1
|
Zhang Y, Labrecque R, Tremblay P, Plessis C, Dufour P, Martin H, Sirard MA. Sperm-borne tsRNAs and miRNAs analysis in relation to dairy cattle fertility. Theriogenology 2024; 215:241-248. [PMID: 38100996 DOI: 10.1016/j.theriogenology.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Sperm small non-coding RNAs (sncRNAs), such as microRNAs (miRNAs) and tRNA-derived small RNAs (tsRNAs), have been found to have implications for male fertility and play a role in the intergenerational transmission of specific phenotypes by influencing the early embryo's physiological processes in various animal species. This study postulates that there exists a correlation between sperm small non-coding RNAs (sncRNAs) and bull fertility, which in turn can influence the fertility of offspring through the modulation of early embryo development. To investigate this hypothesis, we generated comparative libraries of sperm sncRNAs from sires exhibiting high (n = 3) versus low bull fertility (n = 3), as well as high (n = 3) versus low daughter fertility (n = 3), as determined by the industry-standard Bull fertility index and Daughter fertility index. In total, 12 tsRNAs carried by sperm (11 down-regulated and 1 up-regulated) were found to be associated with bull fertility, while 19 tsRNAs (11 down-regulated and 8 up-regulated) were found to be associated with daughter fertility (q < 0.05, Log2foldchange>±1.5, base mean > 50). Notably, tRX-Glu-NNN-3811 exhibited potential as a biomarker for predicting fertility in both male and female dairy cattle. Moreover, a total of six miRNAs sperm-borne (two up-regulated and four down-regulated) and 35 miRNAs (27 up-regulated and eight down-regulated) exhibited a significant correlation with both bull fertility and daughter fertility individually (p < 0.05, base mean > 50, log2foldchange>±1.5), two microRNAs, namely miR-2385-5p (down-regulated) and miR-98 (up-regulated), exhibit a significant association (p < 0.05, base mean > 50, log2foldchange>±1.5) with the fertility of both bulls and daughter. The targets of these two microRNAs were subsequently identified and integrated with the transcriptomic database of the embryonic cells at the two-cell stage, which is known to be indicative of embryonic competence. The KEGG analysis revealed a potential correlation between these targets and choline metabolism, a crucial factor in embryonic epigenetic programming. In summary, the findings of this study indicate that sperm-borne small non-coding RNAs (sncRNAs) hold promise as biomarkers for predicting and enhancing fertility in dairy cattle. Furthermore, it is plausible that these sncRNAs may exert their effects on daughter fertility by targeting genes in the early embryo.
Collapse
Affiliation(s)
- Ying Zhang
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon, INAF, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Rémi Labrecque
- SEMEX Boviteq, 3450 Rue Sicotte, Saint-Hyacinthe, QC J2S, Canada
| | - Patricia Tremblay
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon, INAF, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Clément Plessis
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon, INAF, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Pascal Dufour
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon, INAF, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Hélène Martin
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon, INAF, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Marc André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon, INAF, Université Laval, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
2
|
Nix J, Marrella MA, Oliver MA, Rhoads M, Ealy AD, Biase FH. Cleavage kinetics is a better indicator of embryonic developmental competency than brilliant cresyl blue staining of oocytes. Anim Reprod Sci 2023; 248:107174. [PMID: 36502760 DOI: 10.1016/j.anireprosci.2022.107174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/08/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
In vitro production of embryos (IVP) is a valuable technology to produce embryos of high genetic value. Despite advances in IVP, the efficiency of culture systems remains low. One method to increase IVP success is the early selection of oocytes or embryos that may have greater developmental potential. Here, we investigated two methods of selection, namely BCB staining and cleavage kinetics, both individually and in conjunction, for improved developmental outcomes in vitro. We hypothesized that a synergistic use of both BCB staining and cleavage kinetics would result in identification of embryos of greater developmental potential. The selection of oocytes by BCB staining does select for those oocytes with higher developmental potential, as noted by a greater blastocyst development between BCB positive (32.6%) and BCB negative (22.0%) on day 8 post-fertilization. However, the utilization of BCB staining and cleavage kinetics in tandem resulted in a complete masking of the effect observed when using BCB alone. We obtained the highest proportion of blastocyst development per selection group using cleavage kinetics alone, in which 53.1% of embryos grouped as Fast produced a blastocyst, which was significantly different from the three other groups (Fast+, Slow, not cleaved). We observed, however, that the separation of embryos by cleavage kinetics did not predict their survival to cryopreservation. In conclusion, in standard culture systems, cleavage kinetics is an effective method for the selection of embryos with increased developmental potential to develop blastocysts, however, it may not be effective to select healthy embryos for transfer following cryopreservation.
Collapse
Affiliation(s)
- Jada Nix
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mackenzie A Marrella
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mary Ali Oliver
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Rhoads
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Alan D Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
3
|
Paternal effect does not affect in vitro embryo morphokinetics but modulates molecular profile. Theriogenology 2022; 178:30-39. [PMID: 34775199 DOI: 10.1016/j.theriogenology.2021.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 01/17/2023]
Abstract
The use of different sires influences in vitro embryo production (IVP) outcome. Paternal effects are observed from the first cleavages until after embryonic genome activation (EGA). Little is known about the mechanisms that promote in vitro fertility differences, even less about the consequences on embryo development. Therefore, this study aimed to evaluate the paternal effect at fertilization, embryo developmental kinetics, gene expression and quality from high and low in vitro fertility bulls. A retrospective analysis for bull selection was performed using the In vitro Brazil company database from 2012 to 2015. The dataset was edited employing cleavage and blastocyst rates ranking a total of 140 bulls. Subsequently, the dataset was restricted by embryo development rate (blastocyst/cleaved rate) and ten bulls were selected as high (HF; n = 5) and low (LF; n = 5) in vitro fertility groups. IVP embryos derived from high and low fertility bulls were classified according to their stage of development (2 cells, 3-4 cells, 6 cells, 8-16 cells), at 24, 36, 48, 60, 72 hpi, respectively, to evaluate embryo kinetics. Pronuclei formation (24 hpi), cleavage rate (Day 3), development rate, and blastocyst morphology (Grade I and II - Day 7) were also assessed, as well as the abundance of 96 transcripts at 8-16 cell stage and blastocysts. There was no difference in early embryo kinetics (P > 0.05), and cleavage rate (HF = 86.7%; LF = 84.9%; P = 0.25). Nevertheless, the fertilization rate was higher on HF (72%) than LF (62%) and the polyspermy rate was lower on HF compared to LF (HF:16.2% LF:29.2%). As expected, blastocyst rate (HF = 29.4%; LF = 16.0%; P < 0.0001) and development rate (HF = 33.9% LF = 18.9%; P < 0.0001) were higher in HF than LF. At the 8-16 cell stage, 22 transcripts were differentially represented (P ≤ 0.05) between the two groups. Only PGK1 and TFAM levels were higher in HF while transcripts related to stress (6/22, ∼27%), cell proliferation (6/22, ∼27%), lipid metabolism genes (5/22, ∼23%), and other cellular functions (5/22, ∼23%) were higher on LF embryos. Blastocysts had 9 differentially represented transcripts (P ≤ 0.05); being only ACSL3 and ELOV1 higher in the HF group. Lipid metabolism genes (3/9, 33%) and other cellular functions (6/9, 67%) were higher in the LF group. In conclusion, the timing of the first cleavages is not affected by in vitro bull fertility. However, low in vitro fertility bulls presented higher polyspermy rates and produced 8-16 cells embryos with higher levels of transcripts related to apoptosis and cell damage pathways compared to high in vitro fertility ones. Evidence such as polyspermy and increase in apoptotic and oxidative stress genes at the EGA stage suggest that embryo development is impaired in the LF group leading to the reduction of blastocyst rate.
Collapse
|
4
|
Sirard MA. How the environment affects early embryonic development. Reprod Fertil Dev 2021; 34:203-213. [PMID: 35231267 DOI: 10.1071/rd21266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the field of animal reproduction, the environment associated with gametes and embryos refers to the parents' condition as well as conditions surrounding gametes and embryos in vivo or in vitro . This environment is now known to influence not only the functionality of the early embryo but potentially the future phenotype of the offspring. Using transcriptomic and epigenetic molecular analysis, and the bovine model, recent research has shown that both the female and the male metabolic status, for example age, can affect gene expression and gene programming in the embryo. Evidence demonstrates that milking cows, which are losing weight at the time of conception, generates compromised embryos and offspring with a unique metabolic signature. A similar phenomenon has been associated with different culture conditions and the IVF procedure. The general common consequence of these situations is an embryo behaving on 'economy' mode where translation, cell division and ATP production is reduced, potentially to adapt to the perceived future environment. Few epidemiological studies have been done in bovines to assess if these changes result in a different phenotype and more studies are required to associate specific molecular changes in embryos with visible consequences later in life.
Collapse
Affiliation(s)
- Marc-André Sirard
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Wu C, Blondin P, Vigneault C, Labrecque R, Sirard MA. Sperm miRNAs- potential mediators of bull age and early embryo development. BMC Genomics 2020; 21:798. [PMID: 33198638 PMCID: PMC7667858 DOI: 10.1186/s12864-020-07206-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/29/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Sperm miRNAs were reported to regulate spermatogenesis and early embryonic development in some mammals including bovine. The dairy cattle breeding industry now tends to collect semen from younger bulls under high selection pressure at a time when semen quality may be suboptimal compared to adult bulls. Whether the patterns of spermatic miRNAs are affected by paternal age and/or impact early embryogenesis is not clear. Hence, we generated small non-coding RNA libraries of sperm collected from same bulls at 10, 12, and 16 months of age, using 16 months as control for differential expression and functional analysis. RESULTS We firstly excluded all miRNAs present in measurable quantity in oocytes according to the literature. Of the remaining miRNAs, ten sperm-borne miRNAs were significantly differentially expressed in younger bulls (four in the 10 vs 16 months contrast and six in the 12 vs 16 months contrast). Targets of miRNAs were identified and compared to the transcriptomic database of two-cell embryos, to genes related to two-cell competence, and to the transcriptomic database of blastocysts. Ingenuity pathway analysis of the targets of these miRNAs suggested potential influence on the developmental competence of two-cell embryos and on metabolism and protein synthesis in blastocysts. CONCLUSIONS The results showed that miRNA patterns in sperm are affected by the age of the bull and may mediate the effects of paternal age on early embryonic development.
Collapse
Affiliation(s)
- Chongyang Wu
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada
| | | | | | | | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
6
|
Jiang J, Liu L, Gao Y, Shi L, Li Y, Liang W, Sun D. Determination of genetic associations between indels in 11 candidate genes and milk composition traits in Chinese Holstein population. BMC Genet 2019; 20:48. [PMID: 31138106 PMCID: PMC6537361 DOI: 10.1186/s12863-019-0751-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/20/2019] [Indexed: 01/20/2023] Open
Abstract
Background We have previously identified 11 promising candidate genes for milk composition traits by resequencing the whole genomes of 8 Holstein bulls with extremely high and low estimated breeding values for milk protein and fat percentages (high and low groups), including FCGR2B, CENPE, RETSAT, ACSBG2, NFKB2, TBC1D1, NLK, MAP3K1, SLC30A2, ANGPT1 and UGDH those contained 25 indels between high and low groups. In this study, the purpose was to further examine whether these candidates have significant genetic effects on milk protein and fat traits. Results With PCR product sequencing, 13 indels identified by whole genome resequencing were successfully genotyped. With association analysis in 769 Chinese Holstein cows, we found that the indel in FCGR2B was significantly associated with milk yield, protein yield and protein percentage (P = 0.0041 to 0.0297); five indels in CENPE and one indel in MAP3K1 were markedly relevant to milk yield, fat yield and protein yield (P < 0.0001 to 0.0073); polymorphism in RETSAT was evidently associated with milk yield, fat yield, protein yield and protein percentage (P = 0.0001 to 0.0237); variant in ACSBG2 affected fat yield and protein percentage (P = 0.0088 and 0.0052); one indel in TBC1D1 was with respect to fat percentage and protein percentage (P = 0.0224 and 0.0209). Significant associations were shown between indels in NLK and protein yield and protein percentage (P = 0.0012 to 0.0257); variant in UGDH was related to the milk yield (P = 0.0312). The two exonic indels in FCGR2B and CENPE were predicted to change the mRNA and protein secondary structures, and resulted in the corresponding protein dysfunction. Conclusion Our findings presented here provide the first evidence for the associations of eight functional genes with milk yield and composition traits in dairy cattle. Electronic supplementary material The online version of this article (10.1186/s12863-019-0751-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianping Jiang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.,College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, 100085, China
| | - Yahui Gao
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Lijun Shi
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yanhua Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.,Beijing Dairy Cattle Center, Beijing, 100085, China
| | - Weijun Liang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
7
|
Li Y, Liu X, Chen Z, Song D, Yang J, Zuo X, Cao Z, Liu Y, Zhang Y. Effect of follistatin on pre-implantational development of pig parthenogenetic embryos. Anim Sci J 2017; 89:316-327. [PMID: 29119699 DOI: 10.1111/asj.12936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 08/25/2017] [Indexed: 11/30/2022]
Abstract
The present study was designed to explore effects of follistatin (FST) on pre-implantational development of parthenogenetically activated embryos (PAEs) in pigs. First, we investigated the FST messenger RNA expression level and dynamic FST protein expression patterns in porcine oocytes and PAEs. Then, PAEs were placed in embryo culture medium supplemented with 10 ng/mL of FST-288, FST-300, and FST-315. Next, PAEs were cultured with 0, 1, 10 and 100 ng/mL of FST-315 protein throughout the in vitro culture (IVC) duration. Further, 10 ng/mL of FST-300 was added from the start of IVC in which PAEs were treated for 30, 48 and 60 h. The results showed that 1 ng/mL FST-315 could significantly increase the total cell numbers of blastocyst and trophectoderm cell number in PAEs. Exogenous FST-300 supplementation could significantly promote the early cleavage divisions and improve the blastocyst formation rate of porcine embryos. FST-300 appeared to affect early embryonic development before activation of the embryonic genome. In all, the study confirmed for the first time that FST plays a role in promoting early embryonic development in pigs, which differed with different FST subtypes. FST-300 could facilitate the initial cleavage time and improve the blastocyst formation rate, and FST-315 could improve the blastocyst quality.
Collapse
Affiliation(s)
- Yunsheng Li
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xing Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhen Chen
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Dandan Song
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jie Yang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaoyuan Zuo
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zubing Cao
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ya Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Diógenes MN, Guimarães ALS, Leme LO, Maurício MF, Dode MAN. Effect of prematuration and maturation with fibroblast growth factor 10 (FGF10) on in vitro development of bovine oocytes. Theriogenology 2017; 102:190-198. [DOI: 10.1016/j.theriogenology.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 01/10/2023]
|
9
|
Park MJ, Kim EY, Kang MJ, Lee JB, Jeong CJ, Park SP. Investigation of the Developmental Potential and Developmental Kinetics of Bovine Parthenogenetic and Somatic Cell Nuclear Transfer Embryos Using a Time-Lapse Monitoring System. Cell Reprogram 2017. [DOI: 10.1089/cell.2017.0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Min-Jee Park
- Jeju National University Stem Cell Research Center, Seoul, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
- Mirae Cell Bio, Inc., Seoul, Korea
| | - Eun-Young Kim
- Jeju National University Stem Cell Research Center, Seoul, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
- Mirae Cell Bio, Inc., Seoul, Korea
| | - Man-Jong Kang
- College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | | | | | - Se-Pill Park
- Jeju National University Stem Cell Research Center, Seoul, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
- Mirae Cell Bio, Inc., Seoul, Korea
| |
Collapse
|
10
|
Orozco-Lucero E, Dufort I, Sirard MA. Regulation of ATF1 and ATF2 transcripts by sequences in their 3' untranslated region in cleavage-stage cattle embryos. Mol Reprod Dev 2017; 84:296-309. [PMID: 28198054 DOI: 10.1002/mrd.22785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
The sequence of a 3' untranslated region (3'UTR) of mRNA governs the timing of its polyadenylation and translation in mammalian oocytes and early embryos. The objective of this study was to assess the influence of cis-elements in the 3'UTR of the developmentally important ATF1 and ATF2 transcripts on their timely translation during first cleavages in bovine embryos. Eight different reporter mRNAs (coding sequence of green fluorescent protein [GFP] fused to the 3'UTR of short or long isoforms of cattle ATF1 or -2, with or without polyadenylation) or a control GFP mRNA were microinjected separately into presumptive bovine zygotes at 18 hr post-insemination (hpi), followed by epifluorescence assessment for GFP translation between 24 and 80 hpi (expressed as percentage of GFP-positive embryos calculated from the total number of individuals). The presence of either polyadenine or 3'UTR sequence in deadenylated constructs is required for GFP translation (implying the need for polyadenylation), and all exogenous mRNAs that met either criteria were translated as soon as 24 hpi-except for long-deadenylated ATF2-UTR, whose translation began at 36 hpi. Overall, GFP was more visibly translated in competent (cleaving) embryos, particularly in long ATF1/2 constructs. The current data shows a timely GFP translation in bovine embryos depending on sequences in the 3'UTR of ATF1/2, and indicates a difference between short and long isoforms. In addition, cleaving embryos displayed increased translational capacity of the tested constructs. Functional confirmation of the identification cis-sequences in the 3'UTR of ATF1/2 will contribute to the understanding of maternal mRNA translation regulation during early cattle development.
Collapse
Affiliation(s)
- Ernesto Orozco-Lucero
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Pavillon INAF, Université Laval, Québec, Quebec, Canada
| | - Isabelle Dufort
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Pavillon INAF, Université Laval, Québec, Quebec, Canada
| | - Marc-André Sirard
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Pavillon INAF, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
11
|
Accumulation of Chromatin Remodelling Enzyme and Histone Transcripts in Bovine Oocytes. Results Probl Cell Differ 2017; 63:223-255. [PMID: 28779321 DOI: 10.1007/978-3-319-60855-6_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During growth, the oocyte accumulates mRNAs that will be required in the later stages of oogenesis and early embryogenesis until the activation of the embryonic genome. Each of these developmental stages is controlled by multiple regulatory mechanisms that ensure proper protein production. Thus mRNAs are stabilized, stored, recruited, polyadenylated, translated and/or degraded over a period of several days. As a consequence, understanding the biological significance of changes in the abundance of transcripts during oocyte growth and differentiation is rather complex. Nevertheless the availability of transcriptomic platforms applicable to scarce samples such as oocytes has generated large amounts of data that depict the transcriptome of oocytes under different conditions. Despite several technical constrains related to protein determination in oocytes that still limit the possibility to verify certain hypothesis, it is now possible to use mRNA levels to start building plausible scenarios. To start deciphering the changes in the level of specific mRNAs involved in chromatin remodelling, we have performed a meta-analysis of existing microarray datasets from germinal vesicle (GV) stage bovine oocytes during the final stages of oocyte differentiation. We then analysed the expression profiles of histone and histone-remodelling enzyme mRNAs and correlated these with the major histone modifications known to occur at the same period, based on data available in the literature. We believe that this approach could reveal the function of specific enzymes in the oocyte. In turn, this information will be useful in future studies, which final ambitious goal is to decipher the 'oocyte-specific histone code'.
Collapse
|
12
|
Labrecque R, Fournier E, Sirard MA. Transcriptome analysis of bovine oocytes from distinct follicle sizes: Insights from correlation network analysis. Mol Reprod Dev 2016; 83:558-69. [DOI: 10.1002/mrd.22651] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/19/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Rémi Labrecque
- Faculté des sciences de l'Agriculture et de l'Alimentation; Département des Sciences Animales; Centre de Recherche en Biologie de la Reproduction; Pavillon INAF; Université Laval; Québec QC Canada
| | - Eric Fournier
- Faculté des sciences de l'Agriculture et de l'Alimentation; Département des Sciences Animales; Centre de Recherche en Biologie de la Reproduction; Pavillon INAF; Université Laval; Québec QC Canada
| | - Marc-André Sirard
- Faculté des sciences de l'Agriculture et de l'Alimentation; Département des Sciences Animales; Centre de Recherche en Biologie de la Reproduction; Pavillon INAF; Université Laval; Québec QC Canada
| |
Collapse
|
13
|
Kaith S, Saini M, Raja AK, Sahare AA, Jyotsana B, Madheshiya P, Palta P, Chauhan MS, Manik RS, Singla SK. Early cleavage of handmade cloned buffalo (Bubalus bubalis) embryos is an indicator of their developmental competence and quality. Reprod Domest Anim 2015; 50:214-220. [PMID: 25604613 DOI: 10.1111/rda.12472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/30/2014] [Indexed: 12/14/2022]
Abstract
Following IVF, embryos which cleave early have been shown to have higher developmental competence and quality than those that cleave relatively later across many species. We investigated the effect of time of cleavage on the developmental competence, quality, epigenetic status and gene expression in buffalo embryos produced by handmade cloning (HMC). Following classification of embryos as early cleaving (EC) or late cleaving (LC) based on whether they had cleaved or not at 24 h post in vitro culture, 54% (164/303) were found to be EC and the rest to be LC. The blastocyst rate (58.1 ± 3.4 vs 36.9 ± 1.6%, p < 0.01) and the total cell number (285.5 ± 41.9 vs 141.4 ± 36.1, p < 0.05) were higher, whereas the apoptotic index (3.6 ± 0.6 vs 12.2 ± 1.7, p < 0.01) and the global level of H3K9ac and H3K27me3 were lower (p < 0.05) in the blastocysts produced from EC than in those produced from LC embryos. The relative transcript level of CASPASE3, CASPASE7, DNMT1, DNMT3a and CDX2 was higher (p < 0.05) and that of SOX2 was lower (p < 0.05) in blastocysts produced from LC than in those produced from EC embryos, whereas the expression level of CASPASE6, P53, P21, HDAC1, OCT4 and NANOG was not significantly different between the two groups. These results show that (i) following HMC, blastocysts produced from embryos that cleave early differ from those produced from late cleaving embryos in terms of epigenetic status and expression level of many important apoptosis-, pluripotency-, trophectoderm- and epigenetics-related genes, and (ii) EC embryos are superior to LC embryos in view of their higher developmental competence and quality.
Collapse
Affiliation(s)
- S Kaith
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - M Saini
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - A K Raja
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - A A Sahare
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - B Jyotsana
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - P Madheshiya
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - P Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - M S Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - R S Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - S K Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|