is essential for blood vessel morphogenesis.
Collapse
Affiliation(s)
- Ke Xu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|