1
|
Pasquariello R, Bogliolo L, Di Filippo F, Leoni GG, Nieddu S, Podda A, Brevini TAL, Gandolfi F. Use of assisted reproductive technologies (ARTs) to shorten the generational interval in ruminants: current status and perspectives. Theriogenology 2024; 225:16-32. [PMID: 38788626 DOI: 10.1016/j.theriogenology.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The challenges posed by climate change and increasing world population are stimulating renewed efforts for improving the sustainability of animal production. To meet such challenges, the contribution of genomic selection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation interval. This review provides an overview of the current status and progress of advanced ARTs that could be applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to complete the entire process in few months. However, these approaches have been successfully applied to human and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward a significant reduction of the generational interval in livestock animals that could have a considerable impact on agriculture sustainability.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Francesca Di Filippo
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | | | - Stefano Nieddu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Andrea Podda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
2
|
Zhao Q, Yu C, Xu X, Jin W, Zhang Z, Huang H, Gao Y, Pan D. Phosphorylated YBX2 is stabilized to promote glycolysis in brown adipocytes. iScience 2023; 26:108091. [PMID: 37860762 PMCID: PMC10583057 DOI: 10.1016/j.isci.2023.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Y-box binding protein 2 (YBX2) is an essential modulator of brown adipose tissue activation, yet the regulation on its own expression and the involved mechanism remains largely unknown. Herein, we report the YBX2 protein level, but not mRNA level, is induced in response to acute β-adrenergic signaling. In this context, YBX2 is a dual substrate for both AMPK and Akt2. The phosphorylation at Thr115 by AMPK or at Ser137 by Akt2 facilitates YBX2 accumulation in brown adipocytes by decreasing ubiquitination-mediated degradation. Beyond stabilizing PGC1α mRNA, increased YBX2 upon thermogenic activation assists the expression of glycolytic enzymes, promotes glucose utilization and lactate production. Mechanistically, YBX2 modulates translation of glycolytic genes via direct binding to 5'-UTRs of these genes. Together these findings suggest YBX2 is responsive to thermogenic stimuli by phosphorylation modification, and stabilized YBX2 helps to boost glycolysis and thermogenesis in brown adipocytes.
Collapse
Affiliation(s)
- Qingwen Zhao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Yu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoxuan Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenfang Jin
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhe Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Haiyan Huang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yue Gao
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Meindl K, Issler N, Afonso S, Cebrian-Serrano A, Müller K, Sterner C, Othmen H, Tegtmeier I, Witzgall R, Klootwijk E, Davies B, Kleta R, Warth R. A missense mutation in Ehd1 associated with defective spermatogenesis and male infertility. Front Cell Dev Biol 2023; 11:1240558. [PMID: 37900275 PMCID: PMC10600459 DOI: 10.3389/fcell.2023.1240558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Normal function of the C-terminal Eps15 homology domain-containing protein 1 (EHD1) has previously been associated with endocytic vesicle trafficking, shaping of intracellular membranes, and ciliogenesis. We recently identified an autosomal recessive missense mutation c.1192C>T (p.R398W) of EHD1 in patients who had low molecular weight proteinuria (0.7-2.1 g/d) and high-frequency hearing loss. It was already known from Ehd1 knockout mice that inactivation of Ehd1 can lead to male infertility. However, the exact role of the EHD1 protein and its p.R398W mutant during spermatogenesis remained still unclear. Here, we report the testicular phenotype of a knockin mouse model carrying the p.R398W mutation in the EHD1 protein. Male homozygous knockin mice were infertile, whereas the mutation had no effect on female fertility. Testes and epididymes were significantly reduced in size and weight. The testicular epithelium appeared profoundly damaged and had a disorganized architecture. The composition of developing cell types was altered. Malformed acrosomes covered underdeveloped and misshaped sperm heads. In the sperm tail, midpieces were largely missing indicating disturbed assembly of the sperm tail. Defective structures, i.e., nuclei, acrosomes, and sperm tail midpieces, were observed in large vacuoles scattered throughout the epithelium. Interestingly, cilia formation itself did not appear to be affected, as the axoneme and other parts of the sperm tails except the midpieces appeared to be intact. In wildtype mice, EHD1 co-localized with acrosomal granules on round spermatids, suggesting a role of the EHD1 protein during acrosomal development. Wildtype EHD1 also co-localized with the VPS35 component of the retromer complex, whereas the p.R398W mutant did not. The testicular pathologies appeared very early during the first spermatogenic wave in young mice (starting at 14 dpp) and tubular destruction worsened with age. Taken together, EHD1 plays an important and probably multifaceted role in spermatogenesis in mice. Therefore, EHD1 may also be a hitherto underestimated infertility gene in humans.
Collapse
Affiliation(s)
- Katrin Meindl
- Medical Cell Biology, University Regensburg, Regensburg, Germany
| | - Naomi Issler
- Department of Renal Medicine, University College London, London, United Kingdom
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Afonso
- Medical Cell Biology, University Regensburg, Regensburg, Germany
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alberto Cebrian-Serrano
- Wellcome Centre for Human Genetics, University Oxford, Oxford, United Kingdom
- Helmholtz Zentrum München, Institute of Diabetes and Obesity, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Karin Müller
- Leibniz Institute for Zoo- und Wildlife Research, Berlin, Germany
| | | | - Helga Othmen
- Medical Cell Biology, University Regensburg, Regensburg, Germany
- Molecular and Cellular Anatomy, University Regensburg, Regensburg, Germany
| | - Ines Tegtmeier
- Medical Cell Biology, University Regensburg, Regensburg, Germany
| | - Ralph Witzgall
- Molecular and Cellular Anatomy, University Regensburg, Regensburg, Germany
| | - Enriko Klootwijk
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University Oxford, Oxford, United Kingdom
- Genetic Modification Service, The Francis Crick Institute, London, United Kingdom
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Richard Warth
- Medical Cell Biology, University Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Chen Y, Zhang X, Jiang J, Luo M, Tu H, Xu C, Tan H, Zhou X, Chen H, Han X, Yue Q, Guo Y, Zheng K, Qi Y, Situ C, Cui Y, Guo X. Regulation of Miwi-mediated mRNA stabilization by Ck137956/Tssa is essential for male fertility. BMC Biol 2023; 21:89. [PMID: 37069605 PMCID: PMC10111675 DOI: 10.1186/s12915-023-01589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Sperm is formed through spermiogenesis, a highly complex process involving chromatin condensation that results in cessation of transcription. mRNAs required for spermiogenesis are transcribed at earlier stages and translated in a delayed fashion during spermatid formation. However, it remains unknown that how these repressed mRNAs are stabilized. RESULTS Here we report a Miwi-interacting testis-specific and spermiogenic arrest protein, Ck137956, which we rename Tssa. Deletion of Tssa led to male sterility and absence of sperm formation. The spermiogenesis arrested at the round spermatid stage and numerous spermiogenic mRNAs were down-regulated in Tssa-/- mice. Deletion of Tssa disrupted the localization of Miwi to chromatoid body, a specialized assembly of cytoplasmic messenger ribonucleoproteins (mRNPs) foci present in germ cells. We found that Tssa interacted with Miwi in repressed mRNPs and stabilized Miwi-interacting spermiogenesis-essential mRNAs. CONCLUSIONS Our findings indicate that Tssa is indispensable in male fertility and has critical roles in post-transcriptional regulations by interacting with Miwi during spermiogenesis.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiayin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengjiao Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haixia Tu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xudong Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Cai Y, Li N, Li H. YBX2 modulates mRNA stability via interaction with YTHDF2 in endometrial cancer cells. Exp Cell Res 2023; 427:113586. [PMID: 37030331 DOI: 10.1016/j.yexcr.2023.113586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
RNA-binding proteins (RBPs) fine-tune gene expression by modulating RNA stability, translation, and degradation. RBPs are involved in the development of endometrial cancer. In particular, Y-box binding protein 2 (YBX2), a germ cell-specific member of the YBX family, has been reported to maintain cancer stem cell-like phenotypes in endometrial cancer. However, the mechanism by which YBX2 modulates mRNA stability in endometrial cancer cells remains unknown. In this study, we examined the effects of the ectopic expression of YBX2 in endometrial adenocarcinoma-derived Ishikawa cells. We found that elevated levels of YBX2 delayed cell proliferation, without increasing cell apoptosis. Transcriptomic analysis revealed disturbances in gene expression caused by YBX2. Interestingly, heat shock protein family A (Hsp70) member 6 (HSPA6) levels were downregulated due to the reduced mRNA stability after YBX2 binding. YBX2 facilitated the formation of relatively stable cytoplasmic granules in tumor cells via its mRNA-binding domain. Moreover, N6-methyladenosine (m6A) reader proteins are recruited by YBX2 granules via the cold-shock domains. Notably, knockdown of YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2), an m6A reader, ameliorated the reduction in HSPA6 mRNA levels induced by YBX2, indicating the synergistic effects of YBX2 and YTHDF2 on mRNA stability. Therefore, YBX2 regulates RNA stability by interacting with the m6A reader proteins.
Collapse
Affiliation(s)
- Ying Cai
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huaibiao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Wang P, Zhang X, Huo H, Li W, Liu Z, Wang L, Li L, Sun YH, Huo J. Transcriptomic analysis of testis and epididymis tissues from Banna mini-pig inbred line boars with single-molecule long-read sequencing†. Biol Reprod 2023; 108:465-478. [PMID: 36477198 DOI: 10.1093/biolre/ioac216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/04/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
In mammals, testis and epididymis are critical components of the male reproductive system for androgen production, spermatogenesis, sperm transportation, as well as sperm maturation. Here, we report single-molecule real-time sequencing data from the testis and epididymis of the Banna mini-pig inbred line (BMI), a promising laboratory animal for medical research. We obtained high-quality full-length transcriptomes and identified 9879 isoforms and 8761 isoforms in the BMI testis and epididymis, respectively. Most of the isoforms we identified have novel exon structures that will greatly improve the annotation of testis- and epididymis-expressed genes in pigs. We also found that 3055 genes (over 50%) were shared between BMI testis and epididymis, indicating widespread expression profiles of genes related to reproduction. We characterized extensive alternative splicing events in BMI testis and epididymis and showed that 96 testis-expressed genes and 79 epididymis-expressed genes have more than six isoforms, revealing the complexity of alternative splicing. We accurately defined the transcribed isoforms in BMI testis and epididymis by combining Pacific Biotechnology Isoform-sequencing (PacBio Iso-Seq) and Illumina RNA Sequencing (RNA-seq) techniques. The refined annotation of some key genes governing male reproduction will facilitate further understanding of the molecular mechanisms underlying BMI male sterility. In addition, the high-confident identification of 548 and 669 long noncoding RNAs (lncRNAs) in these two tissues has established a candidate gene set for future functional investigations. Overall, our study provides new insights into the role of the testis and epididymis during BMI reproduction, paving the path for further studies on BMI male infertility.
Collapse
Affiliation(s)
- Pei Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xia Zhang
- College of Life Science, Lyuliang University, Lvliang, China
| | - Hailong Huo
- Yunnan Vocational and Technical college of Agriculture, Kunming, China
| | - Weizhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhipeng Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lina Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Luogang Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yu H Sun
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
7
|
RNA-Binding Proteins in the Regulation of Adipogenesis and Adipose Function. Cells 2022; 11:cells11152357. [PMID: 35954201 PMCID: PMC9367552 DOI: 10.3390/cells11152357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The obesity epidemic represents a critical public health issue worldwide, as it is a vital risk factor for many diseases, including type 2 diabetes (T2D) and cardiovascular disease. Obesity is a complex disease involving excessive fat accumulation. Proper adipose tissue accumulation and function are highly transcriptional and regulated by many genes. Recent studies have discovered that post-transcriptional regulation, mainly mediated by RNA-binding proteins (RBPs), also plays a crucial role. In the lifetime of RNA, it is bound by various RBPs that determine every step of RNA metabolism, from RNA processing to alternative splicing, nucleus export, rate of translation, and finally decay. In humans, it is predicted that RBPs account for more than 10% of proteins based on the presence of RNA-binding domains. However, only very few RBPs have been studied in adipose tissue. The primary aim of this paper is to provide an overview of RBPs in adipogenesis and adipose function. Specifically, the following best-characterized RBPs will be discussed, including HuR, PSPC1, Sam68, RBM4, Ybx1, Ybx2, IGF2BP2, and KSRP. Characterization of these proteins will increase our understanding of the regulatory mechanisms of RBPs in adipogenesis and provide clues for the etiology and pathology of adipose-tissue-related diseases.
Collapse
|
8
|
Kretov DA. Role of Y-Box Binding Proteins in Ontogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S71-S74. [PMID: 35501987 DOI: 10.1134/s0006297922140061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding proteins (YB proteins) are multifunctional DNA/RNA-binding proteins capable of regulating gene expression at multiple levels. At present, the most studied function of these proteins is the regulation of protein synthesis. Special attention in this review has been paid to the role of YB proteins in the control of mRNA translation and stability at the earliest stages of organism formation, from fertilization to gastrulation. Furthermore, the functions of YB proteins in the formation of germ cells, in which they accumulate in large amounts, are summarized. The review then discusses the contribution of YB proteins to the regulation of gene expression during the differentiation of various types of somatic cells. Finally, future directions in the study of YB proteins and their role in ontogenesis are considered.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Department of Biochemistry, School of Medicine, Boston University, Boston, USA, 02218.
| |
Collapse
|
9
|
Ding Y, Liu X, Yang C, Ruan X, Wang D, Liu Y, Shang X, Liu Q, Shen S, Zhu L, Xue Y. Pseudogene RPL32P3 regulates the blood-tumor barrier permeability via the YBX2/HNF4G axis. Cell Death Discov 2021; 7:367. [PMID: 34819492 PMCID: PMC8613260 DOI: 10.1038/s41420-021-00758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
The existence of the blood–tumor barrier (BTB) severely hinders the transport of anti-tumor drugs to brain tumor tissues. Selectively opening BTB is of great significance to improve the chemotherapy effect of glioma. Pseudogenes have been recognized as important regulators in various biologic processes. In this study, we identified that ribosomal protein L32 pseudogene 3 (RPL32P3) was highly expressed in glioma-exposed endothelial cells (GECs). Knockdown of RPL32P3 decreased the expression of tight junction-related proteins (TJPs) and increased BTB permeability. Subsequent analysis of the underlying mechanism indicated that RPL32P3 recruited lysine methyltransferase 2 A (KMT2A) to the Y-box binding protein 2 (YBX2) promoter region and mediated H3K4me3 to promote YBX2 transcription. Highly expressed YBX2 bound and stabilized hepatocyte nuclear factor 4 gamma (HNF4G) mRNA. Highly expressed HNF4G directly bound to the promoters of TJPs ZO-1, occludin and claudin-5 to promote their transcriptional activities and regulated BTB permeability. The simultaneous knockdown of RPL32P3, YBX2, and HNF4G combined with doxorubicin (DOX) increased the apoptosis of glioma cells. In conclusion, the current study indicated that RPL32P3 knockdown increased BTB permeability through the YBX2/HNF4G pathway. These findings may provide new targets for the comprehensive treatment of glioma.
Collapse
Affiliation(s)
- Ye Ding
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Qianshuo Liu
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Shuyuan Shen
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Lu Zhu
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Yixue Xue
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China. .,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
10
|
Morgan M, Kumar L, Li Y, Baptissart M. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell Mol Life Sci 2021; 78:8049-8071. [PMID: 34748024 DOI: 10.1007/s00018-021-04012-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/22/2023]
Abstract
Multiple RNA pathways are required to produce functional sperm. Here, we review RNA post-transcriptional regulation during spermatogenesis with particular emphasis on the role of 3' end modifications. From early studies in the 1970s, it became clear that spermiogenesis transcripts could be stored for days only to be translated at advanced stages of spermatid differentiation. The transition between the translationally repressed and active states was observed to correlate with the shortening of the transcripts' poly(A) tail, establishing a link between RNA 3' end metabolism and male germ cell differentiation. Since then, numerous RNA metabolic pathways have been implicated not only in the progression through spermatogenesis, but also in the maintenance of genomic integrity. Recent studies have characterized the elusive 3' biogenesis of Piwi-interacting RNAs (piRNAs), identified a critical role for messenger RNA (mRNA) 3' uridylation in meiotic progression, established the mechanisms that destabilize transcripts with long 3' untranslated regions (3'UTRs) in post-mitotic cells, and defined the physiological relevance of RNA exonucleases and deadenylases in male germ cells. In this review, we discuss RNA processing in the male germline in the light of the most recent findings. A brief recollection of different RNA-processing events will aid future studies exploring post-transcriptional regulation in spermatogenesis.
Collapse
Affiliation(s)
- Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA.
| | - Lokesh Kumar
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| |
Collapse
|
11
|
Elucidating the processes and pathways enriched in buffalo sperm proteome in regulating semen quality. Cell Tissue Res 2020; 383:881-903. [PMID: 33151454 DOI: 10.1007/s00441-020-03303-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Sperm carries a reservoir of proteins regulating the molecular functions to attain functional competence. Semen samples collected from buffalo bulls were assessed for sperm functional attributes (n = 11) and proteome profiling (n = 6). Sperm proteins were extracted and profiled by employing LC-MS/MS. Overall, the buffalo sperm contained 1365 proteins, of which 458 were common between the groups. The unique proteins were 477 and 430 in good and poor quality semen, respectively. In the whole proteome of buffalo sperm, sexual reproduction with phosphatidylethanolamine-binding protein1 (PEBP1), fetuin-B (FETUB) and acrosin (ACR) was the most enriched (p = 8.44E-19) biological process, also with thermogenesis (p = 0.003), oocyte meiosis (p = 0.007) and vascular smooth muscle contraction (p = 0.009) apart from metabolic pathways. In good quality semen, mesenchyme migration (p = 1.24E-07) and morphogenesis (p = 0.001) were abundant biological processes. In good quality semen, the fluid shear stress (p = 0.01) and, in poor quality semen, valine, leucine and isoleucine degradation (p = 3.8E-05) pathways were enriched. In good quality semen, 7 proteins were significantly (p < 0.05) upregulated and 33 proteins were significantly (p < 0.05) downregulated. On validating the abundantly expressed sperm proteins, serine protease inhibitor Kazal-type 2-like (SPINK2; 2.17-fold) and neddylin (NEDD8; 1.13-fold) were upregulated and YBX2 was downregulated (0.41-fold) in good quality semen as compared with poor quality semen (1-fold). The present findings revealed the importance of sperm proteins in oocyte maturation, fertilization process and early embryonic development. The variations in the proteomic composition can be used as potential markers for the selection of breeding bulls.
Collapse
|
12
|
Yamase K, Tanigawa Y, Yamamoto Y, Tanaka H, Komiya T. Mouse TMCO5 is localized to the manchette microtubules involved in vesicle transfer in the elongating spermatids. PLoS One 2019; 14:e0220917. [PMID: 31393949 PMCID: PMC6687282 DOI: 10.1371/journal.pone.0220917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
As a result of a high-throughput in situ hybridization screening for adult mouse testes, we found that the mRNA for Tmco5 is expressed in round and elongating spermatids. Tmco5 belongs to the Tmco (Transmembrane and coiled-coil domains) gene family and has a coiled-coil domain in the N-terminal and a transmembrane domain in the C-terminal region. A monoclonal antibody raised against recombinant TMCO5 revealed that the protein is expressed exclusively in the elongating spermatids of step 9 to 12 and is localized to the manchette, a transiently emerging construction, which predominantly consists of cytoskeleton microtubules and actin filaments. This structure serves in the transport of Golgi-derived non-acrosomal vesicles. Moreover, induced expression of TMCO5 in CHO cells resulted in the co-localization of TMCO5 with β-tubulin besides the reorganization of the Golgi apparatus. Judging from the results and considering the domain structure of TMCO5, we assume that Tmco5 may have a role in vesicle transport along the manchette.
Collapse
Affiliation(s)
- Kenya Yamase
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Yoko Tanigawa
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Yasufumi Yamamoto
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Tohru Komiya
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
- * E-mail:
| |
Collapse
|
13
|
Stafuzza NB, Silva RMDO, Fragomeni BDO, Masuda Y, Huang Y, Gray K, Lourenco DAL. A genome-wide single nucleotide polymorphism and copy number variation analysis for number of piglets born alive. BMC Genomics 2019; 20:321. [PMID: 31029102 PMCID: PMC6487013 DOI: 10.1186/s12864-019-5687-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background In this study we integrated the CNV (copy number variation) and WssGWAS (weighted single-step approach for genome-wide association) analyses to increase the knowledge about number of piglets born alive, an economically important reproductive trait with significant impact on production efficiency of pigs. Results A total of 3892 samples were genotyped with the Porcine SNP80 BeadChip. After quality control, a total of 57,962 high-quality SNPs from 3520 Duroc pigs were retained. The PennCNV algorithm identified 46,118 CNVs, which were aggregated by overlapping in 425 CNV regions (CNVRs) ranging from 2.5 Kb to 9718.4 Kb and covering 197 Mb (~ 7.01%) of the pig autosomal genome. The WssGWAS identified 16 genomic regions explaining more than 1% of the additive genetic variance for number of piglets born alive. The overlap between CNVR and WssGWAS analyses identified common regions on SSC2 (4.2–5.2 Mb), SSC3 (3.9–4.9 Mb), SSC12 (56.6–57.6 Mb), and SSC17 (17.3–18.3 Mb). Those regions are known for harboring important causative variants for pig reproductive traits based on their crucial functions in fertilization, development of gametes and embryos. Functional analysis by the Panther software identified 13 gene ontology biological processes significantly represented in this study such as reproduction, developmental process, cellular component organization or biogenesis, and immune system process, which plays relevant roles in swine reproductive traits. Conclusion Our research helps to improve the understanding of the genetic architecture of number of piglets born alive, given that the combination of GWAS and CNV analyses allows for a more efficient identification of the genomic regions and biological processes associated with this trait in Duroc pigs. Pig breeding programs could potentially benefit from a more accurate discovery of important genomic regions. Electronic supplementary material The online version of this article (10.1186/s12864-019-5687-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nedenia Bonvino Stafuzza
- Department of Exact Science, School of Agricultural and Veterinarian Sciences (FCAV), Sao Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil. .,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Rafael Medeiros de Oliveira Silva
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA.,National Center for Cool and Cold Water Aquaculture (NCCCWA), Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, USA
| | | | - Yutaka Masuda
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Yijian Huang
- Smithfield Premium Genetics Group, Rose Hill, NC, USA
| | - Kent Gray
- Smithfield Premium Genetics Group, Rose Hill, NC, USA
| | | |
Collapse
|
14
|
He Y, Lin Y, Zhu Y, Ping P, Wang G, Sun F. Murine PAIP1 stimulates translation of spermiogenic mRNAs stored by YBX2 via its interaction with YBX2†. Biol Reprod 2018; 100:561-572. [PMID: 30295753 DOI: 10.1093/biolre/ioy213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/23/2018] [Accepted: 10/04/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Yue He
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, 200030 Shanghai, China
| | - Yu Lin
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, 200030 Shanghai, China
| | - Yu Zhu
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, 200030 Shanghai, China
| | - Ping Ping
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, 200030 Shanghai, China
| | - Guishuan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, 226021 Nantong, Jiangsu, China
| | - Fei Sun
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, 200030 Shanghai, China
| |
Collapse
|
15
|
Y-box proteins combine versatile cold shock domains and arginine-rich motifs (ARMs) for pleiotropic functions in RNA biology. Biochem J 2018; 475:2769-2784. [PMID: 30206185 DOI: 10.1042/bcj20170956] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022]
Abstract
Y-box proteins are single-strand DNA- and RNA-binding proteins distinguished by a conserved cold shock domain (CSD) and a variable C-terminal domain organized into alternating short modules rich in basic or acidic amino acids. A huge literature depicts Y-box proteins as highly abundant, staggeringly versatile proteins that interact with all mRNAs and function in most forms of mRNA-specific regulation. The mechanisms by which Y-box proteins recognize mRNAs are unclear, because their CSDs bind a jumble of diverse elements, and the basic modules in the C-terminal domain are considered to bind nonspecifically to phosphates in the RNA backbone. A survey of vertebrate Y-box proteins clarifies the confusing names for Y-box proteins, their domains, and RNA-binding motifs, and identifies several novel conserved sequences: first, the CSD is flanked by linkers that extend its binding surface or regulate co-operative binding of the CSD and N-terminal and C-terminal domains to proteins and RNA. Second, the basic modules in the C-terminal domain are bona fide arginine-rich motifs (ARMs), because arginine is the predominant amino acid and comprises 99% of basic residues. Third, conserved differences in AA (amino acid) sequences between isoforms probably affect RNA-binding specificity. C-terminal ARMs connect with many studies, demonstrating that ARMs avidly bind sites containing specific RNA structures. ARMs crystallize insights into the under-appreciated contributions of the C-terminal domain to site-specific binding by Y-box proteins and difficulties in identifying site-specific binding by the C-terminal domain. Validated structural biology techniques are available to elucidate the mechanisms by which YBXprot (Y-box element-binding protein) CSDs and ARMs identify targets.
Collapse
|
16
|
Kleene KC. Gordon Dixon, protamines, and the atypical patterns of gene expression in spermatogenic cells. Syst Biol Reprod Med 2018; 64:417-423. [PMID: 30129372 DOI: 10.1080/19396368.2018.1505973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Gordon Dixon's pioneering work on the replacement of histones by protamines during spermatogenesis inspired research as recombinant DNA became widely used to analyze gene expression in mammalian spermatogenic cells. The impact of recombinant DNA began immediately with the identification of mouse protamine 1 as a haploid-expressed mRNA, resolving a decades-long controversy whether gene expression in haploid spermatogenic cells distorts transmission of alleles to progeny. Numerous insights into the biology of spermatogenesis followed as the sequences of many mRNAs revealed that the patterns of gene expression in spermatogenic cells are astonishingly different from those in other cells in the mammalian body. Studies of these phenomena have generated fundamental insights across reproductive, molecular and evolutionary biology. Abbreviations: PRM1: protamine 1; PRM2: protamine 2; TCE: translation control element.
Collapse
|