1
|
Ahuja K, Batra V, Kumar R, Datta TK. Transient suppression of Wnt signaling in poor-quality buffalo oocytes improves their developmental competence. Front Vet Sci 2024; 10:1324647. [PMID: 38274663 PMCID: PMC10808588 DOI: 10.3389/fvets.2023.1324647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction One of the most evolutionary conserved communication systems, the Wnt signaling pathway is a major gene regulatory pathway that affects the developmental competence of oocytes and regulates most embryonic developmental processes. The present study was undertaken to modulate the canonical Wnt (Wingless/integration) signaling pathway in the poor-quality (colorless cytoplasm after Brilliant Cresyl Blue staining, BCB-) buffalo cumulus-oocyte complexes (COCs) to improve their in vitro maturation (IVM) and embryo production (IVEP) rates. Methods The expression of key Wnt pathway genes was initially assessed in the good (blue cytoplasm after Brilliant Cresyl Blue staining, BCB+) and poor quality (BCB-) buffalo COCs to establish a differential activity of the Wnt pathway. The BCB- COCs were supplemented with the Wnt pathway inhibitor, Dickkopf-related protein 1 (DKK1) and later subjected to IVM and IVEP along with the BCB+ and BCB- controls. The cumulus expansion index (CEI), rate of nuclear maturation (mean percentage of oocytes in the MII stage) and embryo production, and the expression of developmentally important genes were evaluated to assess the effect of Wnt pathway inhibition on the development competence of these poor-quality oocytes. Results The Wnt pathway genes exhibited a significantly higher expression (p < 0.05) in the poor-quality BCB- oocytes compared to the good-quality BCB+ oocytes during the early maturation stages. The supplementation of BCB- COCs with 100 ng/mL DKK1 effectively inhibited the expression of the key mediators of the Wnt pathway (β-catenin and dishevelled homolog 1, DVL1). DKK1 supplemented BCB- COCs exhibited significantly improved cytoplasmic and nuclear maturation indices, development rates and significantly elevated expression (p < 0.05) of genes implicated in germinal vesicle breakdown (GVBD) and embryonic genome activation (EGA) vis-à-vis BCB- control COCs. Conclusion These data indicate that inhibition of the Wnt pathway during the initial course of oocyte maturation can improve the development competence of poor-quality buffalo oocytes.
Collapse
Affiliation(s)
- Kriti Ahuja
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Vipul Batra
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Rakesh Kumar
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
2
|
Fu P, Zhang D, Yang C, Yuan X, Luo X, Zheng H, Deng Y, Liu Q, Cui K, Gao F, Shi D. Whole-genome transcriptome and DNA methylation dynamics of pre-implantation embryos reveal progression of embryonic genome activation in buffaloes. J Anim Sci Biotechnol 2023; 14:94. [PMID: 37430306 DOI: 10.1186/s40104-023-00894-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/11/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND During mammalian pre-implantation embryonic development (PED), the process of maternal-to-zygote transition (MZT) is well orchestrated by epigenetic modification and gene sequential expression, and it is related to the embryonic genome activation (EGA). During MZT, the embryos are sensitive to the environment and easy to arrest at this stage in vitro. However, the timing and regulation mechanism of EGA in buffaloes remain obscure. RESULTS Buffalo pre-implantation embryos were subjected to trace cell based RNA-seq and whole-genome bisulfite sequencing (WGBS) to draw landscapes of transcription and DNA-methylation. Four typical developmental steps were classified during buffalo PED. Buffalo major EGA was identified at the 16-cell stage by the comprehensive analysis of gene expression and DNA methylation dynamics. By weighted gene co-expression network analysis, stage-specific modules were identified during buffalo maternal-to-zygotic transition, and key signaling pathways and biological process events were further revealed. Programmed and continuous activation of these pathways was necessary for success of buffalo EGA. In addition, the hub gene, CDK1, was identified to play a critical role in buffalo EGA. CONCLUSIONS Our study provides a landscape of transcription and DNA methylation in buffalo PED and reveals deeply the molecular mechanism of the buffalo EGA and genetic programming during buffalo MZT. It will lay a foundation for improving the in vitro development of buffalo embryos.
Collapse
Affiliation(s)
- Penghui Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530004, China
- College of Animal Science and Technology, Southwest University, Chongqing, 402460, China
| | - Du Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Chunyan Yang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, 530001, China
| | - Xiang Yuan
- Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China
| | - Xier Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Haiying Zheng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, 530001, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530004, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530004, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530004, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK 1870 C, Frederiksberg, Denmark.
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Kalra S, Dhamannapatil P, Panda S, Singh S, Sarwalia P, Mohanty AK, Datta TK, Kaushik JK. Recombinant expression and molecular characterization of buffalo sperm lysozyme-like protein 1. Protein Expr Purif 2021; 190:105993. [PMID: 34656738 DOI: 10.1016/j.pep.2021.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Several sperm lysozyme-like genes evolved from lysozyme by successive duplications and mutations; however their functional role in the reproduction of farm animals is not well understood. To understand the function and molecular properties of buffalo sperm lysozyme-like protein 1 (buSLLP1), it was expressed in E. coli; however, it partitioned to inclusion bodies. Lowering of temperature and inducer concentration did not help in the recovery of the expressed protein in the biologically active form. Therefore, buSLLP1 was cloned and expressed in Pichiapink system based on auxotrophic Pichia pastoris in a labscale fermenter. The expressed protein was obtained in flow-through by using a 30 kDa ultrafiltration membrane followed by MonoQ anion exchange chromatography, resulting in a homogenous preparation of 40 mg recombinant buSLLP1 per liter of initial spent culture-supernatant. Circular dichroism spectroscopy showed that recombinant buSLLP1 possessed a native-like secondary structure. The recombinant buSLLP1 also showed thermal denaturation profile typical of folded globular proteins; however, the thermal stability was lower than the hen egg white lysozyme. Binding of buSLLP1 to chitin and zona pellucida of buffalo oocytes showed that the recombinant buSLLP1 possessed a competent binding pocket, therefore, the produced protein could be used to study its functional role in the reproduction of farm animals.
Collapse
Affiliation(s)
- Shalini Kalra
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Prakash Dhamannapatil
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Santanu Panda
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Surender Singh
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Ashok Kumar Mohanty
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Jai Kumar Kaushik
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
4
|
Kumar S, Singh MK, Chauhan MS. Expression of the developmental important candidate genes in oocytes, embryos, embryonic stem cells, cumulus cells, and fibroblast cells of buffalo (Bubalus bubalis). Gene Expr Patterns 2021; 41:119200. [PMID: 34329769 DOI: 10.1016/j.gep.2021.119200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The present study was undertaken to study the expression of the developmental important gene transcripts in immature oocytes, mature oocytes, different stages of IVF produced embryos, embryonic stem (ES), cumulus (BCC), fetal fibroblast (BFF), newborn fibroblast (NBF) and adult fibroblast (BAF) cells of buffalo by semi-quantitative RT-PCR. The expression of GLUT1, HSP70.1, POL A Polymerase, GDF9, BMP15, and SURVIVIN transcripts was found in immature oocytes, mature oocytes, 2-cell, 4-cell, 8-16 cell, morula, and the blastocyst. Interestingly, the CX43 expression was found in oocytes, embryos, and other cell types, but it was not detected in the blastocyst. However, the IFNT expression was found in the blastocyst only, but not in other cells. The buffalo ES cells showed the expression of intracellular and cell surface markers (NANOG, OCT4, SOX2, FOXD3, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81) and alkaline phosphatase activity. Two ES cell lines (S-line and M-line-II) were continued to survive up to 98th passages (~630 days) and 97th passages (~624 days), respectively. It was interesting to note that GLUT1, CX43, HSP70.1, POL A Polymerase, GDF9, BMP15, and SURVIVIN transcripts (except the IFNT) were expressed in buffalo ES, BCC, BFF, NBF and BAF cells. This is the first preliminary report that the buffalo ES, BCC, BFF, NBF, and BAF cells expressed the several developmental important candidate genes. It is concluded that the expression of the major developmental important genes was not only expressed in the oocytes and embryos but also expressed in the ES, BCC, BFF, NBF, and BAF cells of buffalo.
Collapse
Affiliation(s)
- S Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - M K Singh
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - M S Chauhan
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
5
|
Kinterova V, Kanka J, Petruskova V, Toralova T. Inhibition of Skp1-Cullin-F-box complexes during bovine oocyte maturation and preimplantation development leads to delayed development of embryos†. Biol Reprod 2020; 100:896-906. [PMID: 30535233 DOI: 10.1093/biolre/ioy254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/17/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022] Open
Abstract
The mechanism of maternal protein degradation during preimplantation development has not been clarified yet. It is thought that a lot of maternal proteins are degraded by the ubiquitin-proteasome system. In this study, we focused on the role of the SCF (Skp1-Cullin-F-box) complexes during early bovine embryogenesis. We inhibited them using MLN4924, an inhibitor of SCF complex ligases controlled by neddylation. Oocytes maturated in MLN4924 could be fertilized, but we found no cumulus cell expansion and a high number of polyspermy after in vitro fertilization. We also found a statistically significant deterioration of development after MLN4924 treatment. After treatment with MLN4924 from the four-cell to late eight-cell stage, we found a statistically significant delay in their development; some of the treated embryos were, however, able to reach the blastocyst stage later. We found reduced levels of mRNA of EGA markers PAPOLA and U2AF1A, which can be related to this developmental delay. The cultivation with MLN4924 caused a significant increase in protein levels in MLN4924-treated oocytes and embryos; no such change was found in cumulus cells. To detect the proteins affected by MLN4924 treatment, we performed a Western blot analysis of selected proteins (SMAD4, ribosomal protein S6, centromeric protein E, P27, NFKB inhibitor alpha, RNA-binding motif protein 19). No statistically significant increase in protein levels was detected in either treated embryos or oocytes. In summary, our study shows that SCF ligases are necessary for the correct maturation of oocytes, cumulus cell expansion, fertilization, and early preimplantation development of cattle.
Collapse
Affiliation(s)
- Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic.,Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| | - Veronika Petruskova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| |
Collapse
|
6
|
Qu P, Luo S, Du Y, Zhang Y, Song X, Yuan X, Lin Z, Li Y, Liu E. Extracellular vesicles and melatonin benefit embryonic develop by regulating reactive oxygen species and 5-methylcytosine. J Pineal Res 2020; 68:e12635. [PMID: 32012354 PMCID: PMC7154726 DOI: 10.1111/jpi.12635] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Embryo culture conditions are crucial as they can affect embryo quality and even offspring. Oviductal extracellular vesicles (EVs) long been considered a major factor influencing interactions between the oviduct and embryos, and thus its absence is associated with inferior embryonic development in in vitro culture. Herein, we demonstrated that melatonin is present in oviduct fluids and oviduct fluid-derived EVs. Addition of either EVs (1.87 × 1011 particles/mL) or melatonin (340 ng/mL) led to a significant downregulation of reactive oxygen species (ROS) and 5-methylcytosine (5-mC), as well as an increase in the blastocyst rate of embryos, which was inhibited by the addition of luzindole-a melatonin receptor agonist. A combination of EVs (1.87 × 1010 particles/mL) and melatonin (at 34.3 pg/mL) led to the same results as well as a significant decrease in the apoptosis index and increase in the inner cell mass (ICM)/trophectoderm (TE) index. These results suggest that an EV-melatonin treatment benefits embryonic development. Our findings provide insights into the role of EVs and melatonin during cell communication and provide new evidence of the communication between embryos and maternal oviduct.
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Shiwei Luo
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Yue Du
- NDCLSRadcliff Department of MedicineUniversity of OxfordOxfordUK
| | - Yanru Zhang
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Xiaojie Song
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Xuetao Yuan
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Zujie Lin
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Yuchen Li
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Enqi Liu
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| |
Collapse
|
7
|
Agrawal H, Selokar NL, Saini M, Singh MK, Chauhan MS, Palta P, Singla SK, Manik RS. Epigenetic Alteration of Donor Cells with Histone Deacetylase Inhibitor m-Carboxycinnamic Acid Bishydroxymide Improves the In Vitro Developmental Competence of Buffalo (Bubalus bubalis) Cloned Embryos. Cell Reprogram 2019; 20:76-88. [PMID: 29412736 DOI: 10.1089/cell.2017.0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epigenetic reprogramming is an indispensable process during the course of mammalian development, but aberrant in cloned embryos. The aim of this study was to examine the effect of donor cell treatment with histone deacetylase (HDAC) inhibitor m-carboxycinnamic acid bishydroxymide (CBHA) on cloned embryo development and establish its optimal concentration. Different concentrations of CBHA (2.5, 5.0, 10.0, and 20.0 μM) were used to treat buffalo adult fibroblast cells for 24 hours and effect on cell proliferation, gene expression, and histone modifications was analyzed. Based on these experiments, the best concentration was chosen to determine the effect of enhanced gene activation mark on developmental rates. Among the different concentrations, CBHA at higher concentration (20 μM) shows the sign of apoptosis and stress as indicated by proliferation rate and gene expression data. CBHA treatment significantly decreased the activity of HDACs and increased the level of gene activation mark H3K9ac and H3K4me3, but could not alter the level of H3K27ac. Based on these experiments, 5 μM CBHA was chosen for treatment of donor cells used for the production of cloned embryos. There was no significant difference in cleavage rate between the control and CBHA treatment group (98.5% ± 1.5% vs. 99.0% ± 1.0%), whereas, blastocyst rate markedly improved (46.65% ± 1.94% vs. 57.18% ± 2.68%). The level of H3K9ac and H3K27me3 did not differ significantly in cloned blastocyst produced from either control or CBHA-treated cells. Altogether, these results suggested that donor cell treatment with CBHA supports the reprogramming process and improves the cloned preimplantation development.
Collapse
Affiliation(s)
- Himanshu Agrawal
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,2 School of Bioengineering and Biosciences, Lovely Professional University , Phagwara, India
| | - Naresh Lalaji Selokar
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,3 Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes , Hisar, India
| | - Monika Saini
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,3 Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes , Hisar, India
| | - Manoj Kumar Singh
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Manmohan Singh Chauhan
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,4 ICAR-Central Institute for Research on Goats , Mathura, India
| | - Prabhat Palta
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Suresh Kumar Singla
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Radhey Sham Manik
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| |
Collapse
|
8
|
Liu X, Luo C, Deng K, Wu Z, Wei Y, Jiang J, Lu F, Shi D. Cytoplasmic volume of recipient oocytes affects the nucleus reprogramming and the developmental competence of HMC buffalo (Bubalus bubalis) embryos. J Vet Med Sci 2018; 80:1291-1300. [PMID: 29925699 PMCID: PMC6115262 DOI: 10.1292/jvms.18-0043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was undertaken to examine the effects of cytoplasmic volume on nucleus
reprogramming and developmental competence of buffalo handmade cloning (HMC) embryos. We
found that both HMC embryos derived from ~150% cytoplasm or ~225% cytoplasm resulted in a
higher blastocyst rate and total cell number of blastocyst in comparison with those from
~75% cytoplasm (25.4 ± 2.0, 27.9 ± 1.6% vs. 17.9 ± 3.1%; 150 ± 10, 169 ± 12 vs. 85 ± 6,
P<0.05). Meanwhile, the proportions of nuclear envelope breakdown
(NEBD) and premature chromosome condensation (PCC) were also increased in the embryos
derived from ~150 or ~225% enucleated cytoplasm compared to those from ~75% cytoplasm.
Moreover, HMC embryos derived from ~225% cytoplasm showed a decrease of global DNA
methylation from the 2-cell to the 4-cell stage in comparison with those of ~75% cytoplasm
(P<0.05). Furthermore, the expression of embryonic genome activation
(EGA) relative genes (eIF1A and U2AF) in HMC embryos
derived from ~225% cytoplasm at the 8-cell stages was also found to be enhanced compared
with that of the ~75% cytoplasm. Two of seven recipients were confirmed to be pregnant
following transfer of blastocysts derived from ~225% cytoplasm, and one healthy cloned
calf was delivered at the end of the gestation period, whereas no recipients were pregnant
after the transfer of blastocysts derived from ~75% cytoplasm. These results indicate that
the cytoplasmic volume of recipient oocytes affects donor nucleus reprogramming, and then
further accounted for the developmental ability of the reconstructed embryos.
Collapse
Affiliation(s)
- Xiaohua Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Chan Luo
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Kai Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Zhulian Wu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Yingming Wei
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Jianrong Jiang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| |
Collapse
|
9
|
Kumar S, Kumar M, Dholpuria S, Sarwalia P, Batra V, De S, Kumar R, Datta TK. Transient Arrest of Germinal Vesicle Breakdown Improved In Vitro Development Potential of Buffalo (Bubalus Bubalis) Oocytes. J Cell Biochem 2017; 119:278-289. [PMID: 28543358 DOI: 10.1002/jcb.26171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/24/2017] [Indexed: 11/09/2022]
Abstract
Germinal vesicle breakdown (GVBD) is the first milestone that an oocyte needs to achieve toward completing the maturation and gaining potential to fertilize. Significantly lower in vitro embryo production rate in buffaloes can be attributed to heterogeneity of GVBD occurrence among oocytes obtained from abattoir derived ovaries. Evidence from our earlier work had suggested that different qualities of buffalo oocytes differ significantly in their timing of GVBD. Besides, these oocytes also differ in terms of volume of Akt phosphorylation, which initiates the process of GVBD. With objective of synchronizing the oocytes for GVBD, immature buffalo oocytes were subjected to a two-step culture protocol, initially in the presence of GVBD inhibitors and subsequently, in vitro maturation (IVM) with added SC79 (activates Akt). Expression of developmentally important genes was assessed along with embryo development rate and blastocyst health to interpret the consequences. Oocytes subjected to a short GVBD inhibition period of 6 h followed by IVM with SC79 resulted in improved cleavage and blastocyst rates. Resultant blastocysts also possessed higher ICM: TE ratio. Further, GVBD inhibited oocytes displayed a sustained cytoplasmic maturation status in terms of reorganization of cortical granules (CGs), mitochondrial membrane potential, and glutathione levels during the period of inhibition. We conclude that a temporary GVBD arrest of buffalo oocytes and modulation of Akt improves the in vitro embryo development rate as well as quality of resultant embryos. Besides, our meiotic arrest protocol does not affect the cytoplasmic maturation. J. Cell. Biochem. 119: 278-289, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandeep Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Manish Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sunny Dholpuria
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vipul Batra
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sachinandan De
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rakesh Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
10
|
Verma A, Rajput S, Kumar S, De S, Chakravarty AK, Kumar R, Datta TK. Differential histone modification status of spermatozoa in relation to fertility of buffalo bulls. J Cell Biochem 2015; 116:743-53. [PMID: 25501625 DOI: 10.1002/jcb.25029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/04/2014] [Indexed: 01/21/2023]
Abstract
In this study genome-wide di-methylated H3K4 (H3K4me2) and tri-methylated H3K27 (H3K27me3) modification profiles were analyzed in spermatozoa of buffalo bulls having wide fertility differences. The custom designed 4 × 180 K buffalo (Bubalus bubalis) ChIP-on-chip array was fabricated by employing array-based sequential hybridization using bovine and buffalo genomic DNA for comparative hybridization. The buffalo specific array developed had 177,440 features assembled from Coding sequences, Promoter and CpG regions comprising 2967 unique genes. A total of 84 genes for H3K4me2 and 80 genes for H3K27me3 were found differentially enriched in mature sperm of high and sub-fertile buffalo bulls. Gene Ontology analysis of these genes revealed their association with different cellular functions and biological processes. Genes identified as differentially enriched between high and sub-fertile bulls were found to be involved in the processes of germ cell development, spermatogenesis and embryonic development. This study presents the first genome-wide H3K4me2 and H3K27me3 profiling of buffalo bull sperm. Results provide a list of specific genes which could be made responsible for differential bull fertility.
Collapse
Affiliation(s)
- Arpana Verma
- Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | | | | | | | | | | | | |
Collapse
|
11
|
Saugandhika S, Sharma V, Malik H, Saini S, Bag S, Kumar S, Singh NK, Mohanty AK, Malakar D. Expression and purification of buffalo interferon-tau and efficacy of recombinant buffalo interferon-tau for in vitro embryo development. Cytokine 2015; 75:186-96. [PMID: 25890875 DOI: 10.1016/j.cyto.2015.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 11/29/2022]
Abstract
The aim of our study was to optimize growth and induction parameters, for expression and large scale purification of functionally active buffalo interferon tau, and to study its possible impact on in vitro blastocyst development. The buffalo interferon-tau gene (BuIFN-T1) bearing gene bank accession No. JX481984, with signal sequence, was obtained through polymerase chain reaction (PCR) from bovine early embryos and was cloned into pJET vector. After being verified, the fragments without signal sequence, were inserted into the expression vector pET-22b and the recombinant plasmid was induced to express the recombinant protein in a prokaryotic expression system. The recombinant BuIFN-T was confirmed by SDS-PAGE and Western blot and subjected to three steps of large scale purification using His Affinity chromatography, Anion Exchange chromatography and Gel Filtration chromatography. The purified recombinant BuIFN-T protein was validated by mass spectroscopy analysis. To examine the effect of recombinant BuIFN-T protein on developmental competency of buffalo embryos, purified recombinant BuIFN-T protein was added to in vitro embryo culture medium (at concentration of 0, 1μg/ml, 2μg/ml, 4μg/ml) for 9days. Addition of recombinant BuIFN-T (2μg/ml) significantly improved the rate of blastocyst production, 45.55% against 31.1% control (p<0.01). Here we conclude that the recombinant BuIFN-T was successfully purified to homogeneity from a prokaryotic expression system and it significantly increased the blastocyst production rate in buffalo. These findings suggest a potential impact of IFN-T in promoting embryonic growth and development.
Collapse
Affiliation(s)
- Shrabani Saugandhika
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Vishal Sharma
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Hrudananda Malik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sikander Saini
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sudam Bag
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sudarshan Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | | | - Ashok Kumar Mohanty
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Dhruba Malakar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India.
| |
Collapse
|
12
|
Expression pattern of glucose metabolism genes correlate with development rate of buffalo oocytes and embryos in vitro under low oxygen condition. J Assist Reprod Genet 2015; 32:471-8. [PMID: 25578537 DOI: 10.1007/s10815-014-0418-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 12/23/2014] [Indexed: 02/02/2023] Open
Abstract
PURPOSE This study evaluates the effect of low oxygen conditions (5 Vs 20%) on buffalo embryo development. Expression patterns of key glucose metabolism genes (HK, PFK, LDH, PDH, G6PDH and Glut1) were assessed in buffalo oocytes and embryos cultured at 5 and 20% oxygen and correlated with development rate. METHODS Maturation rate was observed by determining MII stages by Aceto-orcein method and blastocyst formation was observed at 7 day post insemination (dpi). Expression levels of genes were determined by real time PCR in oocytes / embryos at 5 and 20% O2. RESULTS Oocyte maturation and blastocyst formation rates were significantly higher at 5% O2 as compared to 20% O2 (P < 0.05). The expression pattern of glycolytic genes (HK, PFK and G6PDH) indicated that oocytes and embryos under 5% O2 tend to follow anaerobic glycolysis and pentose phosphate pathways to support optimum embryo development. Under 20% O2, oocytes and embryos had high expression of PDH indicating higher oxidative phosphorylation. Further, less G6PDH expression at 20% O2 was indicative of lower pentose phosphate activity. Higher expression of LDH was observed in oocytes and embryos under 20% O2 indicating sub-optimal culture conditions. High Glut1 activity was observed in the oocytes / embryos at 5% O2, indicative of high glucose uptake correlating with high expression of glycolytic genes. CONCLUSION The expression patterns of glucose metabolism genes could be a valuable indicator of the development potential of oocytes and embryos. The study indicates the importance of reduced oxygen conditions for production of good quality embryos.
Collapse
|
13
|
Verma A, Rajput S, De S, Kumar R, Chakravarty AK, Datta TK. Genome-wide profiling of sperm DNA methylation in relation to buffalo (Bubalus bubalis) bull fertility. Theriogenology 2014; 82:750-9.e1. [DOI: 10.1016/j.theriogenology.2014.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/31/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
|
14
|
Thongkittidilok C, Tharasanit T, Sananmuang T, Buarpung S, Techakumphu M. Insulin-like growth factor-1 (IGF-1) enhances developmental competence of cat embryos cultured singly by modulating the expression of its receptor (IGF-1R) and reducing developmental block. Growth Horm IGF Res 2014; 24:76-82. [PMID: 24726100 DOI: 10.1016/j.ghir.2014.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 02/18/2014] [Accepted: 03/13/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The aim of this study is to determine the effects of insulin-like growth factor-1 (IGF-1) and the mRNA expression of IGF-1 receptor (IGF-1R) during the in vitro development of cat embryos cultured in groups versus singly. METHODS Cumulus-oocyte complexes (COCs) were matured and fertilized in vitro with frozen-thawed semen. Cleaved embryos (48h post-fertilization) were randomly assigned to one of the following treatments: 1) group embryo culture without IGF-1 (10 embryos per 50μl droplet), 2) single-embryo culture without IGF-1, and 3) to 6) single-embryo culture (50μl droplet per embryo) supplemented with different concentrations of IGF-1 (5, 25, 50 and 100ng/ml, respectively). During in vitro culture, the embryos were analyzed for development to the morula, blastocyst and hatching blastocyst stage. Relative mRNA expression of IGF-1R was also examined by qPCR at the morula and blastocyst stages. In addition, the mRNA expression of IGF-1R in morula-stage embryos treated with IGF-1 was determined. The influence of IGF-1 to preimplantation embryo development was then explored by co-incubation with 0.5μM IGF-1R inhibitor (Picropodophyllin; PPP). RESULTS Group embryo culture led to a significantly higher blastocyst development rate compared with single-embryo culture (P<0.05). The poor development of singly cultured embryos coincided with the significantly lower IGF-1R expression in morulae than in group-cultured morulae. IGF-1 (25 or 50ng/ml) supplementation significantly improved the blastocyst formation rate of single embryos to a level similar to group culture by promoting the morula-to-blastocyst transition. IGF-1 supplementation (25 or 50ng/ml) of singly cultured embryos upregulated the expression of IGF-1R mRNA in morula-stage embryos to the same level as that observed in group-cultured embryos (without IGF-1). The beneficial effects of IGF-1 on singly cultured embryo were (P<0.05) suppressed by PPP even in the group culture embryo without growth factor supplementation. CONCLUSION IGF-1 supplementation improves the developmental competence of feline embryos cultured individually and also increases IGF-1R gene expression to levels similar to group-cultured embryos.
Collapse
Affiliation(s)
- Chommanart Thongkittidilok
- Department of Obstetrics, Gynaecology and Reproduction, Chulalongkorn University, Faculty of Veterinary Science, Bangkok 10330, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Chulalongkorn University, Faculty of Veterinary Science, Bangkok 10330, Thailand
| | - Thanida Sananmuang
- Department of Obstetrics, Gynaecology and Reproduction, Chulalongkorn University, Faculty of Veterinary Science, Bangkok 10330, Thailand
| | - Sirirak Buarpung
- Department of Obstetrics, Gynaecology and Reproduction, Chulalongkorn University, Faculty of Veterinary Science, Bangkok 10330, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Chulalongkorn University, Faculty of Veterinary Science, Bangkok 10330, Thailand.
| |
Collapse
|
15
|
Kumar P, Rajput S, Verma A, De S, Datta TK. Expression pattern of glucose metabolism genes in relation to development rate of buffalo (Bubalus bubalis) oocytes and in vitro–produced embryos. Theriogenology 2013; 80:914-22. [DOI: 10.1016/j.theriogenology.2013.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 07/21/2013] [Accepted: 07/21/2013] [Indexed: 10/26/2022]
|
16
|
Luo J, Liang MM, Yang XG, Xu HY, Shi DS, Lu SS. Establishment and biological characteristics comparison of Chinese swamp buffalo (Bubalus bubalis) fibroblast cell lines. In Vitro Cell Dev Biol Anim 2013; 50:7-15. [PMID: 23990385 DOI: 10.1007/s11626-013-9677-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 07/25/2013] [Indexed: 11/24/2022]
Abstract
To establish fibroblast cell lines from different tissues and to compare the biological characteristics of those cell lines, five fibroblast cell lines derived from Chinese swamp buffalo (Bubalus bubalis) were selected for comparative assays. Cell style and survival rate (before cryogenic preservation and after recovery) were tested, and karyotype, patterns of isoenzymes of lactic dehydrogenase, malic dehydrogenase, and cell cycle were analyzed. These cell lines had a healthy morphology with a typical spindle shape, and assessment of cell style showed these cells to be very pure fibroblasts. Cell growth curves showed a typical "S" shape. Results of microorganism contamination assays were negative, and isoenzyme analysis showed no cross-contamination. The number of chromosomes (2n) of swamp buffalo is 48. Between 28% and 46% of the cells were 2n, and cell apoptosis was not pronounced at 20th generation. Results showed that skin fibroblasts were more adaptable to tissue culture conditions than the ones from kidneys and ear margin, and they are more suitable for cellular manipulation in Chinese swamp buffalo.
Collapse
Affiliation(s)
- Jun Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | | | | | | | | | | |
Collapse
|