1
|
Skjold V, Afanasyev S, Burgerhout E, Sveen L, Rørvik KA, Mota VFCN, Dessen JE, Krasnov A. Endocrine and Transcriptome Changes Associated with Testicular Growth and Differentiation in Atlantic Salmon ( Salmo salar L.). Curr Issues Mol Biol 2024; 46:5337-5351. [PMID: 38920991 PMCID: PMC11202266 DOI: 10.3390/cimb46060319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Sexual maturation of Atlantic salmon males is marked by dramatic endocrine changes and rapid growth of the testes, resulting in an increase in the gonad somatic index (GSI). We examined the association of gonadal growth with serum sex steroids, as well as pituitary and testicular gene expression levels, which were assessed with a DNA oligonucleotide microarray. The testes transcriptome was stable in males with a GSI < 0.08% despite the large difference between the smallest and the largest gonads. Fish with a GSI ≥ 0.23% had 7-17 times higher serum levels of five male steroids and a 2-fold increase in progesterone, without a change in cortisol and related steroids. The pituitary transcriptome showed an upregulation of the hormone-coding genes that control reproduction and behavior, and structural rearrangement was indicated by the genes involved in synaptic transmission and the differentiation of neurons. The observed changes in the abundance of testicular transcripts were caused by the regulation of transcription and/or disproportional growth, with a greater increase in the germinative compartment. As these factors could not be separated, the transcriptome results are presented as higher or lower specific activities (HSA and LSA). LSA was observed in 4268 genes, including many genes involved in various immune responses and developmental processes. LSA also included genes with roles in female reproduction, germinal cell maintenance and gonad development, responses to endocrine and neural regulation, and the biosynthesis of sex steroids. Two functional groups prevailed among HSA: structure and activity of the cilia (95 genes) and meiosis (34 genes). The puberty of A. salmon testis is marked by the predominance of spermatogenesis, which displaces other processes; masculinization; and the weakening of external regulation. Results confirmed the known roles of many genes involved in reproduction and pointed to uncharacterized genes that deserve attention as possible regulators of sexual maturation.
Collapse
Affiliation(s)
- Vetle Skjold
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223 Saint Petersburg, Russia;
| | - Erik Burgerhout
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Lene Sveen
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Kjell-Arne Rørvik
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | | | - Jens-Erik Dessen
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Aleksei Krasnov
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| |
Collapse
|
2
|
Hayashi M, Ichida K, Sadaie S, Miwa M, Fujihara R, Nagasaka Y, Yoshizaki G. Establishment of novel monoclonal antibodies for identification of type A spermatogonia in teleosts†. Biol Reprod 2020; 101:478-491. [PMID: 31077286 DOI: 10.1093/biolre/ioz080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/14/2019] [Accepted: 05/10/2019] [Indexed: 11/15/2022] Open
Abstract
We recently established a germ cell transplantation system in salmonids. Donor germ cells transplanted into the body cavity of recipient embryos migrate toward and are incorporated into the recipient gonad, where they undergo gametogenesis. Among the various types of testicular germ cells, only type A spermatogonia (A-SG) can be incorporated into the recipient gonads. Enriching for A-SG is therefore important for improving the efficiency of germ cell transplantation. To enrich for A-SG, an antibody against a cell surface marker is a convenient and powerful approach used in mammals; however, little is known about cell surface markers for A-SG in fish. To that end, we have produced novel monoclonal antibodies (mAbs) against cell-surface molecules of rainbow trout (Oncorhynchus mykiss) A-SG. We inoculated mice with living A-SG isolated from pvasa-GFP transgenic rainbow trout using GFP-dependent flow cytometry. By fusing lymph node cells of the inoculated mice with myeloma cells, we generated 576 hybridomas. To identify hybridomas that produce mAbs capable of labeling A-SG preferentially and effectively, we screened them using cell ELISA, fluorescence microscopy, and flow cytometry. We thereby identified two mAbs that can label A-SG. By using flow cytometry with these two antibodies, we could enrich for A-SG with transplantability to recipient gonads from amongst total testicular cells. Furthermore, one of these mAbs could also label zebrafish (Danio rerio) spermatogonia. Thus, we expect these monoclonal antibodies to be powerful tools for germ cell biology and biotechnology.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Kensuke Ichida
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Sakiko Sadaie
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Misako Miwa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ryo Fujihara
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
3
|
Octavera A, Yoshizaki G. Production of donor-derived offspring by allogeneic transplantation of spermatogonia in Chinese rosy bitterling†. Biol Reprod 2018; 100:1108-1117. [DOI: 10.1093/biolre/ioy236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/08/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Anna Octavera
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
4
|
Sato M, Hayashi M, Yoshizaki G. Stem cell activity of type A spermatogonia is seasonally regulated in rainbow trout†. Biol Reprod 2017; 96:1303-1316. [DOI: 10.1093/biolre/iox049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/27/2017] [Indexed: 01/15/2023] Open
|
5
|
De novo sequencing and comparative analysis of testicular transcriptome from different reproductive phases in freshwater spotted snakehead Channa punctatus. PLoS One 2017; 12:e0173178. [PMID: 28253373 PMCID: PMC5333912 DOI: 10.1371/journal.pone.0173178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/16/2017] [Indexed: 12/14/2022] Open
Abstract
The spotted snakehead Channa punctatus is a seasonally breeding teleost widely distributed in the Indian subcontinent and economically important due to high nutritional value. The declining population of C. punctatus prompted us to focus on genetic regulation of its reproduction. The present study carried out de novo testicular transcriptome sequencing during the four reproductive phases and correlated differential expression of transcripts with various testicular events in C. punctatus. The Illumina paired-end sequencing of testicular transcriptome from resting, preparatory, spawning and postspawning phases generated 41.94, 47.51, 61.81 and 44.45 million reads, and 105526, 105169, 122964 and 106544 transcripts, respectively. Transcripts annotated using Rattus norvegicus reference protein sequences and classified under various subcategories of biological process, molecular function and cellular component showed that the majority of the subcategories had highest number of transcripts during spawning phase. In addition, analysis of transcripts exhibiting differential expression during the four phases revealed an appreciable increase in upregulated transcripts of biological processes such as cell proliferation and differentiation, cytoskeleton organization, response to vitamin A, transcription and translation, regulation of angiogenesis and response to hypoxia during spermatogenically active phases. The study also identified significant differential expression of transcripts relevant to spermatogenesis (mgat3, nqo1, hes2, rgs4, cxcl2, alcam, agmat), steroidogenesis (star, tkt, gipc3), cell proliferation (eef1a2, btg3, pif1, myo16, grik3, trim39, plbd1), cytoskeletal organization (espn, wipf3, cd276), sperm development (klhl10, mast1, hspa1a, slc6a1, ros1, foxj1, hipk1), and sperm transport and motility (hint1, muc13). Analysis of functional annotation and differential expression of testicular transcripts depending on reproductive phases of C. punctatus helped in developing a comprehensive understanding on genetic regulation of spermatogenic and steroidogenic events in seasonally breeding teleosts. Our findings provide the basis for future investigation on the precise role of testicular genes in regulation of seasonal reproduction in male teleosts.
Collapse
|
6
|
Katayama N, Kume S, Hattori-Ihara S, Sadaie S, Hayashi M, Yoshizaki G. Germ Cell-Specific Excision of loxP-Flanked Transgenes in Rainbow Trout Oncorhynchus mykiss1. Biol Reprod 2016; 94:79. [DOI: 10.1095/biolreprod.115.136929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/16/2016] [Indexed: 12/22/2022] Open
|
7
|
Wang W, Liu W, Liu Q, Li B, An L, Hao R, Zhao J, Liu S, Song J. Coordinated microRNA and messenger RNA expression profiles for understanding sexual dimorphism of gonads and the potential roles of microRNA in the steroidogenesis pathway in Nile tilapia (Oreochromis niloticus). Theriogenology 2015; 85:970-978. [PMID: 26719037 DOI: 10.1016/j.theriogenology.2015.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 12/20/2022]
Abstract
Sexual dimorphism is a widespread phenomenon in animals. However, the potential role of microRNAs (miRNAs) in regulating this dimorphism is not fully understood. In our study, we used an integrated approach to identify functional targets of miRNA by combining the paired expression profiles of miRNAs and messenger RNAs (mRNAs) in ovaries and testes of young Nile tilapia, Oreochromis niloticus. The results revealed that 67 upregulated and nine downregulated miRNAs and 2299 upregulated and 3260 downregulated genes were identified in the ovary compared with those in the testis (P < 0.01). The target genes of differentially expressed miRNAs were predicted and overlapped with the differentially expressed mRNAs. Furthermore, Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted in these coincident genes. By correlating miRNA-mRNA and predicting computational target, two types of negatively regulatory miRNA-mRNA correlations (upregulated or downregulated miRNA and downregulated or upregulated mRNA) were obtained. Seven functional miRNA-target gene pairs, miR-17-5p/DMRT1, miR-20a/DMRT1, miR-138/CYP17A2, miR-338/CYP17A2, miR-200a/CYP17A2, miR-456/AMH, and miR-138/AMH, were predicted at the sequence level and further detected by real-time polymerase chain reaction on the basis of the significantly negative relationships. Our results suggest that the integrated analysis of miRNA and mRNA expression profiling can provide novel insights into the molecular mechanism of sexual dimorphism.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Aquiculture, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China
| | - Wenzhong Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China.
| | - Qing Liu
- Department of Aquiculture, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China; Key Laboratory of Freshwater Fish Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Baojun Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China
| | - Lixia An
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China
| | - Ruirong Hao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China
| | - Jinliang Zhao
- Key Laboratory of Freshwater Fish Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.
| | - Shaozhen Liu
- Department of Aquiculture, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China
| | - Jing Song
- Department of Aquiculture, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China
| |
Collapse
|
8
|
Gonadal Transcriptome Analysis in Sterile Double Haploid Japanese Flounder. PLoS One 2015; 10:e0143204. [PMID: 26580217 PMCID: PMC4651314 DOI: 10.1371/journal.pone.0143204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/02/2015] [Indexed: 11/25/2022] Open
Abstract
Sterility is a serious problem that can affect all bionts. In teleosts, double haploids (DHs) induced by mitogynogenesis are often sterile. This sterility severely restricts the further application of DHs for production of clones, genetic analysis, and breeding. However, sterile DH individuals are good source materials for investigation of the molecular mechanisms of gonad development, especially for studies into the role of genes that are indispensable for fish reproduction. Here, we used the Illumina sequencing platform to analyze the transcriptome of sterile female DH Japanese flounder in order to identify major genes that cause sterility and to provide a molecular basis for an intensive study of gonadal development in teleosts. Through sequencing, assembly, and annotation, we obtained 52,474 contigs and found that 60.7% of these shared homologies with existing sequences. A total of 1225 differentially expressed unigenes were found, including 492 upregulated and 733 downregulated genes. Gene Ontology and KEGG analyses showed that genes showing significant upregulation, such as CYP11A1, CYP11B2, CYP17, CYP21, HSD3β, bcl2l1, and PRLR, principally correlated with sterol metabolic process, steroid biosynthetic process, and the Jak-stat signaling pathway. The significantly downregulated genes were primarily associated with immune response, antigen processing and presentation, cytokine–cytokine receptor interaction, and protein digestion and absorption. Using a co-expression network analysis, we conducted a comprehensive comparison of gene expression in the gonads of fertile and sterile female DH Japanese flounder. Identification of genes showing significantly different expression will provide further insights into DH reproductive dysfunction and oocyte maturation processes in teleosts.
Collapse
|
9
|
Lacerda SMDSN, Costa GMJ, de França LR. Biology and identity of fish spermatogonial stem cell. Gen Comp Endocrinol 2014; 207:56-65. [PMID: 24967950 DOI: 10.1016/j.ygcen.2014.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 12/29/2022]
Abstract
Although present at relatively low number in the testis, spermatogonial stem cells (SSCs) are crucial for the establishment and maintenance of spermatogenesis in eukaryotes and, until recently, those cells were investigated in fish using morphological criteria. The isolation and characterization of these cells in fish have been so far limited by the lack of specific molecular markers, hampering the high SSCs biotechnological potential for aquaculture. However, some highly conserved vertebrate molecular markers, such as Gfra1 and Pou5f1/Oct4, are now available representing important candidates for studies evaluating the regulation of SSCs in fish and even functional investigations using germ cells transplantation. A technique already used to demonstrate that, different from mammals, fish germ stem cells (spermatogonia and oogonia) present high sexual plasticity that is determined by the somatic microenvironment. As relatively well established in mammals, and demonstrated in zebrafish and dogfish, this somatic environment is very important for the preferential location and regulation of SSCs. Importantly, a long-term in vitro culture system for SSCs has been now established for some fish species. Therefore, besides the aforementioned possibilities, such culture system would allow the development of strategies to in vitro investigate key regulatory and functional aspects of germline stem cells (ex: self-renewal and/or differentiation) or to amplify SSCs of rare, endangered, or commercially valuable fish species, representing an important tool for transgenesis and the development of new biotechnologies in fish production.
Collapse
Affiliation(s)
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luiz Renato de França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
10
|
Hayashi M, Sato M, Nagasaka Y, Sadaie S, Kobayashi S, Yoshizaki G. Enrichment of spermatogonial stem cells using side population in teleost. Biol Reprod 2014; 91:23. [PMID: 24876408 DOI: 10.1095/biolreprod.113.114140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogenesis originates from a small population of spermatogonial stem cells; this population can maintain continuous sperm production throughout the life of fish via self-renewal and differentiation. Despite their biological importance, spermatogonial stem cells are not thoroughly characterized because they are difficult to distinguish from their progeny cells that become committed to differentiation. We previously established a novel technique for germ cell transplantation to identify spermatogonial stem cells based on their colonizing activity and their ability to initiate donor-derived gametogenesis in the rainbow trout (Oncorhynchus mykiss). Although spermatogonial stem cells can be retrospectively identified after transplantation, there is currently no technique to prospectively enrich for or purify spermatogonial stem cells. Here, we describe a method for spermatogonial stem cell enrichment using a side population. With optimized Hoechst 33342 staining conditions, we successfully identified side-population cells among type A spermatogonia. Side-population cells were transcriptomically and morphologically distinct from non-side-population cells. To functionally determine whether the transplantable spermatogonial stem cells were enriched in the side-population fraction, we compared the colonization activity of side-population cells with that of non-side-population cells. Colonization efficiency was significantly higher with side-population cells than with non-side-population cells or with total type A spermatogonia. In addition, side-population cells could produce billions of sperm in recipients. These results indicated that transplantable spermatogonial stem cells were enriched in the side-population fraction. This method will provide biological information that may advance our understanding of spermatogonial stem cells in teleosts. Additionally, this technique will increase the efficiency of germ cell transplantation used in surrogate broodstock technology.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Masanao Sato
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | | | - Sakiko Sadaie
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Satoru Kobayashi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
11
|
Nakajima S, Hayashi M, Kouguchi T, Yamaguchi K, Miwa M, Yoshizaki G. Expression patterns of gdnf and gfrα1 in rainbow trout testis. Gene Expr Patterns 2014; 14:111-20. [PMID: 24518650 DOI: 10.1016/j.gep.2014.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 01/18/2014] [Accepted: 01/23/2014] [Indexed: 01/15/2023]
Abstract
In mice, glial cell line-derived neurotrophic factor (GDNF) is essential for normal spermatogenesis and in vitro culture of spermatogonial stem cells. In murine testes, GDNF acts as paracrine factor; Sertoli cells secrete it to a subset of spermatogonial cells expressing its receptor, GDNF family receptor α1 (GFRα1). However, in fish, it is unclear what types of cells express gdnf and gfrα1. In this study, we isolated the rainbow trout orthologues of these genes and analyzed their expression patterns during spermatogenesis. In rainbow trout testes, gdnf and gfrα1 were expressed in almost all type A spermatogonia (ASG). Noticeably, unlike in mice, the expression of gdnf was not observed in Sertoli cells in rainbow trout. During spermatogenesis, the expression levels of these genes changed synchronously; gdnf and gfrα1 showed high expression in ASG and decreased dramatically in subsequent developmental stages. These results suggested that GDNF most likely acts as an autocrine factor in rainbow trout testes.
Collapse
Affiliation(s)
- Satoshi Nakajima
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Makoto Hayashi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Tomomi Kouguchi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Kazuma Yamaguchi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Misako Miwa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
12
|
Santos Nassif Lacerda SM, Costa GMJ, da Silva MDA, Campos-Junior PHA, Segatelli TM, Peixoto MTD, Resende RR, de França LR. Phenotypic characterization and in vitro propagation and transplantation of the Nile tilapia (Oreochromis niloticus) spermatogonial stem cells. Gen Comp Endocrinol 2013; 192:95-106. [PMID: 23792279 DOI: 10.1016/j.ygcen.2013.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/05/2013] [Accepted: 06/11/2013] [Indexed: 12/23/2022]
Abstract
In association with in vitro culture and transplantation, isolation of spermatogonial stem cells (SSCs) is an excellent approach for investigating spermatogonial physiology in vertebrates. However, in fish, the lack of SSC molecular markers represents a great limitation to identify/purify these cells, rendering it difficult to apply several valuable biotechnologies in fish-farming. Herein, we describe potential molecular markers, which served to phenotypically characterize, cultivate and transplant Nile tilapia SSCs. Immunolocalization revealed that Gfra1 is expressed exclusively in single type A undifferentiated spermatogonia (Aund, presumptive SSCs). Likewise, the expression of Nanos2 protein was observed in Aund cells. However, Nanos2-positive spermatogonia have also been identified in cysts with two to eight germ cells that encompass type A differentiated spermatogonia (Adiff). Moreover, we also established effective primary culture conditions that allowed the Nile tilapia spermatogonia to expand their population for at least one month while conserving their original undifferentiated (stemness) characteristics. The maintenance of Aund spermatogonial phenotype was demonstrated by the expression of early germ cell specific markers and, more convincingly, by their ability to colonize and develop in the busulfan-treated adult Nile tilapia recipient testes after germ cell transplantation. In addition to advancing our knowledge on the identity and physiology of fish SSCs, these findings provide the first step in establishing a system that will allow fish SSCs expansion in vitro, representing an important progress towards the development of new biotechnologies in aquaculture, including the possibility of producing transgenic fish.
Collapse
Affiliation(s)
- Samyra Maria Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | | | | | | | | | | | | |
Collapse
|