1
|
Dehghan Z, Darya G, Mehdinejadiani S, Derakhshanfar A. Comparison of two methods of sperm- and testis-mediated gene transfer in production of transgenic animals: A systematic review. Anim Genet 2024; 55:328-343. [PMID: 38361185 DOI: 10.1111/age.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Transgenic (Tg) animal technology is one of the growing areas in biology. Various Tg technologies, each with its own advantages and disadvantages, are available for generating Tg animals. These include zygote microinjection, electroporation, viral infection, embryonic stem cell or spermatogonial stem cell-mediated production of Tg animals, sperm-mediated gene transfer (SMGT), and testis-mediated gene transfer (TMGT). However, there are currently no comprehensive studies comparing SMGT and TMGT methods, selecting appropriate gene delivery carriers (such as nanoparticles and liposomes), and determining the optimal route for gene delivery (SMGT and TMGT) for producing Tg animal. Here we aim to provide a comprehensive assessment comparing SMGT and TMGT methods, and to introduce the best carriers and gene transfer methods to sperm and testis to generate Tg animals in different species. From 2010 to 2022, 47 studies on SMGT and 25 studies on TMGT have been conducted. Mice and rats were the most commonly used species in SMGT and TMGT. Regarding the SMGT approach, nanoparticles, streptolysin-O, and virus packaging were found to be the best gene transfer methods for generating Tg mice. In the TMGT method, the best gene transfer methods for generating Tg mice and rats were virus packaging, dimethyl sulfoxide, electroporation, and liposome. Our study has shown that the efficiency of producing Tg animals varies depending on the species, gene carrier, and method of gene transfer.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Darya
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayesteh Mehdinejadiani
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Derakhshanfar
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Popova J, Bets V, Kozhevnikova E. Perspectives in Genome-Editing Techniques for Livestock. Animals (Basel) 2023; 13:2580. [PMID: 37627370 PMCID: PMC10452040 DOI: 10.3390/ani13162580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Genome editing of farm animals has undeniable practical applications. It helps to improve production traits, enhances the economic value of livestock, and increases disease resistance. Gene-modified animals are also used for biomedical research and drug production and demonstrate the potential to be used as xenograft donors for humans. The recent discovery of site-specific nucleases that allow precision genome editing of a single-cell embryo (or embryonic stem cells) and the development of new embryological delivery manipulations have revolutionized the transgenesis field. These relatively new approaches have already proven to be efficient and reliable for genome engineering and have wide potential for use in agriculture. A number of advanced methodologies have been tested in laboratory models and might be considered for application in livestock animals. At the same time, these methods must meet the requirements of safety, efficiency and availability of their application for a wide range of farm animals. This review aims at covering a brief history of livestock animal genome engineering and outlines possible future directions to design optimal and cost-effective tools for transgenesis in farm species.
Collapse
Affiliation(s)
- Julia Popova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
| | - Victoria Bets
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Center of Technological Excellence, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Elena Kozhevnikova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Laboratory of Experimental Models of Cognitive and Emotional Disorders, Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| |
Collapse
|
3
|
Briski O, Salamone DF. Past, present and future of ICSI in livestock species. Anim Reprod Sci 2022; 246:106925. [PMID: 35148927 DOI: 10.1016/j.anireprosci.2022.106925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 12/14/2022]
Abstract
During the past 2 decades, intracytoplasmic sperm injection (ICSI) has become a routine technique for clinical applications in humans. The widespread use among domestic species, however, has been limited to horses. In horses, ICSI is used to reproduce elite individuals and, as well as in humans, to mitigate or even circumvent reproductive barriers. Failures in superovulation and conventional in vitro fertilization (IVF) have been the main reason for the use of this technology in horses. In pigs, ICSI has been successfully used to produce transgenic animals. A series of factors have resulted in implementation of ICSI in pigs: need to use zygotes for numerous technologies, complexity of collecting zygotes surgically, and problems of polyspermy when there is utilization of IVF procedures. Nevertheless, there have been very few additional reports confirming positive results with the use of ICSI in pigs. The ICSI procedure could be important for use in cattle of high genetic value by maximizing semen utilization, as well as for utilization of spermatozoa from prepubertal bulls, by providing the opportunity to shorten the generation interval. When attempting to utilize ICSI in ruminants, there are some biological limitations that need to be overcome if this procedure is going to be efficacious for making genetic improvements in livestock in the future. In this review article, there is an overview and projection of the methodologies and applications that are envisioned for ICSI utilization in these species in the future.
Collapse
Affiliation(s)
- O Briski
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina
| | - D F Salamone
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang X, Chen Y. Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era. Front Genet 2019; 10:750. [PMID: 31552084 PMCID: PMC6735269 DOI: 10.3389/fgene.2019.00750] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Sheep and goats are valuable livestock species that have been raised for their production of meat, milk, fiber, and other by-products. Due to their suitable size, short gestation period, and abundant secretion of milk, sheep and goats have become important model animals in agricultural, pharmaceutical, and biomedical research. Genome engineering has been widely applied to sheep and goat research. Pronuclear injection and somatic cell nuclear transfer represent the two primary procedures for the generation of genetically modified sheep and goats. Further assisted tools have emerged to enhance the efficiency of genetic modification and to simplify the generation of genetically modified founders. These tools include sperm-mediated gene transfer, viral vectors, RNA interference, recombinases, transposons, and endonucleases. Of these tools, the four classes of site-specific endonucleases (meganucleases, ZFNs, TALENs, and CRISPRs) have attracted wide attention due to their DNA double-strand break-inducing role, which enable desired DNA modifications based on the stimulation of native cellular DNA repair mechanisms. Currently, CRISPR systems dominate the field of genome editing. Gene-edited sheep and goats, generated using these tools, provide valuable models for investigations on gene functions, improving animal breeding, producing pharmaceuticals in milk, improving animal disease resistance, recapitulating human diseases, and providing hosts for the growth of human organs. In addition, more promising derivative tools of CRISPR systems have emerged such as base editors which enable the induction of single-base alterations without any requirements for homology-directed repair or DNA donor. These precise editors are helpful for revealing desirable phenotypes and correcting genetic diseases controlled by single bases. This review highlights the advances of genome engineering in sheep and goats over the past four decades with particular emphasis on the application of CRISPR/Cas9 systems.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | | | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Jafarnejad A, Zandi M, Aminafshar M, Sanjabi MR, Emamjomeh Kashan N. Evaluating bovine sperm transfection using a high-performance polymer reagent and assessing the fertilizing capacity of transfected spermatozoa using an in vitro fertilization technique. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-351-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Sperm-mediated gene transfer (SMGT) has been considered as an innovative
device for transgenesis on a mass scale by taking advantage of live
spermatozoa to transfer exogenous DNA. However, the fertilizing ability of
transfected sperm cells and the poor reproducibility of this method are still
matters of controversy. Hence, the current study was conducted to evaluate
transfecting the enhanced green fluorescent protein (EGFP) as the source of
exogenous DNA into bovine spermatozoa using a high-performance polymer
reagent as well as assessing the fertilizing capacity of transfected sperm
cells by in vitro fertilization (IVF). In the first experiment, three
different concentrations of rhodamine-labeled DNA and high-performance
polymer transfection reagent, X-tremeGENE HP, were used to transfect bovine
spermatozoa. In the second experiment, IVF and fluorescence microscopy
methods were utilized to assess the fertilizing capacity of sperm cells
carrying exogenous DNA when X-tremeGENE HP was used either alone or with
dimethyl sulfoxide (DMSO) treatment. Findings revealed that at 1 µL
X-tremeGENE HP and 1 µg of DNA concentration, approximately
one-third of total spermatozoa were transfected. However, following IVF and
fluorescence microscopy, no EGFP expression was detected in zygotes and
morula-stage embryos. Results of this study showed that, although X-tremeGENE
HP could transfer EGFP to bovine spermatozoa, transfected sperm cells were
unable to transfer foreign DNA to matured bovine oocytes. Under our
experimental conditions, we hypothesized that the absence of the EGFP
fluorescence signal in embryos could be due to the detrimental effects of
transfection treatments on sperm cells' fertility performance as well as
incompetency of IVF to produce transgenic embryos using transfected sperm
cells.
Collapse
|
6
|
Sekhavati MH, Hosseini SM, Tahmoorespur M, Ghaedi K, Jafarpour F, Hajian M, Dormiani K, Nasr-Esfahani MH. PhiC31-based Site-Specific Transgenesis System for Production of Transgenic Bovine Embryos by Somatic Cell Nuclear Transfer and Intracytoplasmic Sperm Injection. CELL JOURNAL 2018; 20:98-107. [PMID: 29308625 PMCID: PMC5759686 DOI: 10.22074/cellj.2018.4385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 03/01/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVES The Streptomyces phage phiC31 integrase offers a sequence-specific method of transgenesis with a robust long-term gene expression. PhiC31 has been successfully developed in a variety of tissues and organs for purpose of in vivo gene therapy. The objective of the present experiment was to evaluate PhiC31-based site-specific transgenesis system for production of transgenic bovine embryos by somatic cell nuclear transfer and intracytoplasmic sperm injection. MATERIALS AND METHODS In this experimental study, the application of phiC31 integrase system was evaluated for generating transgenic bovine embryos by somatic cell nuclear transfer (SCNT) and sperm mediated gene transfer (SMGT) approaches. RESULTS PhiC31 integrase mRNA and protein was produced in vitro and their functionality was confirmed. Seven phiC31 recognizable bovine pseudo attachment sites of phage (attP) sites were considered for evaluation of site specific recombination. The accuracy of these sites was validated in phic31 targeted bovine fibroblasts using polymerase chain reaction (PCR) and sequencing. The efficiency and site-specificity of phiC31 integrase system was also confirmed in generated transgenic bovine embryo which successfully obtained using SCNT and SMGT technique. CONCLUSIONS The results showed that both SMGT and SCNT-derived embryos were enhanced green fluorescent protein (EGFP) positive and phiC31 integrase could recombine the reporter gene in a site specific manner. These results demonstrate that attP site can be used as a proper location to conduct site directed transgenesis in both mammalian cells and embryos in phiC31 integrase system when even combinaed to SCNT and intracytoplasmic sperm injection (ICSI) method.
Collapse
Affiliation(s)
| | - Sayed Morteza Hosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Kamran Ghaedi
- Department of Biology, Facualty of Sciences, Uneversity of Isfahan, Isfahan, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kyanoosh Dormiani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossain Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
7
|
Hasanzadeh R, Zandi M, Sanjabi MR, Pajooh KH, Shabani H. Expression of fluorescent reporter protein was not obtained in ovine embryos produced through in vitro fertilization-sperm mediated gene transfer (IVF-SMGT). Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
New insights and current tools for genetically engineered (GE) sheep and goats. Theriogenology 2016; 86:160-9. [PMID: 27155732 DOI: 10.1016/j.theriogenology.2016.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/08/2015] [Accepted: 03/14/2016] [Indexed: 01/20/2023]
Abstract
Genetically engineered sheep and goats represent useful models applied to proof of concepts, large-scale production of novel products or processes, and improvement of animal traits, which is of interest in biomedicine, biopharma, and livestock. This disruptive biotechnology arose in the 80s by injecting DNA fragments into the pronucleus of zygote-staged embryos. Pronuclear microinjection set the transgenic concept into people's mind but was characterized by inefficient and often frustrating results mostly because of uncontrolled and/or random integration and unpredictable transgene expression. Somatic cell nuclear transfer launched the second wave in the late 90s, solving several weaknesses of the previous technique by making feasible the transfer of a genetically modified and fully characterized cell into an enucleated oocyte, capable of cell reprogramming to generate genetically engineered animals. Important advances were also achieved during the 2000s with the arrival of new techniques like the lentivirus system, transposons, RNA interference, site-specific recombinases, and sperm-mediated transgenesis. We are now living the irruption of the third technological wave in which genome edition is possible by using endonucleases, particularly the CRISPR/Cas system. Sheep and goats were recently produced by CRISPR/Cas9, and for sure, cattle will be reported soon. We will see new genetically engineered farm animals produced by homologous recombination, multiple gene editing in one-step generation and conditional modifications, among other advancements. In the following decade, genome edition will continue expanding our technical possibilities, which will contribute to the advancement of science, the development of clinical or commercial applications, and the improvement of people's life quality around the world.
Collapse
|
9
|
Transgenic expression of green fluorescent protein in caprine embryos produced through electroporation-aided sperm-mediated gene transfer. Gene 2016; 576:505-11. [DOI: 10.1016/j.gene.2015.10.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 10/20/2015] [Accepted: 10/28/2015] [Indexed: 01/11/2023]
|
10
|
Hosseini S, Asgari V, Ostadhosseini S, Hajian M, Ghanaei H, Nasr-Esfahani M. Developmental competence of ovine oocytes after vitrification: Differential effects of vitrification steps, embryo production methods, and parental origin of pronuclei. Theriogenology 2015; 83:366-76. [DOI: 10.1016/j.theriogenology.2014.09.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 12/27/2022]
|
11
|
Moreira PN, Montoliu L. Intracytoplasmic sperm injection (ICSI)-mediated transgenesis in mice. Methods Mol Biol 2014; 1194:141-156. [PMID: 25064101 DOI: 10.1007/978-1-4939-1215-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Over the years many well-described techniques for the introduction of transgene DNA into host organisms have been used, including pronuclear injection, in vitro fertilization-mediated transgenesis, transfection of ES and spermatogenic cells, nuclear transfer of somatic cell nuclei, and lentiviral vectors. The application of these techniques has been limited however either by the time and effort to be executed or by their narrow efficiency with large transgenes. The greatest advantage of intracytoplasmic sperm injection (ICSI)-mediated transgenesis is precisely its ability to stably introduce large DNA molecules into the genome of host organisms with relatively high efficiency, as compared to alternative procedures. In mice, this procedure has been shown to be a reproducible method to generate transgenic offspring with a high efficiency. Recently, it proved also to be a viable method to generate transgenic rats and pigs, and as such, it is foreseen with great interest for the production of transgenic farm animals, where it would constitute an important tool for the production of recombinant proteins and livestock improvement.
Collapse
Affiliation(s)
- Pedro N Moreira
- Mouse Biology Unit, EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015, Monterotondo, Italy,
| | | |
Collapse
|
12
|
Kant V, Parmar MS, Pant C, Karuppanas K, Mili B, Upadhyay D. Intracytoplasmic Sperm Injection (ICSI) and its Applications in Veterinary Sciences: An Overview. ACTA ACUST UNITED AC 2013. [DOI: 10.17311/sciintl.2013.266.270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Eghbalsaied S, Ghaedi K, Laible G, Hosseini SM, Forouzanfar M, Hajian M, Oback F, Nasr-Esfahani MH, Oback B. Exposure to DNA is insufficient for in vitro transgenesis of live bovine sperm and embryos. Reproduction 2013; 145:97-108. [DOI: 10.1530/rep-12-0340] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transgenic mammals have been produced using sperm as vectors for exogenous DNA (sperm-mediated gene transfer (SMGT)) in combination with artificial insemination. Our study evaluated whether SMGT could also be achieved in combination with IVF to efficiently produce transgenic bovine embryos. We assessed binding and uptake of fluorescently labelled plasmids into sperm in the presence of different concentrations of dimethyl sulphoxide or lipofectamine. Live motile sperm displayed a characteristic punctuate fluorescence pattern across their entire surface, while uniform postacrosomal fluorescence was only apparent in dead sperm. Association with sperm or lipofection reagent protected exogenous DNA from DNase I digestion. Following IVF, presence and expression of episomal and non-episomal green fluorescent protein (GFP)-reporter plasmids was monitored in oocytes and embryos. We found no evidence of intracellular plasmid uptake and none of the resulting zygotes (n=96) and blastocysts were GFP positive by fluorescence microscopy or genomic PCR (n=751). When individual zona-free oocytes were matured, fertilised and continuously cultured in the presence of episomal reporter plasmids until the blastocyst stage, most embryos (38/68=56%) were associated with the exogenous DNA. Using anti-GFP immunocytochemistry (n=48) or GFP fluorescence (n=94), no GFP expression was detected in blastocysts. By contrast, ICSI resulted in 18% of embryos expressing the GFP reporter. In summary, exposure to DNA was an inefficient technique to produce transgenic bovine sperm or blastocysts in vitro.
Collapse
|
14
|
Liu F, Zhu Y, Liu Y, Wang X, Ping P, Zhu X, Hu H, Li Z, He L. Real-time Raman microspectroscopy scanning of the single live sperm bound to human zona pellucida. Fertil Steril 2012; 99:684-689.e4. [PMID: 23148927 DOI: 10.1016/j.fertnstert.2012.10.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/18/2012] [Accepted: 10/21/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine if Raman microspectroscopy (RMS) can distinguish sperm bound to the human zona pellucida (ZP) from those unbound sperm. DESIGN Paired experiments to compare Raman scanning features of ZP-bound and unbound sperm. SETTING Public hospital-based clinical assisted reproduction center. PATIENT(S) Sperm samples from ten fertile donors were used in this study. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Sperm-ZP binding, ZP-induced acrosome reaction, and scanning intensity of various regions of sperm. RESULT(S) The RMS found two slightly low-intensity regions (800-900 and 3,200-4,000 cm(-1)) shifted to high-intensity grade at the acrosome region of the ZP-bound sperm compared with unbound sperm. Moreover, principal component analysis and statistical analysis showed that the RMS can distinguish the ZP-bound sperm from the unbound sperm. CONCLUSION(S) RMS scanning of single live sperm could be used to distinguish ZP-bound sperm from unbound sperm. Thus, RMS may be a useful tool to detect normal functional sperm and to select sperm for intracytoplasmic sperm injection.
Collapse
Affiliation(s)
- Feng Liu
- Department of Urology, Renji Hospital, Shanghai Human Sperm Bank, Sperm Development and Genetics Laboratory, Shanghai Institute of Andrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
López-Saucedo J, Paramio-Nieto MT, Fierro R, Piña-Aguilar RE. Intracytoplasmic sperm injection (ICSI) in small ruminants. Anim Reprod Sci 2012; 133:129-38. [PMID: 22871330 DOI: 10.1016/j.anireprosci.2012.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 06/29/2012] [Accepted: 07/12/2012] [Indexed: 12/23/2022]
Abstract
Small ruminants are an important component of the global production systems of meat and wool, and their reproductive biology is well known. However, the incorporation of assisted reproduction techniques (ART) in the production systems of small ruminants is not as well developed as for other domestic species. Normally, production systems that incorporate ARTs are restricted to artificial insemination or in vivo embryo transfer. Intracytoplasmic sperm injection (ICSI) is one of the ARTs techniques reported for small ruminants and consists of the injection of spermatozoa inside an oocyte, bypassing the natural process of sperm-oocyte interaction. In goats and sheep, there are few live births by ICSI reported, with no reports from other species of small ruminants. Currently, there has not been intensive research about ICSI in small ruminants. However, ICSI has potentially important applications in animal production systems, primarily its use with semen of valued animals, with epididymal sperm, in the fertilization of prepubertal or cryopreserved oocytes. Other applications include more advanced techniques, such as transgenic-ICSI or its combination with spermatogonial transplantation. In this article, we review the "state of the art" of this technique in small ruminants including its historical development, research needs for its improvement and future applications.
Collapse
Affiliation(s)
- J López-Saucedo
- Doctoral Program in Biological Sciences and Health, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico
| | | | | | | |
Collapse
|
16
|
Hosseini S, Asgari V, Ostadhosseini S, Hajian M, Piryaei A, Najarasl M, Nasr-Esfahani M. Potential applications of sheep oocytes as affected by vitrification and in vitro aging. Theriogenology 2012; 77:1741-53. [DOI: 10.1016/j.theriogenology.2011.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/28/2011] [Accepted: 12/04/2011] [Indexed: 11/30/2022]
|
17
|
Boulanger L, Passet B, Pailhoux E, Vilotte JL. Transgenesis applied to goat: current applications and ongoing research. Transgenic Res 2012; 21:1183-90. [DOI: 10.1007/s11248-012-9618-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
|
18
|
Zhao Y, Yu M, Wang L, Li Y, Fan J, Yang Q, Jin Y. Spontaneous uptake of exogenous DNA by goat spermatozoa and selection of donor bucks for sperm-mediated gene transfer. Mol Biol Rep 2011; 39:2659-64. [PMID: 21667250 DOI: 10.1007/s11033-011-1019-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 06/02/2011] [Indexed: 01/19/2023]
Abstract
Sperm-mediated gene transfer (SMGT) has been long heralded as a faster and cheaper alternative to more commonly used methods of producing transgenic animals. In this study, the capra semen ejaculates were pooled together and then incubated in vitro with DIG-labeled DNA. The binding and internalizing rates were observed by the in situ hybridization methods. We also compared the standard sperm parameters and the efficiencies of interaction with exogenous DNA of 60 individuals to select donor bucks for SMGT. It was showed that labeled exogenous DNA was detected in different localizations in spermatozoa but genuine DNA uptake, in contrast to mere binding, seems to be limited to the postacrosomal region. The removal of seminal plasma increased significantly (P < 0.01) the capability in picking up exogenous DNA. Use of frozen-thawed semen (without cryoprotectant agents) and Triton X-100 treatment also increased significantly (P < 0.01) the DNA-binding capacity, but reduced the sperm viability. The binding rates (the proportion of labeled-DNA positive spermatozoa to all the spermatozoa counted) of 60 buck individuals were in the range of 3.08-73.39%, and the internalizing rates (the proportion of DNaseI-treated labeled-DNA positive spermatozoa to all the spermatozoa counted) were 4.83-70.00%. About 8.34% (5/60) bucks showed high binding, but low internalizing ability. Chi-square test showed that there was significant difference among the breeds (x(2) = 26.515, P < 0.01). Eight individual bucks that demonstrated high DNA uptake were selected for SMGT. It was demonstrated that the goat spermatozoa was capable of spontaneous uptake of exogenous DNA. Seminal fluid inhibits DNA uptake and that membrane disruption increases DNA binding but greatly diminishes uptake.
Collapse
Affiliation(s)
- Yongju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Southwest University, Beibei, Chongqing 400716, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|