1
|
Hodge RA, Bach EA. Mechanisms of Germline Stem Cell Competition across Species. Life (Basel) 2024; 14:1251. [PMID: 39459551 PMCID: PMC11509876 DOI: 10.3390/life14101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we introduce the concept of cell competition, which occurs between heterogeneous neighboring cell populations. Cells with higher relative fitness become "winners" that outcompete cells of lower relative fitness ("losers"). We discuss the idea of super-competitors, mutant cells that expand at the expense of wild-type cells. Work on adult stem cells (ASCs) has revealed principles of neutral competition, wherein ASCs can be stochastically lost and replaced, and of biased competition, in which a winning ASC with a competitive advantage replaces its neighbors. Germline stem cells (GSCs) are ASCs that are uniquely endowed with the ability to produce gametes and, therefore, impact the next generation. Mechanisms of GSC competition have been elucidated by studies in Drosophila gonads, tunicates, and the mammalian testis. Competition between ASCs is thought to underlie various forms of cancer, including spermatocytic tumors in the human testis. Paternal age effect (PAE) disorders are caused by de novo mutations in human GSCs that increase their competitive ability and make them more likely to be inherited, leading to skeletal and craniofacial abnormalities in offspring. Given its widespread effects on human health, it is important to study GSC competition to elucidate how cells can become winners or losers.
Collapse
Affiliation(s)
| | - Erika A. Bach
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
2
|
Kültz D, Gardell AM, DeTomaso A, Stoney G, Rinkevich B, Rinkevich Y, Qarri A, Dong W, Luu B, Lin M. Deep quantitative proteomics of North American Pacific coast star tunicate (Botryllus schlosseri). Proteomics 2024; 24:e2300628. [PMID: 38400697 DOI: 10.1002/pmic.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Botryllus schlosseri, is a model marine invertebrate for studying immunity, regeneration, and stress-induced evolution. Conditions for validating its predicted proteome were optimized using nanoElute® 2 deep-coverage LCMS, revealing up to 4930 protein groups and 20,984 unique peptides per sample. Spectral libraries were generated and filtered to remove interferences, low-quality transitions, and only retain proteins with >3 unique peptides. The resulting DIA assay library enabled label-free quantitation of 3426 protein groups represented by 22,593 unique peptides. Quantitative comparisons of single systems from a laboratory-raised with two field-collected populations revealed (1) a more unique proteome in the laboratory-raised population, and (2) proteins with high/low individual variabilities in each population. DNA repair/replication, ion transport, and intracellular signaling processes were distinct in laboratory-cultured colonies. Spliceosome and Wnt signaling proteins were the least variable (highly functionally constrained) in all populations. In conclusion, we present the first colonial tunicate's deep quantitative proteome analysis, identifying functional protein clusters associated with laboratory conditions, different habitats, and strong versus relaxed abundance constraints. These results empower research on B. schlosseri with proteomics resources and enable quantitative molecular phenotyping of changes associated with transfer from in situ to ex situ and from in vivo to in vitro culture conditions.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, Davis, California, USA
| | - Alison M Gardell
- School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington, USA
| | - Anthony DeTomaso
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Goleta, California, USA
| | - Greg Stoney
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Goleta, California, USA
| | - Baruch Rinkevich
- Israel Oceanography & Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Yuval Rinkevich
- Helmholtz Zentrum München, Regenerative Biology and Medicine Institute, Munich, Germany
| | - Andy Qarri
- Israel Oceanography & Limnological Research, National Institute of Oceanography, Haifa, Israel
- Helmholtz Zentrum München, Regenerative Biology and Medicine Institute, Munich, Germany
| | - Weizhen Dong
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, Davis, California, USA
| | - Brenda Luu
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, Davis, California, USA
| | - Mandy Lin
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, Davis, California, USA
| |
Collapse
|
3
|
Özpolat BD. Annelids as models of germ cell and gonad regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:126-143. [PMID: 38078561 PMCID: PMC11060932 DOI: 10.1002/jez.b.23233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
Germ cells (reproductive cells and their progenitors) give rise to the next generation in sexually reproducing organisms. The loss or removal of germ cells often leads to sterility in established research organisms such as the fruit fly, nematodes, frog, and mouse. The failure to regenerate germ cells in these organisms reinforced the dogma of germline-soma barrier in which germ cells are set-aside during embryogenesis and cannot be replaced by somatic cells. However, in stark contrast, many animals including segmented worms (annelids), hydrozoans, planaria, sea stars, sea urchins, and tunicates can regenerate germ cells. Here I review germ cell and gonad regeneration in annelids, a rich history of research that dates back to the early 20th century in this highly regenerative group. Examples include annelids from across the annelid phylogeny, across developmental stages, and reproductive strategies. Adult annelids regenerate germ cells as a part of regeneration, grafting, and asexual reproduction. Annelids can also recover germ cells after ablation of germ cell progenitors in the embryos. I present a framework to investigate cellular sources of germ cell regeneration in annelids, and discuss the literature that supports different possibilities within this framework, where germ-soma separation may or may not be preserved. With contemporary genetic-lineage tracing and bioinformatics tools, and several genetically enabled annelid models, we are at the brink of answering the big questions that puzzled many for over more than a century.
Collapse
Affiliation(s)
- B Duygu Özpolat
- Department of Biology, Washington University in St. Louis, St. Louis, United States, United States
| |
Collapse
|
4
|
Nourizadeh S, Kassmer S, Rodriguez D, Hiebert LS, De Tomaso AW. Whole body regeneration and developmental competition in two botryllid ascidians. EvoDevo 2021; 12:15. [PMID: 34911568 PMCID: PMC8675491 DOI: 10.1186/s13227-021-00185-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Botryllid ascidians are a group of marine invertebrate chordates that are colonial and grow by repeated rounds of asexual reproduction to form a colony of individual bodies, called zooids, linked by a common vascular network. Two distinct processes are responsible for zooid regeneration. In the first, called blastogenesis, new zooids arise from a region of multipotent epithelium from a pre-existing zooid. In the second, called whole body regeneration (WBR), mobile cells in the vasculature coalesce and are the source of the new zooid. In some botryllid species, blastogenesis and WBR occur concurrently, while in others, blastogenesis is used exclusively for growth, while WBR only occurs following injury or exiting periods of dormancy. In species such as Botrylloides diegensis, injury induced WBR is triggered by the surgical isolation of a small piece of vasculature. However, Botryllus schlosseri has unique requirements that must be met for successful injury induced WBR. Our goal was to understand why there would be different requirements between these two species. RESULTS While WBR in B. diegensis was robust, we found that in B. schlosseri, new zooid growth following injury is unlikely due to circulatory cells, but instead a result of ectopic development of tissues leftover from the blastogenic process. These tissues could be whole, damaged, or partially resorbed developing zooids, and we defined the minimal amount of vascular biomass to support ectopic regeneration. We did find a common theme between the two species: a competitive process exists which results in only a single zooid reaching maturity following injury. We utilized this phenomenon and found that competition is reversible and mediated by circulating factors and/or cells. CONCLUSIONS We propose that WBR does not occur in B. schlosseri and that the unique requirements defined in other studies only serve to increase the chances of ectopic development. This is likely a response to injury as we have discovered a vascular-based reversible competitive mechanism which ensures that only a single zooid completes development. This competition has been described in other species, but the unique response of B. schlosseri to injury provides a new model to study resource allocation and competition within an individual.
Collapse
Affiliation(s)
- Shane Nourizadeh
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA.
| | - Susannah Kassmer
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| | - Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| | - Laurel S Hiebert
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| |
Collapse
|
5
|
Rodriguez D, Taketa DA, Madhu R, Kassmer S, Loerke D, Valentine MT, Tomaso AWD. Vascular Aging in the Invertebrate Chordate, Botryllus schlosseri. Front Mol Biosci 2021; 8:626827. [PMID: 33898513 PMCID: PMC8060491 DOI: 10.3389/fmolb.2021.626827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Vascular diseases affect over 1 billion people worldwide and are highly prevalent among the elderly, due to a progressive deterioration of the structure of vascular cells. Most of our understanding of these age-related cellular changes comes from in vitro studies on human cell lines. Further studies of the mechanisms underlying vascular aging in vivo are needed to provide insight into the pathobiology of age-associated vascular diseases, but are difficult to carry out on vertebrate model organisms. We are studying the effects of aging on the vasculature of the invertebrate chordate, Botryllus schlosseri. This extracorporeal vascular network of Botryllus is transparent and particularly amenable to imaging and manipulation. Here we use a combination of transcriptomics, immunostaining and live-imaging, as well as in vivo pharmacological treatments and regeneration assays to show that morphological, transcriptional, and functional age-associated changes within vascular cells are key hallmarks of aging in B. schlosseri, and occur independent of genotype. We show that age-associated changes in the cytoskeleton and the extracellular matrix reshape vascular cells into a flattened and elongated form and there are major changes in the structure of the basement membrane over time. The vessels narrow, reducing blood flow, and become less responsive to stimuli inducing vascular regression. The extracorporeal vasculature is highly regenerative following injury, and while age does not affect the regeneration potential, newly regenerated vascular cells maintain the same aged phenotype, suggesting that aging of the vasculature is a result of heritable epigenetic changes.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Daryl A. Taketa
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Roopa Madhu
- Department of Physics and Astronomy, University of Denver, Denver, CO, United States
| | - Susannah Kassmer
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO, United States
| | - Megan T. Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Anthony W. De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
6
|
Kassmer SH, Langenbacher AD, De Tomaso AW. Integrin-alpha-6+ Candidate stem cells are responsible for whole body regeneration in the invertebrate chordate Botrylloides diegensis. Nat Commun 2020; 11:4435. [PMID: 32895385 PMCID: PMC7477574 DOI: 10.1038/s41467-020-18288-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Colonial ascidians are the only chordates able to undergo whole body regeneration (WBR), during which entire new bodies can be regenerated from small fragments of blood vessels. Here, we show that during the early stages of WBR in Botrylloides diegensis, proliferation occurs only in small, blood-borne cells that express integrin-alpha-6 (IA6), pou3 and vasa. WBR cannot proceed when proliferating IA6+ cells are ablated with Mitomycin C, and injection of a single IA6+ Candidate stem cell can rescue WBR after ablation. Lineage tracing using EdU-labeling demonstrates that donor-derived IA6+ Candidate stem cells directly give rise to regenerating tissues. Inhibitors of either Notch or canonical Wnt signaling block WBR and reduce proliferation of IA6+ Candidate stem cells, indicating that these two pathways regulate their activation. In conclusion, we show that IA6+ Candidate stem cells are responsible for whole body regeneration and give rise to regenerating tissues. Clonal ascidians are able to undergo whole body regeneration (WBR), where entire new bodies can be regenerated from blood vessel fragments. Here, the authors provide evidence in Botrylloides diegensis supporting pou3 and vasa expressing blood-borne cells isolated with anti-IA6 antibody as candidate stem cells responsible for WBR.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Molecular, Cellular and Developmental Biology, University of California, UCEN Rd, 93106, Santa Barbara, CA, USA.
| | - Adam D Langenbacher
- Molecular, Cell, and Developmental Biology, University of California, 610 Charles E Young Dr S, Los Angeles, CA, 90095, Los Angeles, CA, USA
| | - Anthony W De Tomaso
- Molecular, Cellular and Developmental Biology, University of California, UCEN Rd, 93106, Santa Barbara, CA, USA
| |
Collapse
|
7
|
Alié A, Hiebert LS, Scelzo M, Tiozzo S. The eventful history of nonembryonic development in tunicates. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:250-266. [PMID: 32190983 DOI: 10.1002/jez.b.22940] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 11/06/2022]
Abstract
Tunicates encompass a large group of marine filter-feeding animals and more than half of them are able to reproduce asexually by a particular form of nonembryonic development (NED) generally called budding. The phylogeny of tunicates suggests that asexual reproduction is an evolutionarily plastic trait, a view that is further reinforced by the fact that budding mechanisms differ from one species to another, involving nonhomologous tissues and cells. In this review, we explore more than 150 years of literature to provide an overview of NED diversity and we present a comparative picture of budding tissues across tunicates. Based on the phylogenetic relationships between budding and nonbudding species, we hypothesize that NED diversity is the result of seven independent acquisitions and subsequent diversifications in the course of tunicate evolution. While this scenario represents the state-of-the-art of our current knowledge, we point out gray areas that need to be further explored to refine our understanding of tunicate phylogeny and NED. Tunicates, with their plastic evolution and diversity of budding, represent an ideal playground for evolutionary developmental biologists to unravel the genetic and molecular mechanisms regulating nonembryonic development, as well as to better understand how such a profound innovation in life-history has evolved in numerous metazoans.
Collapse
Affiliation(s)
- Alexandre Alié
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Institut de la Mer de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | - Laurel S Hiebert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Institut de la Mer de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France.,Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Scelzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Institut de la Mer de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Institut de la Mer de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| |
Collapse
|
8
|
Rodriguez D, Nourizadeh S, De Tomaso AW. The biology of the extracorporeal vasculature of Botryllus schlosseri. Dev Biol 2019; 448:309-319. [PMID: 30760410 DOI: 10.1016/j.ydbio.2018.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/29/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023]
Abstract
The extracorporeal vasculature of the colonial ascidian Botryllus schlosseri plays a key role in several biological processes: transporting blood, angiogenesis, regeneration, self-nonself recognition, and parabiosis. The vasculature also interconnects all individuals in a colony and is composed of a single layer of ectodermally-derived cells. These cells form a tube with the basal lamina facing the lumen, and the apical side facing an extracellular matrix that consists of cellulose and other proteins, known as the tunic. Vascular tissue is transparent and can cover several square centimeters, which is much larger than any single individual within the colony. It forms a network that ramifies and expands to the perimeter of each colony and terminates into oval-shaped protrusions known as ampullae. Botryllus individuals replace themselves through a weekly budding cycle, and vasculature is added to ensure the interconnection of each new individual, thus there is continuous angiogenesis occurring naturally. The vascular tissue itself is highly regenerative; surgical removal of the ampullae and peripheral vasculature triggers regrowth within 24-48 h, which includes forming new ampullae. When two individuals, whether in the wild or in the lab, come into close contact and their ampullae touch, they can either undergo parabiosis through anastomosing vessels, or reject vascular fusion. The vasculature is easily manipulated by direct means such as microinjections, microsurgeries, and pharmacological reagents. Its transparent nature allows for in vivo analysis by bright field and fluorescence microscopy. Here we review the techniques and approaches developed to study the different biological processes that involve the extracorporeal vasculature.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Shane Nourizadeh
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
9
|
Schärer L. The varied ways of being male and female. Mol Reprod Dev 2017; 84:94-104. [PMID: 28032683 DOI: 10.1002/mrd.22775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022]
Abstract
Our understanding of sexual reproduction is mainly informed by research on gonochorists (i.e., species with separate sexes), including insects, birds, and mammals. But the male and female sexes are not two types of individuals; they actually represent two different reproductive strategies, and in many organisms, these two strategies are distributed among individuals in a population in a variety of ways. For example, sequential hermaphrodites (or sex-changers) exhibit one strategy early in life and later switch to the other, while simultaneous hermaphrodites exhibit both strategies at the same time. There are also many intermediate sexual systems that mix gonochorists and hermaphrodites in the same species and within many organismal groups, shifts occur between these sexual systems. A fascinating collection of six articles in this special issue on Hermaphroditism & Sex Determination impressively documents some important challenges to our understanding of sex determination, and the specification of male and female reproductive function when these need to occur within the same individual rather than in two separate individuals. Moreover, hermaphroditism changes how we need to think about reproductive allocation to sexual functions, how such allocation can be specified, as well as how the sexual system affects sexual conflict and the resulting antagonistic coevolution. Our understanding of sexual reproduction will profit greatly from exploring the varied ways of being male and female. Mol. Reprod. Dev. 84: 94-104, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|