Miao H, Miao CX, Li N, Han J. FOXJ2 controls meiosis during spermatogenesis in male mice.
Mol Reprod Dev 2016;
83:684-91. [PMID:
27316861 DOI:
10.1002/mrd.22671]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
Spermatogenesis is a highly complex cell differentiation process necessary for production of haploid spermatozoa. Central to this unique process is spermatocyte meiosis. FOXJ2 (Forkhead box J2), a FOX transcription factor, is specifically expressed in meiotic spermatocytes in adult mouse testes, so we used a germ cell specific conditional knockout model (Foxj2(flox/flox) , Mvh-Cre) to explore its role in spermatogenesis. Loss of FOXJ2 in the male germ line led to meiotic arrest and complete infertility. Although, DNA double-strand breaks (DSBs) were initiated, Foxj2-deficient spermatocytes failed to form chromosomal synapses and perform DSB repair. Furthermore, Foxj2-deficient spermatocytes contained significantly less mRNA encoding DSB repair-associated factors (Rad18, Rad51, Brca1, Brca2, and Tex15) and meiotic arrest-related proteins (Fzr1, Hsp70-2, Spata22, Eif4g3, and Zpac); in contrast, no change was observed in the expression of spermatogonia markers (Gfra1, Zbtb16, and c-Kit) and germ cell markers (Dazl, Mvh, and Tra98). Taken together, FOXJ2 appears to promote meiotic progression in male mice by a mechanism that needs further investigation. Mol. Reprod. Dev. 83: 684-691, 2016 © 2016 Wiley Periodicals, Inc.
Collapse