1
|
Xu W, Li T, Li J, Liu S, Yu X, Tang M, Dong J, Liu J, Bu X, Xia X, Zhou H, Nie L. The First Identification of Homomorphic XY Sex Chromosomes by Integrating Cytogenetic and Transcriptomic Approaches in Plestiodon elegans (Scincidae). Genes (Basel) 2024; 15:664. [PMID: 38927599 PMCID: PMC11203037 DOI: 10.3390/genes15060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The sex chromosomes of skinks are usually poorly differentiated and hardly distinguished by cytogenetic methods. Therefore, identifying sex chromosomes in species lacking easily recognizable heteromorphic sex chromosomes is necessary to fully understand sex chromosome diversity. In this paper, we employed cytogenetics, sex quantification of genes, and transcriptomic approaches to characterize the sex chromosomes in Plestiodon elegans. Cytogenetic examination of metaphases revealed a diploid number of 2n = 26, consisting of 12 macrochromosomes and 14 microchromosomes, with no significant heteromorphic chromosome pairs, speculating that the sex chromosomes may be homomorphic or poorly differentiated. The results of the sex quantification of genes showed that Calumenin (calu), COPI coat complex subunit γ 2 (copg2), and Smoothened (smo) were at half the dose in males as in females, suggesting that they are on the X chromosome. Transcriptomic data analysis from the gonads yielded the excess expression male-specific genes (n = 16), in which five PCR molecular markers were developed. Restricting the observed heterozygosity to males suggests the presence of homomorphic sex chromosomes in P. elegans, XX/XY. This is the first breakthrough in the study of the sex chromosomes of Plestiodon.
Collapse
Affiliation(s)
- Wannan Xu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Taiyue Li
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Jiahui Li
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Siqi Liu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Xing Yu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Min Tang
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Jingxiu Dong
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Jianjun Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210098, China;
| | - Xingjiang Bu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Xingquan Xia
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| | - Huaxing Zhou
- Anhui Key Laboratory of Aquaculture & Stock Enhancement, Fisheries Research Institution, Anhui Academy of Agricultural Sciences, Hefei 230041, China
| | - Liuwang Nie
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.X.); (T.L.); (J.L.); (S.L.); (X.Y.); (M.T.); (J.D.); (X.B.); (X.X.)
| |
Collapse
|
2
|
Zou X, Yu H, Li Q. Genome-wide identification and transcriptome-based expression profiling of E2 gene family: Implication for potential roles in gonad development of Crassostrea gigas. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101108. [PMID: 37418813 DOI: 10.1016/j.cbd.2023.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
In this study, we investigated the role of E2 ubiquitin conjugating enzymes (E2) in the Pacific oyster Crassostrea gigas, with a focus on their involvement in gonad development. We identified 34 E2 genes clustered into nine subgroups and 24 subfamilies. The gene structure and intron-exon location were conserved within the same subfamily, but motif variation suggested functional diversity. Tissue transcriptome analyses revealed that most E2 genes were broadly expressed, with UBE2CL showing specific expression in the female gonad. Expression profiling of E2 genes during early embryo-larvae development stages suggested that five E2 genes were highly expressed in early embryo development, indicating their involvement in cell division processes. Furthermore, by profiling the expression of E2 genes in different gonadal developmental stages, we observed a gradual increase in expression for four genes during gametogenesis, with significantly higher expression in the female gonad at the maturation stage. Similarly, five E2 genes displayed elevated expression levels in the male gonad at the maturation stage, indicating their crucial roles in gonadal development and gametogenesis. Our study provides valuable insights into the potential functions of the E2 gene family in C. gigas, shedding light on the molecular mechanisms underlying gonad development in oysters.
Collapse
Affiliation(s)
- Xiaoyu Zou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
3
|
Sawada H, Inoue S, Saito T, Otsuka K, Shirae-Kurabayashi M. Involvement in Fertilization and Expression of Gamete Ubiquitin-Activating Enzymes UBA1 and UBA6 in the Ascidian Halocynthia roretzi. Int J Mol Sci 2023; 24:10662. [PMID: 37445840 DOI: 10.3390/ijms241310662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The extracellular ubiquitin-proteasome system is involved in sperm binding to and/or penetration of the vitelline coat (VC), a proteinaceous egg coat, during fertilization of the ascidian (Urochordata) Halocynthia roretzi. It is also known that the sperm receptor on the VC, HrVC70, is ubiquitinated and degraded by the sperm proteasome during the sperm penetration of the VC and that a 700-kDa ubiquitin-conjugating enzyme complex is released upon sperm activation on the VC, which is designated the "sperm reaction". However, the de novo function of ubiquitin-activating enzyme (UBA/E1) during fertilization is poorly understood. Here, we show that PYR-41, a UBA inhibitor, strongly inhibited the fertilization of H. roretzi. cDNA cloning of UBA1 and UBA6 from H. roretzi gonads was carried out, and their 3D protein structures were predicted to be very similar to those of human UBA1 and UBA6, respectively, based on AlphaFold2. These two genes were transcribed in the ovary and testis and other organs, among which the expression of both was highest in the ovary. Immunocytochemistry showed that these enzymes are localized on the sperm head around a mitochondrial region and the follicle cells surrounding the VC. These results led us to propose that HrUBA1, HrUBA6, or both in the sperm head mitochondrial region and follicle cells may be involved in the ubiquitination of HrVC70, which is responsible for the fertilization of H. roretzi.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba 517-0004, Japan
- Department of Food and Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Omori 2-1723, Moriyama-ku, Nagoya 463-8521, Japan
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Shukumi Inoue
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba 517-0004, Japan
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka 422-8529, Japan
| | - Kei Otsuka
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba 517-0004, Japan
- Department of Life Science, Faculty of Life Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba 517-0004, Japan
| |
Collapse
|
4
|
Dissanayake DSB, Holleley CE, Hill LK, O'Meally D, Deakin JE, Georges A. Identification of Y chromosome markers in the eastern three-lined skink (Bassiana duperreyi) using in silico whole genome subtraction. BMC Genomics 2020; 21:667. [PMID: 32993477 PMCID: PMC7526180 DOI: 10.1186/s12864-020-07071-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Homologous sex chromosomes can differentiate over time because recombination is suppressed in the region of the sex determining locus, leading to the accumulation of repeats, progressive loss of genes that lack differential influence on the sexes and sequence divergence on the hemizygous homolog. Divergence in the non-recombining regions leads to the accumulation of Y or W specific sequence useful for developing sex-linked markers. Here we use in silico whole-genome subtraction to identify putative sex-linked sequences in the scincid lizard Bassiana duperreyi which has heteromorphic XY sex chromosomes. Results We generated 96.7 × 109 150 bp paired-end genomic sequence reads from a XY male and 81.4 × 109 paired-end reads from an XX female for in silico whole genome subtraction to yield Y enriched contigs. We identified 7 reliable markers which were validated as Y chromosome specific by polymerase chain reaction (PCR) against a panel of 20 males and 20 females. Conclusions The sex of B. duperreyi can be reversed by low temperatures (XX genotype reversed to a male phenotype). We have developed sex-specific markers to identify the underlying genotypic sex and its concordance or discordance with phenotypic sex in wild populations of B. duperreyi. Our pipeline can be applied to isolate Y or W chromosome-specific sequences of any organism and is not restricted to sequence residing within single-copy genes. This study greatly improves our knowledge of the Y chromosome in B. duperreyi and will enhance future studies of reptile sex determination and sex chromosome evolution.
Collapse
Affiliation(s)
- Duminda Sampath Bandara Dissanayake
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Australian National Wildlife Collection, CSIRO, Canberra, ACT, 2911, Australia
| | - Clare Ellen Holleley
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Australian National Wildlife Collection, CSIRO, Canberra, ACT, 2911, Australia
| | - Laura Kate Hill
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Denis O'Meally
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Present Address: Centre for Gene Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Janine Eileen Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.
| |
Collapse
|
5
|
Chen Y, Shenkar N, Ni P, Lin Y, Li S, Zhan A. Rapid microevolution during recent range expansion to harsh environments. BMC Evol Biol 2018; 18:187. [PMID: 30526493 PMCID: PMC6286502 DOI: 10.1186/s12862-018-1311-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/27/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Adaptive evolution is one of the crucial mechanisms for organisms to survive and thrive in new environments. Recent studies suggest that adaptive evolution could rapidly occur in species to respond to novel environments or environmental challenges during range expansion. However, for environmental adaptation, many studies successfully detected phenotypic features associated with local environments, but did not provide ample genetic evidence on microevolutionary dynamics. It is therefore crucial to thoroughly investigate the genetic basis of rapid microevolution in response to environmental changes, in particular on what genes and associated variation are responsible for environmental challenges. Here, we genotyped genome-wide gene-associated microsatellites to detect genetic signatures of rapid microevolution of a marine tunicate invader, Ciona robusta, during recent range expansion to the harsh environment in the Red Sea. RESULTS The Red Sea population was significantly differentiated from the other global populations. The genome-wide scan, as well as multiple analytical methods, successfully identified a set of adaptive genes. Interestingly, the allele frequency largely varied at several adaptive loci in the Red Sea population, and we found significant correlations between allele frequency and local environmental factors at these adaptive loci. Furthermore, a set of genes were annotated to get involved in local temperature and salinity adaptation, and the identified adaptive genes may largely contribute to the invasion success to harsh environments. CONCLUSIONS All the evidence obtained in this study clearly showed that environment-driven selection had left detectable signatures in the genome of Ciona robusta within a few generations. Such a rapid microevolutionary process is largely responsible for the harsh environmental adaptation and therefore contributes to invasion success in different aquatic ecosystems with largely varied environmental factors.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801, Tel-Aviv, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel-Aviv, Israel
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yaping Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
6
|
Tariq K, Peng W, Saccone G, Zhang H. Identification, characterization and target gene analysis of testicular microRNAs in the oriental fruit fly Bactrocera dorsalis. INSECT MOLECULAR BIOLOGY 2016; 25:32-43. [PMID: 26486729 DOI: 10.1111/imb.12196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate various diverse biological processes including insect spermatogenesis. The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive horticultural pests in East Asia and the Pacific region. Although developmental miRNA profiles of B. dorsalis have enriched our knowledge, specific testicular miRNAs in this dipteran species are unexplored. In this study, we identified miRNAs from B. dorsalis testes by deep sequencing, which provided an overview of miRNA expression during spermatogenesis. Small RNA libraries were constructed from the testes of fully mature (FM), immature (IM) and middle-aged (MA) adult flies of B. dorsalis. Small RNA sequencing and data analysis revealed 172 known and 78 novel miRNAs amongst these libraries. Pairwise comparisons of libraries led to the identification of 24, 15 and 14 differentially expressed miRNAs in FM vs. IM, FM vs. MA and IM vs. MA insects, respectively. Using a bioinformatic approach, we predicted 124 target genes against the 13 most differentially expressed miRNAs. Furthermore, the expression patterns of six randomly selected miRNAs (from the 13 most differentially expressed miRNAs) and their putative target genes (from the 124 predicted target genes) were analysed in the testis of B. dorsalis by quantitative real-time PCR, which showed that out of six, four tested miRNAs-mRNAs had an inverse expression pattern and are probably co-regulated. This study is the first comparative profile of the miRNA transcriptome in three developmental stages of the testis, and provides a useful resource for further studies on the role of miRNAs in spermatogenesis in B. dorsalis.
Collapse
Affiliation(s)
- K Tariq
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, and Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - W Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, and Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - G Saccone
- Department of Biological Sciences, University Federico II of Naples, Naples, Italy
| | - H Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, and Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Wei D, Li HM, Yang WJ, Wei DD, Dou W, Huang Y, Wang JJ. Transcriptome profiling of the testis reveals genes involved in spermatogenesis and marker discovery in the oriental fruit fly, Bactrocera dorsalis. INSECT MOLECULAR BIOLOGY 2015; 24:41-57. [PMID: 25255964 DOI: 10.1111/imb.12134] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The testis is a highly specialized tissue that plays a vital role in ensuring fertility by producing spermatozoa, which are transferred to the female during mating. Spermatogenesis is a complex process, resulting in the production of mature sperm, and involves significant structural and biochemical changes in the seminiferous epithelium of the adult testis. The identification of genes involved in spermatogenesis of Bactrocera dorsalis (Hendel) is critical for a better understanding of its reproductive development. In this study, we constructed a cDNA library of testes from male B. dorsalis adults at different ages, and performed de novo transcriptome sequencing to produce a comprehensive transcript data set, using Illumina sequencing technology. The analysis yielded 52 016 732 clean reads, including a total of 4.65 Gb of nucleotides. These reads were assembled into 47 677 contigs (average 443 bp) and then clustered into 30 516 unigenes (average 756 bp). Based on BLAST hits with known proteins in different databases, 20 921 unigenes were annotated with a cut-off E-value of 10(-5). The transcriptome sequences were further annotated using the Clusters of Orthologous Groups, Gene Orthology and the Kyoto Encyclopedia of Genes and Genomes databases. Functional genes involved in spermatogenesis were analysed, including cell cycle proteins, metalloproteins, actin, and ubiquitin and antihyperthermia proteins. Several testis-specific genes were also identified. The transcripts database will help us to understand the molecular mechanisms underlying spermatogenesis in B. dorsalis. Furthermore, 2913 simple sequence repeats and 151 431 single nucleotide polymorphisms were identified, which will be useful for investigating the genetic diversity of B. dorsalis in the future.
Collapse
Affiliation(s)
- D Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Zimmerman SW, Yi YJ, Sutovsky M, van Leeuwen FW, Conant G, Sutovsky P. Identification and characterization of RING-finger ubiquitin ligase UBR7 in mammalian spermatozoa. Cell Tissue Res 2014; 356:261-78. [PMID: 24664117 DOI: 10.1007/s00441-014-1808-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/13/2014] [Indexed: 01/03/2023]
Abstract
The ubiquitin-proteasome system (UPS) controls intracellular protein turnover in a substrate-specific manner via E3-type ubiquitin ligases. Mammalian fertilization and particularly sperm penetration through the oocyte vitelline coat, the zona pellucida (ZP), is regulated by UPS. We use an extrinsic substrate of the proteasome-dependent ubiquitin-fusion degradation pathway, the mutant ubiquitin UBB(+1), to provide evidence that an E3-type ligase activity exists in sperm-acrosomal fractions. Protein electrophoresis gels from such de novo ubiquitination experiments contained a unique protein band identified by tandem mass spectrometry as being similar to ubiquitin ligase UBR7 (alternative name: C14ORF130). Corresponding mRNA was amplified from boar testis and several variants of the UBR7 protein were detected in boar, mouse and human sperm extracts by Western blotting. Genomic analysis indicated a high degree of evolutionary conservation, remarkably constant purifying selection and conserved testis expression of the UBR7 gene. By immunofluorescence, UBR7 was localized to the spermatid acrosomal cap and sperm acrosome, in addition to hotspots of proteasomal activity in spermatids, such as the cytoplasmic lobe, caudal manchette, nucleus and centrosome. During fertilization, UBR7 remained with the ZP-bound acrosomal shroud following acrosomal exocytosis. Thus, UBR7 is present in the acrosomal cap of round spermatids and within the acrosomal matrix of mature boar spermatozoa. These data provide the first evidence of ubiquitin ligase activity in mammalian spermatozoa and indicate UBR7 involvement in spermiogenesis.
Collapse
Affiliation(s)
- Shawn W Zimmerman
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
| | | | | | | | | | | |
Collapse
|
9
|
Otsuka K, Yamada L, Sawada H. cDNA cloning, localization, and candidate binding partners of acid-extractable vitelline-coat protein Ci-v-Themis-like in the ascidian Ciona intestinalis. Mol Reprod Dev 2013; 80:840-8. [DOI: 10.1002/mrd.22213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/10/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Kei Otsuka
- Sugashima Marine Biological Laboratory, Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science; Nagoya University; Sugashima Toba Japan
| |
Collapse
|
10
|
Hou CC, Yang WX. New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep 2012; 40:3213-30. [DOI: 10.1007/s11033-012-2397-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/17/2012] [Indexed: 12/12/2022]
|
11
|
Abstract
The omnipresent ubiquitin–proteasome system (UPS) is an ATP-dependent enzymatic machinery that targets substrate proteins for degradation by the 26S proteasome by tagging them with an isopeptide chain composed of covalently linked molecules of ubiquitin, a small chaperone protein. The current knowledge of UPS involvement in the process of sperm penetration through vitelline coat (VC) during human and animal fertilization is reviewed in this study, with attention also being given to sperm capacitation and acrosome reaction/exocytosis. In ascidians, spermatozoa release ubiquitin-activating and conjugating enzymes, proteasomes, and unconjugated ubiquitin to first ubiquitinate and then degrade the sperm receptor on the VC; in echinoderms and mammals, the VC (zona pellucida/ZP in mammals) is ubiquitinated during oogenesis and the sperm receptor degraded during fertilization. Various proteasomal subunits and associated enzymes have been detected in spermatozoa and localized to sperm acrosome and other sperm structures. By using specific fluorometric substrates, proteasome-specific proteolytic and deubiquitinating activities can be measured in live, intact spermatozoa and in sperm protein extracts. The requirement of proteasomal proteolysis during fertilization has been documented by the application of various proteasome-specific inhibitors and antibodies. A similar effect was achieved by depletion of sperm-surface ATP. Degradation of VC/ZP-associated sperm receptor proteins by sperm-borne proteasomes has been demonstrated in ascidians and sea urchins. On the applied side, polyspermy has been ameliorated by modulating sperm-associated deubiquitinating enzymes. Diagnostic and therapeutic applications could emerge in human reproductive medicine. Altogether, the studies on sperm proteasome indicate that animal fertilization is controlled in part by a unique, gamete associated, extracellular UPS.
Collapse
|
12
|
Yamaguchi A, Saito T, Yamada L, Taniguchi H, Harada Y, Sawada H. Identification and localization of the sperm CRISP family protein CiUrabin involved in gamete interaction in the ascidian Ciona intestinalis. Mol Reprod Dev 2011; 78:488-97. [PMID: 21656869 DOI: 10.1002/mrd.21329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 05/04/2011] [Indexed: 01/02/2023]
Abstract
Ascidians are hermaphrodites, and most release sperm and eggs nearly simultaneously. Many species, including Halocynthia roretzi and Ciona intestinalis, are self-sterile. We previously reported that the interaction between a 12 EGF-like repeat-containing vitelline-coat (VC) protein, HrVC70, and a sperm GPI-anchored CRISP, HrUrabin, in lipid rafts plays a key role in self-/nonself-recognizable gamete interaction in H. roretzi. On the other hand, we recently identified two pairs of polymorphic genes responsible for self-incompatibility in C. intestinalis by positional cloning: The sperm polycystin 1-like receptors s-Themis-A/B and its fibrinogen-like ligand v-Themis-A/B on the VC. However, it is not known if the orthologs of HrVC70 and HrUrabin also participate in gamete interaction in C. intestinalis since they are from different orders. Here, we tested for a C. intestinalis ortholog (CiUrabin) of HrUrabin by searching the genome database and proteomes of sperm lipid rafts. The identified CiUrabin belongs to the CRISP family, with a PR domain and a GPI-anchor-attachment site. CiUrabin appears to be specifically expressed in the testis and localized at the surface of the sperm head, as revealed by Northern blotting and immunocytochemistry, respectively. The specific interaction between CiVC57, a C. intestinalis ortholog of HrVC70, and CiUrabin was confirmed by Far Western analysis, similarly to the interaction between HrVC70 and HrUrabin. The molecular interaction between CiVC57 and CiUrabin may be involved in the primary binding of sperm to the VC prior to the allorecognition process, mediated by v-Themis-A/B and s-Themis-A/B, during fertilization of C. intestinalis.
Collapse
Affiliation(s)
- Akira Yamaguchi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Zou Z, Zhang Z, Wang Y, Han K, Fu M, Lin P, Xiwei J. EST analysis on the gonad development related organs and microarray screen for differentially expressed genes in mature ovary and testis of Scylla paramamosain. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:150-7. [PMID: 21262594 DOI: 10.1016/j.cbd.2010.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/18/2010] [Accepted: 12/27/2010] [Indexed: 11/24/2022]
Abstract
A total of 5160 high quality ESTs (expressed sequence tags) averaging 357 bp were collected from normalized cDNA libraries created from testis, ovary and mixed organs of mud crab Scylla paramamosain. Clustering and assembly of these ESTs resulted in a total of 3837 unique sequences with 576 overlapping contigs and 3261 singletons. Comparisons with the GenBank non-redundant (Nr) protein database (BLASTx, e-values <10(-5)) revealed putative functions or matched homologs from other organisms for 847 (22%) of the ESTs. Several gonad development related genes such as cathepsin C, thioredoxin peroxidase, vitellogenin receptor precursor, 50S ribosomal protein L24 and ubiquitin-conjugating enzyme E2 isoform 2 were identified from this EST project and demonstrated as gonad differential expression genes by rqRT-PCR. Sixty five different types of SSRs (simple sequence repeats) were identified from the total 411 EST-SSR motifs. A home-made cDNA microarray containing 5664 spots was developed and the hybridization results indicated that 39 unique transcripts were differentially expressed in testis and ovaries (P<0.05). The expression levels of eleven unique transcripts examined by rqRT-PCR were matched with microarray fairly. These results will provide a useful resource for functional genomic studies on the biology of reproduction of mud crab.
Collapse
Affiliation(s)
- Zhihua Zou
- The Key Laboratory of Science and Technology for Aquaculture and Food Safety, Fisheries College, Jimei University, Xiamen, China
| | | | | | | | | | | | | |
Collapse
|