1
|
Park SH, Gye MC. Dibutyl phthalate disrupts [Ca 2+] i, reactive oxygen species, [pH] i, protein kinases and mitochondrial activity, impairing sperm function. J Environ Sci (China) 2025; 151:68-78. [PMID: 39481973 DOI: 10.1016/j.jes.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 11/03/2024]
Abstract
To explore the mechanism of sperm dysfunction caused by dibutyl phthalate (DBP), the effects of DBP on intracellular [Ca2+] and [pH], reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, phosphorylation of protein kinase A (PKA) substrate proteins and phosphotyrosine (p-Tyr) proteins, sperm motility, spontaneous acrosome reaction, and tail bending were examined in mouse spermatozoa. At 100 µg/mL, DBP significantly increased tail bending and [Ca2+]i. Interestingly, DBP showed biphasic effects on [pH]i. DBP at 10-100 µg/mL significantly decreased sperm motility. Similarly, Ca2+ ionophore A23187 decreased [pH]i sperm motility, suggesting that DBP-induced excessive [Ca2+]i decreased sperm motility. DBP significantly increased ROS and LPO. DBP at 100 µg/mL significantly decreased mPTP closing, MMP, and ATP levels in spermatozoa, as did H2O2, indicative of ROS-mediated mitochondrial dysfunction caused by DBP. DBP as well as H2O2 increased p-Tyr sperm proteins and phosphorylated PKA substrate sperm proteins. DBP at 1-10 µg/mL significantly increased the spontaneous acrosome reaction, suggesting that DBP can activate sperm capacitation. Altogether, DBP showed a biphasic effect on intracellular signaling in spermatozoa. At concentrations relevant to seminal ortho-phthalate levels, DBP activates [pH]i, protein tyrosine kinases and PKA via physiological levels of ROS generation, potentiating sperm capacitation. DBP at high doses excessively raises [Ca2+]i and ROS and disrupts [pH]i, impairing the mitochondrial function, tail structural integrity, and sperm motility.
Collapse
Affiliation(s)
- Seung Hyun Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Nguyen HT, Do SQ, Wakai T, Funahashi H. Mitochondrial content and mtDNA copy number in spermatozoa and penetrability into oocytes. Theriogenology 2024; 234:125-132. [PMID: 39689446 DOI: 10.1016/j.theriogenology.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
The current narrative review aims to summarize the relation of mitochondrial content (MC) and mitochondrial DNA copy number (MDCN) in spermatozoa with sperm penetrability, and to discuss the various determining factors during the process of spermatogenesis in mammals. There are many potential factors associated with the quantitative alteration of MC and MDCN in male gametes from spermatogenesis to ejaculation. Particularly, spermatogenesis may be the first step to jointly contribute to an incomplete reduction of MC and MDCN in spermatozoon. It appears to be now quite clear that some abnormalities during spermatogenesis and oxidative stress are the main factors highly associated with the quantitative change of MC and MDCN in spermatozoa, consequently affecting sperm quality and their penetrability into oocytes. Currently, a series of proteins contributing to form sperm midpiece during spermatogenesis and cytoplasmic elimination during spermiation have been currently identified. The present review provides insight into how these factors interact with sperm MC and MDCN, and handholds to gain a better understanding of their roles. This review also highlights the uniqueness of normal fertile spermatozoa which have relatively lower MC and MDCN, but have mitochondria that function completely in multiple pivotal physiological pathways.
Collapse
Affiliation(s)
- Hai Thanh Nguyen
- Department of Animal Science, Okayama University, Okayama, Japan; Department of Animal Production, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Son Quang Do
- Department of Animal Science, Okayama University, Okayama, Japan
| | - Takuya Wakai
- Department of Animal Science, Okayama University, Okayama, Japan
| | | |
Collapse
|
3
|
Harima R, Sasaki T, Kaneko T, Aso F, Takashima H, Toyama T, Hara K, Tanemura K, Saito Y. Ccdc152 is not necessary for male fertility, but contributes to maintaining sperm morphology. J Reprod Dev 2024; 70:396-404. [PMID: 39462603 DOI: 10.1262/jrd.2024-058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Selenoprotein P (SeP) is synthesized in the liver and plays a vital role in maintaining selenium homeostasis via transport throughout the body. Previous studies have shown that SeP-deficient mice have severely reduced expression of selenoproteins essential for testicular function, leading to male infertility. We previously reported that the high expression of Ccdc152 in hepatocytes acts as a lncRNA, suppressing SeP expression in the liver. Ccdc152 reduces SeP translation by binding to SeP mRNA and decreasing its interaction with SECIS-binding protein 2. Although Ccdc152 is highly expressed in testes, its function remains unclear. Therefore, this study aimed to elucidate the role of Ccdc152 in the testes. Using the CRISPR/Cas9 system, we generated mice lacking all exons of Ccdc152 and found that SeP expression levels in the liver and plasma, as well as overall selenium homeostasis, remained unchanged. No significant differences were observed in the expression of glutathione peroxidase 1/4 or level of selenium in the testes. Subsequent investigation of the impact on male reproductive function revealed no abnormalities in sperm motility or Mendelian ratios of the offspring. However, a slight decrease in testicular weight and an increased rate of sperm malformations in the epididymis were observed. RNA-seq and pathway analyses identified the reduced expression of multiple genes related to kinesin and reproductive pathways. Based on these findings, Ccdc152 may not be essential for male reproductive function, but it may enhance reproductive capabilities by maintaining the expression of genes necessary for reproduction.
Collapse
Affiliation(s)
- Ryua Harima
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Takahiro Sasaki
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Takayuki Kaneko
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan
| | - Fuka Aso
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hayato Takashima
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
4
|
Jorge-Cruz CY, Roa-Espitia AL, Hernández-González EO. Guinea pig spermatozoa adhesion to an immobilized fibronectin matrix alters their physiology and increases their survival†. Biol Reprod 2024; 111:1202-1219. [PMID: 39427254 DOI: 10.1093/biolre/ioae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024] Open
Abstract
Isthmus is the region of the oviduct considered a reservoir for spermatozoa, where they are retained and released synchronously with ovulation. Integrins mediate this interaction, and it is suggested that they regulate the viability and capacitation of spermatozoa. Spermatozoa retained in the oviductal epithelial cells show specific characteristics: normal morphology, intact acrosome and plasma membrane, no DNA fragmentation, and low levels of intracellular Ca2+, and protein phosphorylation at Tyr. This work aimed to define spermatozoa's ability to adhere to an immobilized fibronectin matrix and its effects on their viability and capacitation. We found that guinea pig spermatozoa showed a high affinity for adhering to an immobilized fibronectin matrix but not to those made up of type 1 collagen or laminin. This interaction was mediated by integrins that recognize the RGD domain. Spermatozoa adhered to an immobilized fibronectin matrix were maintained in a state of low capacitation: low levels of intracellular concentration of Ca2+, protein phosphorylation in Tyr, and F-actin. Also, spermatozoa kept their plasma membrane and acrosome intact, flagellum beating and showed low activation of caspases 3/7. The spermatozoa adhered to the immobilized fibronectin matrix, gradually detached, forming rosettes and did not undergo a spontaneous acrosomal reaction but were capable of experiencing a progesterone-induced acrosomal reaction. In conclusion, the adhesion of spermatozoa to an immobilized fibronectin matrix alters the physiology of the spermatozoa, keeping them in a steady state of capacitation, increasing their viability in a similar way to what was reported for spermatozoa adhered to oviductal epithelial cells.
Collapse
Affiliation(s)
- Coral Y Jorge-Cruz
- Dept. of Cell Biology Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico city, Mexico Av. Instituto Politecnico Nacional 2508, CP 07360
| | - Ana L Roa-Espitia
- Dept. of Cell Biology Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico city, Mexico Av. Instituto Politecnico Nacional 2508, CP 07360
| | - Enrique O Hernández-González
- Dept. of Cell Biology Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico city, Mexico Av. Instituto Politecnico Nacional 2508, CP 07360
| |
Collapse
|
5
|
Van de Hoek M, Rickard JP, de Graaf SP. Manipulation of metabolism to improve liquid preservation of mammalian spermatozoa. Anim Reprod Sci 2024; 271:107631. [PMID: 39515267 DOI: 10.1016/j.anireprosci.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Reproductive success in mammals hinges on the ability of sperm to generate sufficient energy through cellular metabolism to perform the energy-intensive processes required for fertilisation, including motility, maturation, and oocyte interactions. It is now widely accepted that sperm exhibit metabolic flexibility, utilising a combination of glycolysis and oxidative phosphorylation (supported by the Krebs cycle and other complementary pathways) to meet their energy demands. However, the preferred pathway for energy production varies significantly among species, making it challenging to map species-specific metabolic strategies, particularly in species with high metabolic flexibility, like the ram. Additionally, differences in methodologies used to measure metabolism have led to biased interpretations of species' metabolic strategies, complicating the development of liquid storage methods aimed at preserving spermatozoa by manipulating energy generation based on species-specific requirements. This review examines sperm energy requirements, current methods for assessing metabolic capacity, and the current research on species-specific metabolism. Future research should focus on establishing a standardised approach for determining metabolic preferences to accurately map species-specific strategies, a critical step before developing effective liquid preservation methods. By identifying species-specific regulatory points, strategies can be designed to temporarily inhibit metabolic pathways, conserving resources and reducing the accumulation of metabolic by-products. Alternatively, supplementation with depleted metabolites can be guided by understanding areas of excessive consumption during prolonged metabolism. Applying this knowledge to develop tailored preservation techniques will help minimise sperm damage and improve survival during in vitro processing and liquid storage, ultimately enhancing the success of artificial breeding programs.
Collapse
Affiliation(s)
| | | | - Simon P de Graaf
- The University of Sydney, Faculty of Science, NSW 2006, Australia
| |
Collapse
|
6
|
Braga RF, Correia LFL, Guimarães MPP, Barbosa NO, de Oliveira TG, da Silva AA, Bragança GM, Brandão FZ, Alves BRC, Souza-Fabjan JMG. Anethole improves mitochondrial activity and quality parameters in fresh and frozen-thawed ovine semen. Res Vet Sci 2024; 181:105446. [PMID: 39531870 DOI: 10.1016/j.rvsc.2024.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Anethole, an antioxidant found in plants, appears to improve the survival of spermatozoa during semen cryopreservation. This study assessed the effects of commercial trans-anethole in ram semen cryopreservation. Thirty ejaculates from six rams were diluted in media containing anethole at the following concentrations: CONT (0 μM), AN10 (10 μM), AN50 (50 μM), and AN100 (100 μM). Semen was slow-frozen, preserved in liquid nitrogen, and thawed. Anethole at 10 μM or 50 μM did not compromise any studied sperm quality parameter but increased pre-freezing functionality of membrane and mitochondrial activity. At 10 μM, anethole reduced post-thawing spermatozoa lipoperoxidation. At 50 μM, anethole sustained higher mitochondrial activity after thawing, reduced minor defects in sperm, and increased the number of sperm binding to perivitelline membrane, while keeping lipoperoxidation levels as in control. Anethole at 100 μM promoted higher pre- and post-freezing mitochondrial activity and higher number of sperm binding to perivitelline membrane, in comparison to control. Additionally, some post-thawing kinematic parameters were enhanced by anethole at 100 μM. Of note, mitochondrial activity and lipoperoxidation were higher with anethole at 100 μM in comparison to 50 μM, not differing from control. At the hypoosmotic test, the highest concentration (100 μM) tested reduced sperm osmotic resistance. The results of this study indicate that using anethole in cryopreservation media promoted mostly positive effects on the fresh and post-thawed ram semen, and the advantages vary according to its concentration.
Collapse
Affiliation(s)
- Rachel F Braga
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil.
| | - Lucas F L Correia
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil
| | - Mariana P P Guimarães
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil
| | - Nathalia O Barbosa
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil
| | - Thais G de Oliveira
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil
| | - Andreza A da Silva
- Faculdade de Medicina Veterinária, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 07, Cep 23890-000 Seropédica, RJ, Brazil
| | - Glaucia M Bragança
- Centro Universitário da Amazônia, Rua Municipalidade, 530, CEP 66053-180 Belém, PA, Brazil
| | - Felipe Z Brandão
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil
| | - Bruna R C Alves
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil.
| | - Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil.
| |
Collapse
|
7
|
Hakimi F, Karimi Torshizi MA, Hezavehei M, Sharafi M. Protective Effect of N-Acetylcysteine on Rooster Semen Cryopreservation. Biopreserv Biobank 2024; 22:609-615. [PMID: 38634668 DOI: 10.1089/bio.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Cryopreservation of avian semen is a useful reproductive technique in the poultry industry. However, during cooling, elevated reactive oxygen species (ROS) levels have destructive effects on both quality and function of thawed sperm. The aim of the current study is to investigate the antioxidant effects of N-acetylcysteine (NAC) during rooster semen cryopreservation. Semen samples were collected from ten Ross 308 broiler breeder roosters (32 weeks) and mixed. The mixed samples were divided into five equal parts and cryopreserved in Lake Buffer extender that contained different concentrations (0, 0.01, 0.1, 1, and 10 mM) of NAC. The optimum concentration of NAC was determined based on quality parameters of mobility, viability, membrane integrity, acrosome integrity, lipid peroxidation, and mitochondrial membrane potential after the freeze-thaw process. There was a higher percentage (p < 0.05) of total motility (TM) (60.9 ± 2.4%) and progressive motility (PM) (35.6 ± 1.9%) observed with the NAC-0.1 group compared to the other groups. Significantly higher percentages of viability (74.4 ± 2.3% and 71 ± 2.3%), membrane integrity (76.4 ± 1.5% and 74.7 ± 1.5%) and mitochondrial membrane potential (67.1 ± 1.6% and 66.3 ± 1.6%) were observed in the NAC-0.1 and NAC-1 groups compared to the other frozen groups (p < 0.05). The lowest percentage of lipid peroxidation and nonviable sperm was found in the NAC-0.1 and NAC-1 groups compared to the other groups (p < 0.05). The average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), and acrosome integrity, were not affected by different concentrations of NAC in the thawed sperm (p > 0.05). Both NAC-0.1 and NAC-1 appear to be beneficial for maintaining the quality of rooster sperm after thawing.
Collapse
Affiliation(s)
- Farhad Hakimi
- Department of Animal Sciences, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Research Center for Reproduction and Fertility, Faculty of Veterinary medicine, Montreal University, St-Hyacinthe, Canada
| | - Mohsen Sharafi
- Department of Animal Sciences, College of Agriculture, Tarbiat Modares University, Tehran, Iran
- Semex Alliance, Guelph, Canada
| |
Collapse
|
8
|
Li S, Liu W, Chen X, Chen Z, Shi J, Hua J. From Hypoxia to Oxidative Stress: Antioxidants' Role to Reduce Male Reproductive Damage. Reprod Sci 2024:10.1007/s43032-024-01746-x. [PMID: 39557807 DOI: 10.1007/s43032-024-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Hypoxia is one of the main reasons causing male reproductive damage for people living in high altitude. Pathological evidences have been presented both in humans and animal models. Spermatogenesis disruption, worse sperm parameters, hormone disorder and erectile dysfunction are emblematic of male reproductive impairments brought by hypoxia. Among many mechanisms impairing male reproductive systems, oxidative stress is always a field of interest to explore. Although previous reviews have discussed about hypoxia or oxidative stress and antioxidants on male fertility respectively, no one has elucidated the concrete role of oxidative stress in hypoxia and correlating antioxidants that can ameliorate the negative effects. In this review, we firstly introduce hypoxia etiology and describe specific damage of hypoxia on male reproductive functions. Then, we emphasized interplays between hypoxia and oxidative stress as well as negative influences brought by oxidative stress. Finally, we listed antioxidants for oxidative stress and hypoxia-induced reproductive damage and discussed their controversial experimental effects for male infertility.
Collapse
Affiliation(s)
- Siyao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhaoyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingtian Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
9
|
Shan L, Gao L, Chai Y, Li K, Yu J, Liang F, Qin J, Ni Y, Sun P. Cordycepin improves hyperactivation and acrosome reaction through adenosine receptors during human sperm capacitation in vitro. Reprod Biol Endocrinol 2024; 22:143. [PMID: 39533327 PMCID: PMC11555834 DOI: 10.1186/s12958-024-01318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sperm capacitation is a prerequisite for natural or in vitro fertilization. After capacitation, sperm become hyperactivated and undergo an acrosome reaction, which helps them penetrate the oocyte. Cordycepin, a bioactive compound first isolated from Cordyceps militaris, is an adenosine analog with numerous physiological activities. However, its effects on sperm capacitation remain unclear. This study aims to elucidate the effects and mechanisms of cordycepin on human sperm capacitation. METHODS During in vitro capacitation culture, healthy human sperm were treated with cordycepin (20, 100, 500 µM). Sperm motility and hyperactivation were detected using a computer-assisted sperm analyzer. Sperm acrosome reaction was measured using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin. Sperm protein kinase A (PKA) activity was analyzed using an ELISA kit. The levels of sperm protein tyrosine phosphorylation were detected by western blotting. Sperm DNA damage was detected by a sperm chromatin dispersion assay. Reactive oxygen species (ROS) were measured using the fluorescence probe 2',7'-dichlorodihydrofluorescein diacetate. The expression and localization of adenosine receptors were analyzed by western blotting and immunofluorescence. The specific inhibitors of adenosine receptors were used to confirm their effects on cordycepin-induced sperm capacitation. Finally, molecular docking was performed to analyze the interaction between cordycepin and adenosine receptors. RESULTS Cordycepin improved hyperactivated sperm motility, acrosome reaction, PKA activity, and protein tyrosine phosphorylation during capacitation while having no obvious effects on sperm ROS or DNA damage. Four adenosine receptor subtypes were expressed in human sperm, but their localizations differed. Inhibition of adenosine receptors significantly decreased cordycepin-induced sperm hyperactivation and the acrosome reaction. Molecular docking showed that cordycepin can bind to the four subtypes of adenosine receptors. CONCLUSION Cordycepin may promote human sperm capacitation through adenosine receptor-mediated signaling pathways. These findings may be useful for assisted reproductive technology and animal breeding.
Collapse
Affiliation(s)
- Lijun Shan
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Linmei Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhao Chai
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianmin Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Liang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiangfeng Qin
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Scalisi EM, Pecoraro R, Scalisi A, Dragotto J, Bracchitta G, Zimbone M, Impellizzeri G, Brundo MV. Susceptibility of Human Spermatozoa to Titanium Dioxide Nanoparticles: Evaluation of DNA Damage and Biomarkers. Life (Basel) 2024; 14:1455. [PMID: 39598253 PMCID: PMC11595473 DOI: 10.3390/life14111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Nowadays, developing countries have seen a reduction in male reproductive parameters, and it has been linked to the exposure of endocrine disrupting chemicals (EDCs), which are able to mimic or disrupt steroid hormone actions. Also, nanoparticles have shown effects on the male reproductive system, in particular the use of TiO2-NPs in drugs, cosmetics, and food as pigment additives, and, thanks to their small size (1-100 nm), provide themselves the opportunity to be internalized by the body and pass the blood-testis barrier (BTB). Therefore, TiO2-NPs can act on spermatogenesis and spermatozoa. In this study, we carried out an in vitro assay on human spermatozoa to evaluate the effects of TiO2-NPs at the concentrations of 500, 250, 100, and 50 ppm. Exposure did not statistically alter sperm parameters (e.g., motility and viability) but induced damage to sperm DNA and the expression of biomarkers by spermatozoa. This immunofluorescence investigation showed a positivity for biomarkers of stress (HSP70 and MTs) on the connecting piece of spermatozoa and also for sex hormone binding globulin (SHBG) biomarkers. The SHBG protein acts as a carrier of androgens and estrogens, regulating their bioavailability; therefore, its expression in the in vitro assay did not rule out the ability of TiO2-NPs to act as endocrine disruptors.
Collapse
Affiliation(s)
- Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (R.P.); (A.S.); (M.V.B.)
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (R.P.); (A.S.); (M.V.B.)
| | - Agata Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (R.P.); (A.S.); (M.V.B.)
| | - Jessica Dragotto
- U.O. Fisiopatologia della Riproduzione Umana—Clinica del Mediterraneo, 97100 Ragusa, Italy; (J.D.); (G.B.)
| | - Giovanni Bracchitta
- U.O. Fisiopatologia della Riproduzione Umana—Clinica del Mediterraneo, 97100 Ragusa, Italy; (J.D.); (G.B.)
| | | | | | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (R.P.); (A.S.); (M.V.B.)
| |
Collapse
|
11
|
Stigliani S, Ravera S, Maccarini E, Rizzo C, Massarotti C, Anserini P, Bozzo M, Amaroli A, Scaruffi P. The power of 810 nm near-infrared photobiomodulation therapy for human asthenozoospermia. Sci Rep 2024; 14:26819. [PMID: 39501019 PMCID: PMC11538380 DOI: 10.1038/s41598-024-77823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Sperm motility is a crucial factor in male fertility. Photobiomodulation (PBM) has been reported to increase sperm motility, but a consistent approach suitable for identifying standardizable protocols is lacking. We collected asthenozoospermic (n = 70) and normozoospermic (n = 20) semen. The asthenozoospermic samples were irradiated with an 810 nm diode laser, in continuous wave mode, at 0.25 W, 0.5 W, 1 W and 2 W for 60 s on a circular area of 1 cm2 through a novel handpiece with an innovative flat-top profile. Sperm motility was assessed immediately, after 30 and 60 min. A sample size calculator, unpaired t-test and one-way ANOVA with post-hoc Tukey HSD tests were used for statistics. One and 2 W were the most effective outputs in increasing progressive motility compared to control (p < 0.001). The maximum effect was immediately after 1 W-PBM (p < 0.001) and decreased after 60 min (p < 0.001). Time physiologically decreased vitality (p < 0.001), but less in the 1 W-PBM samples (p < 0.05). 1 W-PBM did not affect chromatin condensation. Asthenozoospermic samples displayed an impairment of 80% in oxygen consumption and ATP production and a slight inefficiency of oxidative phosphorylation compared to normozoospermic samples (p < 0.001). 1 W-PBM partially restored the functionality of aerobic metabolism (p < 0.001) by recovery of oxidative phosphorylation efficiency. PBM did not affect lactate dehydrogenase (glycolysis pathway). No irradiated samples increased accumulated malondialdehyde, a marker of lipidic peroxidation. In conclusion, PBM improves progressive motility in asthenozoospermia through increased mitochondrial energetic metabolism without harmful oxidative stress.
Collapse
Affiliation(s)
- Sara Stigliani
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Elena Maccarini
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Camilla Rizzo
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Massarotti
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Health (DiNOGMI), University of Genova, Genova, Italy
| | - Paola Anserini
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Bozzo
- BIO-Photonics Overarching Research laboratory, Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Andrea Amaroli
- BIO-Photonics Overarching Research laboratory, Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Genova, Italy.
| | - Paola Scaruffi
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
12
|
Ye JJ, Chen ZY, Wang QH, Liao XY, Wang XY, Zhang CC, Liu LR, Wei Q, Bao YG. Current treatment for male infertility: an umbrella review of systematic reviews and meta-analyses. Asian J Androl 2024; 26:645-652. [PMID: 39028629 PMCID: PMC11614172 DOI: 10.4103/aja202428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT This umbrella review aimed to summarize and provide a general evaluation of the effectiveness of current treatments for male infertility and assess the quality of evidence and possible biases. An umbrella review of systematic reviews and meta-analyses available in PubMed, Web of Science, and Scopus, covering studies published up to October 2023, was conducted. Sperm concentration, morphology, and motility were used as endpoints to evaluate the effectiveness of the treatments. Of 2998 studies, 18 published meta-analyses were extracted, yielding 90 summary effects on sperm concentration ( n = 36), sperm morphology ( n = 26), and sperm motility ( n = 28) on 28 interventions. None of the meta-analyses were classified as having low methodological quality, whereas 12 (66.7%) and 6 (33.3%) had high and moderate quality, respectively. Of the 90 summary effects, none were rated high-evidence quality, whereas 53.3% ( n = 48), 25.6% ( n = 23), and 21.1% ( n = 19) were rated moderate, low, and very low, respectively. Significant improvements in sperm concentration, morphology, and motility were observed with pharmacological interventions (N-acetyl-cysteine, antioxidant therapy, aromatase inhibitors, selective estrogen receptor modulators, hormones, supplements, and alpha-lipoic acid) and nonpharmacological interventions (varicocele repair and redo varicocelectomy). In addition, vitamin supplementation had no significant positive effects on sperm concentration, motility, or morphology. Treatments for male infertility are increasingly diverse; however, the current evidence is poor because of the limited number of patients. Further well-designed studies on single treatment and high-quality meta-analysis of intertreatment comparisons are recommended.
Collapse
Affiliation(s)
- Jian-Jun Ye
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Ze-Yu Chen
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi-Hao Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xin-Yang Liao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing-Yuan Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Chi-Chen Zhang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Liang-Ren Liu
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi-Ge Bao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Khalil EM, Rady MI, Darwish SF, Abd-Allah ER. Nano Spirulina platensis countered cisplatin-induced repro-toxicity by reversing the expression of altered steroid hormones and downregulation of the StAR gene. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03483-z. [PMID: 39414699 DOI: 10.1007/s00210-024-03483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024]
Abstract
Cisplatin is a commonly utilized chemotherapy medication for treating different sarcomas and carcinomas. Its ability interferes with cancer cells' DNA repair pathways and postpones unfavorable outcomes in cancer patients. The current investigation's goal was to ascertain if nano Spirulina platensis (NSP) might shield rat testicles from cisplatin damage by assessing the expression of the StAR and SOD genes, sex hormones, 17ß-hydroxysteroid dehydrogenase(17ß-HSD), sperm profile picture, oxidative condition of testes, testicular histology, and DNA damage. Four equal and random groups of 28 adult male Wistar rats were created; the control group was given saline for 8 weeks. An extraction of NSP at a concentration of 2500 mg/kg body weight was administered orally for 8 weeks to the NSP group. For the first 4 weeks, the cisplatin group was intraperitoneally injected with 2 mg/kg/body weight of cisplatin, and for the next 4 weeks, they were given a dosage of 4 mg/kg/body weight. The cisplatin + NSP group was given both NSP and cisplatin. The results of the experiment showed that intake of NSP and cisplatin improved sperm profile; re-established the balance of oxidizing agents and antioxidant state; enhanced testicular histology; promoted the histometric parameters of seminiferous tubules including epithelial height, their diameter, and Johnsen's score, decreasing DNA breakage in testicular tissue; increased testosterone level; decreased 17ß-HSD concentration; and upregulated both the StAR and SOD gene expression in testicles compared to rats exposed to cisplatin alone. These results demonstrate that NSP is a promising agent for improving cisplatin-induced testicular injury and infertility.
Collapse
Affiliation(s)
- Eman M Khalil
- Department of Zoology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Egypt
| | - Mohamed I Rady
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Samah F Darwish
- Biotechnology Research Unit, Animal Reproduction Research Institute, Giza, Egypt
| | - Entsar R Abd-Allah
- Department of Zoology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Egypt.
| |
Collapse
|
14
|
Gřešková A, Petřivalský M. Thioredoxin System in Insects: Uncovering the Roles of Thioredoxins and Thioredoxin Reductase beyond the Antioxidant Defences. INSECTS 2024; 15:797. [PMID: 39452373 PMCID: PMC11508645 DOI: 10.3390/insects15100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Increased levels of reactive oxygen species (ROS) produced during aerobic metabolism in animals can negatively affect the intracellular redox status, cause oxidative stress and interfere with physiological processes in the cells. The antioxidant defence regulates ROS levels by interplaying diverse enzymes and non-enzymatic metabolites. The thioredoxin system, consisting of the enzyme thioredoxin reductase (TrxR), the redox-active protein thioredoxin (Trx) and NADPH, represent a crucial component of antioxidant defence. It is involved in the signalling and regulation of multiple developmental processes, such as cell proliferation or apoptotic death. Insects have evolved unique variations of TrxR, which resemble mammalian enzymes in overall structure and catalytic mechanisms, but the selenocysteine-cysteine pair in the active site is replaced by a cysteine-cysteine pair typical of bacteria. Moreover, the role of the thioredoxin system in insects is indispensable due to the absence of glutathione reductase, an essential enzyme of the glutathione system. However, the functions of the Trx system in insects are still poorly characterised. In the present review, we provide a critical overview of the current knowledge on the insect Trx system, focusing mainly on TrxR's role in the antioxidant and immune system of model insect species.
Collapse
Affiliation(s)
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| |
Collapse
|
15
|
Wang H, Liu K, Zeng W, Bai J, Xiao L, Qin Y, Liu Y, Xu X. Pyrroroquinoline Quinone (PQQ) Improves the Quality of Holstein Bull Semen during Cryopreservation. Animals (Basel) 2024; 14:2940. [PMID: 39457870 PMCID: PMC11503688 DOI: 10.3390/ani14202940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Cryopreserved semen is extensively utilized in the artificial insemination (AI) of domestic animals; however, suboptimal conception rates due to oxidative damage following AI continue to pose a challenge. The present study investigated the effects of Pyrroroquinoline Quinone (PQQ), a novel antioxidant, on the semen quality of Holstein bulls during cryopreservation, as well as its potential molecular mechanisms. Semen samples were diluted with varying concentrations of PQQ (0, 50 μmol/L, 100 μmol/L, 150 μmol/L) prior to cryopreservation. Following the freeze-thaw process, a comprehensive evaluation was conducted to assess sperm motility, plasma membrane integrity, acrosome integrity, and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and adenosine triphosphate (ATP). Western blot analysis was employed to examine the levels of proteins including PGAM2, CAPZB, CAT, SOD1, and GPX1. Notably, the inclusion of 100 μmol/L PQQ significantly enhanced sperm motility, membrane integrity, and acrosome integrity post freeze-thawing (p < 0.05). Furthermore, the group treated with 100 μmol/L PQQ exhibited reduced levels of MDA and ROS (p < 0.05), while ATP levels were significantly elevated (p < 0.05). Interestingly, treatment with 100 μmol/L PQQ resulted in decreased consumption of PGAM2, CAPZB, CAT, SOD1, and GPX1 proteins in sperm after freeze-thawing, compared to the control group (p < 0.05). These findings indicate that PQQ treatment enhances the quality of bull semen, mitigates oxidative stress damage, and ultimately improves the efficacy of sperm cryopreservation.
Collapse
Affiliation(s)
- Hai Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China;
| | - Kexiong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China;
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| |
Collapse
|
16
|
Chen W, Zou H, Xu H, Cao R, Zhang H, Zhang Y, Zhao J. The potential influence and intervention measures of gut microbiota on sperm: it is time to focus on testis-gut microbiota axis. Front Microbiol 2024; 15:1478082. [PMID: 39439945 PMCID: PMC11493703 DOI: 10.3389/fmicb.2024.1478082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
As the global male infertility rate continues to rise, there is an urgent imperative to investigate the underlying causes of sustained deterioration in sperm quality. The gut microbiota emerges as a pivotal factor in host health regulation, with mounting evidence highlighting its dual influence on semen. This review underscores the interplay between the Testis-Gut microbiota axis and its consequential effects on sperm. Potential mechanisms driving the dual impact of gut microbiota on sperm encompass immune modulation, inflammatory responses mediated by endotoxins, oxidative stress, antioxidant defenses, gut microbiota-derived metabolites, epigenetic modifications, regulatory sex hormone signaling. Interventions such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and Traditional natural herbal extracts are hypothesized to rectify dysbiosis, offering avenues to modulate gut microbiota and enhance Spermatogenesis and motility. Future investigations should delve into elucidating the mechanisms and foundational principles governing the interaction between gut microbiota and sperm within the Testis-Gut microbiota Axis. Understanding and modulating the Testis-Gut microbiota Axis may yield novel therapeutic strategies to enhance male fertility and combat the global decline in sperm quality.
Collapse
Affiliation(s)
- Wenkang Chen
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hede Zou
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoran Xu
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Rui Cao
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hekun Zhang
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yapeng Zhang
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayou Zhao
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Pastrana YM, Marcon JL, Amaral APD, Santos FBP, Lima ES, Acho LDR, Souza ROSD, Grando CC, Streit Junior DP, Godoy L. Catalase and Uric Acid Prevent Morphological Damage to the Sperm Flagella of Colossoma macropomum During 96 Hours at Low Storage Temperatures. Biopreserv Biobank 2024; 22:452-462. [PMID: 38526565 DOI: 10.1089/bio.2022.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Oxidative stress is one of the main causes of loss of sperm function during chilled storage. The aim of the current study was to evaluate the effects of a fructose-based extender, which was supplemented with catalase or uric acid, on the motility, viability, morphological integrity, and lipid peroxidation (LPO) of Colossoma macropomum spermatozoa. Sperm was diluted in extenders containing catalase (0; 0.1; 0.8; and 1.5 kU/L) or uric acid (0; 0.25; 0.5; and 1.0 mmol/L) and then stored at 4.3 ± 0.6°C for 96 hours. The chilling storage time had more significant and pronounced effects on practically all the measured sperm quality parameters than the different concentrations of both antioxidants added to the extenders. This was true for sperm motility, motility duration, sperm viability, and the percentage of normal spermatozoa. In fact, for all these parameters, values were higher in the extenders supplemented with catalase or uric acid, than those not supplemented with these antioxidants, especially after 96 hours. The LPO process showed an antioxidant-dependent response. In catalase-supplemented extenders thiobarbituric acid reactive substance (TBARS) levels increased gradually and significantly with time, but remained stable during the 96 hours of chilled storage in all samples in which uric acid was added. Despite this, TBARS levels were lower in the extenders supplemented with both catalase and uric acid than in those not having these antioxidants. Inverse correlations were found between sperm motility and the damage in sperm flagella. Our findings suggest that the supplementation of an extender with catalase or uric acid is beneficial and protects fish sperm membranes from damage caused by oxidative stress during low-temperature storage. The extenders containing 0.1 kU/L of catalase and 0.25 mmol/L of uric acid provided effective antioxidant protection for the spermatozoa of this important Amazonian fish.
Collapse
Affiliation(s)
- Yugo M Pastrana
- Programa de Pós-Graduação em Aquicultura, Universidade Nilton Lins e Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Jaydione L Marcon
- Laboratório de Fisiologia Animal, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Amanda P de Amaral
- Programa de Pós-Graduação em Aquicultura, Universidade Nilton Lins e Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Francisco Bruno P Santos
- Programa de Pós-Graduação em Aquicultura, Universidade Nilton Lins e Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Emerson S Lima
- Laboratório de Atividades Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Leonard D R Acho
- Laboratório de Atividades Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Rodrigo Otávio S de Souza
- Laboratório de Atividades Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Carolina C Grando
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Danilo P Streit Junior
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leandro Godoy
- Programa de Pós-Graduação em Aquicultura, Universidade Nilton Lins e Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
18
|
Barraza J, Cleofas P, Villamil S, García M, López A, Casas E, Salazar Z, Pichardo F, Barajas-Salinas A, Núñez-Macías E, Ramírez Y, Bonilla E, Bahena I, Ortíz-Muñíz R, Cortés-Barberena E, Betancourt M, Casillas F. In vitro exposure of porcine spermatozoa to methylparaben, and propylparaben, alone or in combination adversely affects sperm quality. J Appl Toxicol 2024; 44:1540-1554. [PMID: 38862408 DOI: 10.1002/jat.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Parabens (PBs) are widely used in the cosmetic, pharmaceutical, and food industries as preservatives of products. Because of its great use, humans and other organisms are highly exposed daily. However, little is known about the effect of PBs on male infertility. Therefore, the aim of the present study was to evaluate the effect of methylparaben (MePB) and propylparaben (PrPB), alone or in combination, on the physiological characteristics of pig in vitro exposed sperm to different concentrations (0, 200, 500, and 700 μM) for viability, motility, and acrosome integrity evaluation and (0, 200, 500, 700, 1000, and 2000 μM) for DNA fragmentation index evaluation, after 4 h of exposure. The results showed that sperm viability decreased after exposure to MePB from the concentration of 500 μM. In the PrPB and mixture groups, viability decreased at all concentrations except for the control. The decrease in viability of sperm exposed to PrPB was greater than that of the mixture and MePB groups. Sperm motility decreased in all the experimental groups exposed to PBs, at all concentrations, except for the control group. Acrosome integrity was not decreased in the MePB group; however, in the PrPB group, it decreased at a concentration of 200 μM and in the mixture at 500 μM. All groups exhibited DNA damage at different concentrations, except for the control group. Additionally, the effect of PBs on sperm quality was concentration-dependent. The results demonstrated that MePB and PrPB alone or in combination can have adverse effects on sperm quality parameters. MePB had lower toxicity than did both PrPB and the mixture. The mixture did not have an additive effect on any of the parameters evaluated. This could partially explain the link between PB exposure and infertility.
Collapse
Affiliation(s)
- J Barraza
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
- Master's degree in Animal Reproduction Biology, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - P Cleofas
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - S Villamil
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - M García
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - A López
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - E Casas
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - Z Salazar
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - F Pichardo
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - A Barajas-Salinas
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - E Núñez-Macías
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - Y Ramírez
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - E Bonilla
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - I Bahena
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - R Ortíz-Muñíz
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - E Cortés-Barberena
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - M Betancourt
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - F Casillas
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| |
Collapse
|
19
|
Rotimi DE, Acho MA, Falana BM, Olaolu TD, Mgbojikwe I, Ojo OA, Adeyemi OS. Oxidative Stress-induced Hormonal Disruption in Male Reproduction. Reprod Sci 2024; 31:2943-2956. [PMID: 39090335 DOI: 10.1007/s43032-024-01662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Research into the impacts of oxidative stress (OS), and hormonal balance on reproductive potential has increased over the last 40 years possibly due to rising male infertility. Decreased antioxidant levels and increased OS in tissues result from hormonal imbalance, which in turn leads to male infertility. Increased reactive oxygen species (ROS) generation in seminal plasma has been linked to many lifestyle factors such as alcohol and tobacco use, toxicant exposure, obesity, varicocele, stress, and aging. This article provides an overview of the crosslink between OS and gonadal hormone disruption, as well as a potential mode of action in male infertility. Disrupting the equilibrium between ROS generation and the antioxidant defense mechanism in the male reproductive system may affect key hormonal regulators of male reproductive activities. Unchecked ROS production may cause direct injury on reproductive tissues or could disrupt normal regulatory mechanisms of the hypothalamic-pituitary-gonadal (HPG) axis and its interaction with other endocrine axes, both of which have negative effects on male reproductive health and can lead to male infertility.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria.
| | - Marvellous A Acho
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Babatunde Michael Falana
- Department of Animal Science, College of Agricultural Sciences, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Tomilola Debby Olaolu
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Ifunaya Mgbojikwe
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwafemi Adeleke Ojo
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria.
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria.
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria
| |
Collapse
|
20
|
Panghal A, Jena G. β-aminoisobutyric acid ameliorated type 1 diabetes-induced germ cell toxicity in rat: Studies on the role of oxidative stress and IGF-1/AMPK/SIRT-1 signaling pathway. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 899:503820. [PMID: 39326943 DOI: 10.1016/j.mrgentox.2024.503820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 09/28/2024]
Abstract
Diabetes mellitus is known as the "epidemic of the century" due to its global prevalence. Several pre-clinical and clinical studies have shown that male germ cell toxicity is one of the major consequences of diabetes mellitus. Although β-aminoisobutyric acid (BAIBA) has been shown to be advantageous in the diabetic nephropathy and cardiomyopathy, its specific role in the diabetes-induced testicular toxicity remains unknown. In this study, an attempt was made to elucidate the molecular mechanisms of BAIBA-mediated germ cell protection in diabetic rats. Adult male Sprague-dawley rats were subjected to either no treatment (control) or BAIBA (100 mg/kg; BAIBA control) or Streptozotocin (50 mg/kg; diabetic control) or low (25 mg/kg), medium (50 mg/kg) and high (100 mg/kg) doses of BAIBA in diabetic conditions. Significant alterations in sperm related parameters, oxidative stress and apoptotic biomarkers, pancreatic and testicular histology, DNA damage and changes in expression of proteins in testes were found in the diabetic rats. 100 mg/kg of BAIBA significantly reduced the elevated blood glucose levels (P ≤ 0.05), increased body weight (P ≤ 0.01 in the 4th week), lowered malondialdehyde (P ≤ 0.05) and nitrite levels (P ≤ 0.01), elevated testosterone (P ≤ 0.05) and FSH levels (P ≤ 0.05), increased sperm count and motility (P ≤ 0.01), decreased testicular DNA damage (P ≤ 0.001), improved histological features of pancreas and testes, decreased TUNEL positive cells (P ≤ 0.01), decreased RAGE (P ≤ 0.01) and Bax (P ≤ 0.05) expressions and increased SIRT1 (P ≤ 0.05) and Atg 12 (P ≤ 0.05) expressions in the testes. 50 mg/kg of BAIBA partially restored the above-mentioned parameters whereas 25 mg/kg of BAIBA was found to be insignificant in counteracting the toxicity. It is interesting to note that BAIBA protects male germ cell damage in diabetic rats by regulating the IGF-1/AMPK/SIRT-1 signaling pathway.
Collapse
Affiliation(s)
- Archna Panghal
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| |
Collapse
|
21
|
Jorge M, Ferreira FC, Marques CC, Batista MC, Oliveira PJ, Lidon F, Duarte SC, Teixeira J, Pereira RMLN. Effect of Urolithin A on Bovine Sperm Capacitation and In Vitro Fertilization. Animals (Basel) 2024; 14:2726. [PMID: 39335315 PMCID: PMC11428424 DOI: 10.3390/ani14182726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) play a critical role in the functional competence of sperm cells. Conversely, excessive generation of ROS can impair sperm function, including their fertilization ability. Urolithin A (UA), a gut bacteria-derived metabolite produced from the transformation of ellagitannins, with anti-aging and antioxidant properties, was investigated for the first time in bovine sperm cells in the present study. Firstly, different doses of UA (0, 1, and 10 μM; 8-16 sessions) were used during the capacitation process of frozen-thawed bovine sperm. Sperm motility was assessed using optical microscopy and CASA. Sperm vitality (eosin-nigrosin), ROS, and ATP levels, as well as mitochondrial membrane potential (JC1) and oxygen consumption were evaluated. A second experiment to test the effect of different doses of UA (0, 1, and 10 μM; 9 sessions) in both the capacitation medium, as above, and the fertilization medium, was also implemented. The embryonic development and quality were evaluated. UA, at a concentration of 1 μM, significantly improved sperm movement quality (p < 0.03). There was a trend towards an increase in the oxygen consumption rate (OCR) of capacitated sperm with 1 μM and 10 μM UA supplementation. Moreover, an increase in ATP levels (p < 0.01) was observed, accompanied by a reduction in ROS levels at the higher UA concentration. These results suggest that UA may enhance spermatozoa mitochondrial function, modifying their metabolic activity while reducing the oxidative stress. Also, the number of produced embryos appears to be positively affected by UA supplementation, although differences between the bulls may have mitigated this effect. In conclusion, presented results further support previous findings indicating the potential therapeutic value of UA for addressing reproductive sub/infertility problems and improving ART outcomes. In addition, our results also reinforce the important bull effect on ART and that male sperm bioenergetic parameters should be used to predict spermatozoa functionality and developmental potential.
Collapse
Affiliation(s)
- Manuela Jorge
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
- Department of Veterinary Sciences Research Centre, Vasco da Gama University School, Lordemão University Campus, 3020-210 Coimbra, Portugal;
| | - Filipa C. Ferreira
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
- GeoBioTec—Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal;
| | - Carla C. Marques
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
| | - Maria C. Batista
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
| | - Paulo J. Oliveira
- CNC—Centre for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (P.J.O.); (J.T.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - F. Lidon
- GeoBioTec—Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal;
| | - Sofia C. Duarte
- Department of Veterinary Sciences Research Centre, Vasco da Gama University School, Lordemão University Campus, 3020-210 Coimbra, Portugal;
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, 3000-548 Coimbra, Portugal
| | - José Teixeira
- CNC—Centre for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (P.J.O.); (J.T.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rosa M. L. N. Pereira
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
- Department of Veterinary Sciences Research Centre, Vasco da Gama University School, Lordemão University Campus, 3020-210 Coimbra, Portugal;
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
22
|
Wei G, Tang Y, Dai L, An T, Li Y, Wang Y, Wang L, Wang X, Zhang J. Identification and functional prediction of miRNAs that regulate ROS levels in dielectric barrier discharge plasma-treated boar spermatozoa. Theriogenology 2024; 226:308-318. [PMID: 38959841 DOI: 10.1016/j.theriogenology.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Dielectric barrier discharge (DBD) plasma regulates the levels of reactive oxygen species (ROS), which are critical for sperm quality. MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which regulate post-transcriptional gene expression in animals. At present, it is unknown whether DBD plasma can regulate sperm ROS levels through miRNAs. To further understand the regulatory mechanism of DBD plasma on sperm ROS levels, miRNAs in fresh boar spermatozoa were detected using Illumina deep sequencing technology. We found that 25 known miRNAs and 50 novel miRNAs were significantly upregulated, and 14 known miRNAs and 74 novel miRNAs were significantly downregulated in DBD plasma-treated spermatozoa. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that target genes of differentially expressed miRNAs were involved in many activities and pathways associated with antioxidants. We verified that DBD plasma significantly increased boar sperm quality and reduced ROS levels. These results suggest that DBD plasma can improve sperm quality by regulating ROS levels via miRNAs. Our findings provide a potential strategy to improve sperm quality through miRNA-targeted regulation of ROS, which helps to increase male reproduction and protect cryopreserved semen in clinical practice.
Collapse
Affiliation(s)
- Gege Wei
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Yunping Tang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Li Dai
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Tianyi An
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Yaqi Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China; Jianyang Municipal People's Government Shiqiao Street Office Comprehensive Convenience Service Center, Jianyang, Sichuan, 641400, China
| | - Yusha Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Lijuan Wang
- Sichuan Animal Husbandry Station, Chengdu, 610041, China
| | - Xianzhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
23
|
Hallberg I, Morrell JM, Malaluang P, Johannisson A, Sjunnesson Y, Laskowski D. Sperm quality and in vitro fertilizing ability of boar spermatozoa stored at 4 °C versus conventional storage for 1 week. Front Vet Sci 2024; 11:1444550. [PMID: 39376925 PMCID: PMC11457738 DOI: 10.3389/fvets.2024.1444550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Since boar spermatozoa show a marked deterioration in sperm quality when cooled, insemination doses are usually stored at 16-18 °C. However, maintaining this temperature during transport of semen doses is challenging, particularly during the summer months. An alternative could be to store the doses at 4 °C if cold-shock to the sperm could be prevented. The objective of this study was to evaluate boar sperm quality and fertility in in vitro fertilization after storage in AndroStar Premium at 4 °C for 1 week. Methods Insemination doses (n = 9) in AndroStar Premium from a commercial boar semen collection station were transported to the laboratory at approximately 20 °C. At the laboratory, sperm quality evaluation and was preformed and each dose was split; half of each ejaculate was stored in a climate-controlled box at 16-18 °C, the other was slowly cooled to 4 °C. Both samples were stored for 1 week before further sperm quality evaluation and in vitro fertilization (IVF) were performed. Mean values were tested using generalized linear regression, with treatment and boar as fixed factors; p ≤ 0.05 was considered significant. Results Sperm membrane integrity (mean ± sem: 91 ± 0.05 and 83 ± 0.09% for 16 and 4 °C, respectively) and superoxide production (6.79 ± 2.37 and 13.54 ± 6.23% for 16 and 4 °C, respectively), were different between treatments. The DNA fragmentation index was lower in cold-stored samples than in conventionally stored samples (3.74 ± 2.25 and 7.40 ± 3.36% for 4 and 16 °C, respectively). The numbers of oocytes developing to blastocyst on Day 6 (mean ± sd: 9.0 ± 8.0 and 6.0 ± 5.0%, for storage at 16 and 4 °C, respectively) were not different between treatments. Discussion Therefore, storage of boar semen doses in AndroStar Premium at 4 °C for up to 7 days would be a viable alternative to current praxis.
Collapse
Affiliation(s)
- Ida Hallberg
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jane M. Morrell
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pack Malaluang
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders Johannisson
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ylva Sjunnesson
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Denise Laskowski
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
24
|
Oke OE, Akosile OA, Oni AI, Opowoye IO, Ishola CA, Adebiyi JO, Odeyemi AJ, Adjei-Mensah B, Uyanga VA, Abioja MO. Oxidative stress in poultry production. Poult Sci 2024; 103:104003. [PMID: 39084145 PMCID: PMC11341942 DOI: 10.1016/j.psj.2024.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Oxidative stress (OS) is a major concern that impacts the overall health of chickens in modern production systems. It is characterized by an imbalance between antioxidant defence mechanisms and the production of reactive oxygen species (ROS). This literature review aims to provide a comprehensive overview of oxidative stress in poultry production, with an emphasis on its effects on growth performance, immune responses, and reproductive outcomes. This review highlights the intricate mechanisms underlying OS and discusses how various factors, including dietary components, genetic predispositions, and environmental stressors can exacerbate the production of ROS. Additionally, the impact of oxidative stress on the production performance and physiological systems of poultry is examined. The study also emphasizes the relationship between oxidative stress and poultry diseases, highlighting how impaired antioxidant defenses increase bird's susceptibility to infections. The review assesses the existing approaches to reducing oxidative stress in chickens in response to these challenges. This includes managing techniques to lower stress in the production environment, antioxidant supplements, and nutritional interventions. The effectiveness of naturally occurring antioxidants, including plant extracts, minerals, and vitamins to improve poultry resistance to oxidative damage is also examined. To improve the antioxidant defenses of poultry under stress conditions, the activation of cellular homeostatic networks termed vitagenes, such as Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is necessary for the synthesis of protective factors that can counteract the increased production of ROS and RNS. Future studies into novel strategies for managing oxidative stress in chicken production would build on these research advances and the knowledge gaps identified in this review.
Collapse
Affiliation(s)
- O E Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria; Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo.
| | - O A Akosile
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A I Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - I O Opowoye
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - C A Ishola
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - J O Adebiyi
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - A J Odeyemi
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - B Adjei-Mensah
- Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo
| | - V A Uyanga
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Abioja
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
25
|
Yeste M, Ahmad A, Viñolas E, Recuero S, Bonet S, Pinart E. Inhibition of forward and reverse transport of Ca 2+ via Na +/Ca 2+ exchangers (NCX) prevents sperm capacitation. Biol Res 2024; 57:57. [PMID: 39175101 PMCID: PMC11342557 DOI: 10.1186/s40659-024-00535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND While calcium is known to play a crucial role in mammalian sperm physiology, how it flows in and out of the male gamete is not completely understood. Herein, we investigated the involvement of Na+/Ca2+ exchangers (NCX) in mammalian sperm capacitation. Using the pig as an animal model, we first confirmed the presence of NCX1 and NCX2 isoforms in the sperm midpiece. Next, we partially or totally blocked Ca2+ outflux (forward transport) via NCX1/NCX2 with different concentrations of SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline; 0, 0.5, 5 and 50 µM) and Ca2+ influx (reverse transport) with SN6 (ethyl 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-1,3-thiazolidine-4-carboxylate; 0, 0.3, 3 or 30 µM). Sperm were incubated under capacitating conditions for 180 min; after 120 min, progesterone was added to induce the acrosome reaction. At 0, 60, 120, 130, and 180 min, sperm motility, membrane lipid disorder, acrosome integrity, mitochondrial membrane potential (MMP), tyrosine phosphorylation of sperm proteins, and intracellular levels of Ca2+, reactive oxygen species (ROS) and superoxides were evaluated. RESULTS Partial and complete blockage of Ca2+ outflux and influx via NCX induced a significant reduction of sperm motility after progesterone addition. Early alterations on sperm kinematics were also observed, the effects being more obvious in totally blocked than in partially blocked samples. Decreased sperm motility and kinematics were related to both defective tyrosine phosphorylation and mitochondrial activity, the latter being associated to diminished MMP and ROS levels. As NCX blockage did not affect the lipid disorder of plasma membrane, the impaired acrosome integrity could result from reduced tyrosine phosphorylation. CONCLUSIONS Inhibition of outflux and influx of Ca2+ triggered similar effects, thus indicating that both forward and reverse Ca2+ transport through NCX exchangers are essential for sperm capacitation.
Collapse
Affiliation(s)
- Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, ES-08010, Spain
| | - Adeel Ahmad
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Estel Viñolas
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain.
| |
Collapse
|
26
|
Mizumoto S, Nagao Y, Watanabe H, Tanaka K, Kuramoto T. Culture media with antioxidants improved preimplantation embryo development and clinical outcomes of patients of advanced age. Reprod Biomed Online 2024; 50:104415. [PMID: 39673903 DOI: 10.1016/j.rbmo.2024.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 12/16/2024]
Abstract
RESEARCH QUESTION What are the clinical effects of using culture media supplemented with antioxidants (AOX) throughout the IVF process? DESIGN Prospective randomized single-centre study. Cumulus-oocyte complexes and semen samples collected from 127 treatment cycles were divided evenly between the study arm (culture media with AOX) and the control arm (culture media without AOX). The primary endpoint was the good-quality blastocyst (GQB) rate on day 5-6 per metaphase II (MII) oocyte. RESULTS Fertilization rate and day 5-6 blastocyst rate per MII oocyte differed significantly in favour of the study arm, whereas GQB rate did not. A subgroup analysis, stratified by maternal age, revealed significant improvements in the study arm for day 3 embryo development rate, day 5-6 blastocyst rate, GQB rate and blastocyst utilization rate for patients aged 35-40 years, while the impacts on these endpoints were much smaller in patients aged <35 years. Ninety-four single vitrified blastocyst transfers (SVBT) were performed in each arm. The blastocysts derived from the study arm showed better results of SVBT for patients aged 35-40 years, defined by embryo implantation rate, fetal heartbeat rate and live birth rate, whereas these variables did not differ significantly between the two arms when assessing the results for patients of all ages and patients aged <35 years. CONCLUSIONS Embryo development and SVBT outcomes of treatment cycles of patients aged 35-40 years improved significantly when using AOX-supplemented culture media throughout the IVF process.
Collapse
Affiliation(s)
| | - Yozo Nagao
- Kuramoto Women's Clinic, Hakata-Ku, Fukuoka City, Japan
| | | | - Keiko Tanaka
- Kuramoto Women's Clinic, Hakata-Ku, Fukuoka City, Japan
| | | |
Collapse
|
27
|
Jannatifar R, Piroozmanesh H, Sahraei SS, Verdi A, Asa E. The evaluation effect of nanoliposome-loaded Mito-Tempo on sperm parameters during human sperm cryopreservation. J Assist Reprod Genet 2024; 41:2053-2063. [PMID: 38753089 PMCID: PMC11339217 DOI: 10.1007/s10815-024-03132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/01/2024] [Indexed: 08/22/2024] Open
Abstract
AIM The aim of this study is the evaluation effect of nanoliposome-loaded Mito-Tempo on sperm parameters during human sperm cryopreservation. METHODS Semen samples of 50 Asthenoteratozoospermia men (random) were collected. Sperm parameters were analyzed based on World Health Organization (WHO, 2010) criteria (2021) and each sample was divided into 5 groups (E1-E5). E1 (control group): the sperm was cryopreserved without nanoliposome, and Mito-Tempo. E2: sperm cryopreservation with Mito-Tempo-loaded nanoliposome (Mito-Tempo 0.1 mM) + freezing medium. E3: sperm cryopreservation with Mito-Tempo-loaded nanoliposome (Mito-Tempo 0.2 mM) + freezing medium. E4: in this group, the cryopreservation sperm with Mito-Tempo 0.3 mM + freezing medium. E5: the cryopreservation sperm with Mito-Tempo 0.2 mM + freezing medium. RESULTS The result of this study indicated that sperm parameters and total antioxidant capacity (TAC) significantly increase in E3 and E4 groups, compared to E1, E2, and E5 groups respectively (P < 0.05). The percentage of abnormal morphology, DNA fragmentation index (DFI), malondialdehyde (MDA), and the levels of ROS significantly decrease in E3 and E4 groups, compared to E1, E2, and E5 groups (P < 0.05). In addition, the sperm parameters and stress oxidative factors significantly improve in E3 group compared to other groups (P < 0.05). CONCLUSIONS In conclusion, the combination of Mito-Tempo with nanoliposome due to its ability to cooperate with lipid layers may lead to significant performance in reducing oxidative stress damage and increasing the quality of sperm parameters.
Collapse
Affiliation(s)
- Rahil Jannatifar
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom, Iran.
- Infertility Treatment Center of ACECR, Bonyad Street, P.O. box: 3713746611, Qom, Iran.
| | | | - Seyedeh Saeideh Sahraei
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom, Iran
| | - Atefeh Verdi
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom, Iran
| | - Elham Asa
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom, Iran
| |
Collapse
|
28
|
Vahedi Raad M, Firouzabadi AM, Tofighi Niaki M, Henkel R, Fesahat F. The impact of mitochondrial impairments on sperm function and male fertility: a systematic review. Reprod Biol Endocrinol 2024; 22:83. [PMID: 39020374 PMCID: PMC11253428 DOI: 10.1186/s12958-024-01252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Besides adenine triphosphate (ATP) production for sustaining motility, the mitochondria of sperm also host other critical cellular functions during germ cell development and fertilization including calcium homeostasis, generation of reactive oxygen species (ROS), apoptosis, and in some cases steroid hormone biosynthesis. Normal mitochondrial membrane potential with optimal mitochondrial performance is essential for sperm motility, capacitation, acrosome reaction, and DNA integrity. RESULTS Defects in the sperm mitochondrial function can severely harm the fertility potential of males. The role of sperm mitochondria in fertilization and its final fate after fertilization is still controversial. Here, we review the current knowledge on human sperm mitochondria characteristics and their physiological and pathological conditions, paying special attention to improvements in assistant reproductive technology and available treatments to ameliorate male infertility. CONCLUSION Although mitochondrial variants associated with male infertility have potential clinical use, research is limited. Further understanding is needed to determine how these characteristics lead to adverse pregnancy outcomes and affect male fertility potential.
Collapse
Affiliation(s)
- Minoo Vahedi Raad
- Department of Biology & Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Masoud Firouzabadi
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Physiology, School of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Tofighi Niaki
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Ralf Henkel
- LogixX Pharma, Theale, Berkshire, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
29
|
Gill K, Machałowski T, Harasny P, Grabowska M, Duchnik E, Piasecka M. Low human sperm motility coexists with sperm nuclear DNA damage and oxidative stress in semen. Andrology 2024; 12:1154-1169. [PMID: 38018344 DOI: 10.1111/andr.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Low sperm motility, one of the common causes of male infertility, is associated with abnormal sperm quality. Currently, important sperm/semen biomarkers are sperm chromatin status and oxidation‒reduction potential (ORP) in semen. Because the association between sperm motility and these biomarkers is still not fully clarified, our study was designed to verify the distribution and risk of sperm DNA fragmentation (SDF) and oxidative stress in semen in asthenozoospermic men. MATERIALS AND METHODS This study was carried out on discharged sperm cells of asthenozoospermic men (isolated asthenozoospermia or coexisted with reduced sperm number and/or morphology), nonasthenozoospermic men (reduced total sperm count and/or sperm morphology) (experimental groups) and normozoospermic men (proven and presumed fertility) (control group). Basic semen analysis was evaluated according to the 6th edition of the World Health Organization manual guidelines. SDF was assessed using the sperm chromatin dispersion test, while static(s) ORP in semen was measured by means of a MiOXSYS analyser. RESULTS The men from the asthenozoospermic group had lower basic semen parameters than those from the control and nonasthenozoospermic groups. In men with poor sperm motility SDF and sORP, prevalence and risk for > 20% SDF (high level of DNA damage) and for > 1.37 sORP (oxidative stress) were significantly higher than those of control and nonasthenozoospermic subjects. The risk for sperm DNA damage and oxidative stress in asthenozoospermic men was over 10-fold higher and almost 6-fold higher than those in control subjects and almost or over 3-fold higher than those in nonasthenozoospermic men. CONCLUSIONS AND DISCUSSION Poor human sperm motility coexisted with low basic sperm quality. Sperm DNA damage and oxidative stress in semen were much more frequent in asthenozoospermia. These abnormalities can decrease the sperm fertilizing capability under both natural and medically assisted reproduction conditions. Thus, in asthenozoospermia, the evaluation of sperm chromatin status and oxidation-reduction potential in semen is justified and inevitable, and the appropriate antioxidant therapy can be suggested.
Collapse
Affiliation(s)
- Kamil Gill
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Machałowski
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Perinatology, Obstetrics and Gynecology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Police, Poland
| | - Patryk Harasny
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Urology and Urological Oncology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Duchnik
- Department of Aesthetic Dermatology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Małgorzata Piasecka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
30
|
Pavuluri H, Bakhtiary Z, Panner Selvam MK, Hellstrom WJG. Oxidative Stress-Associated Male Infertility: Current Diagnostic and Therapeutic Approaches. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1008. [PMID: 38929625 PMCID: PMC11205999 DOI: 10.3390/medicina60061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Infertility is a prevalent global issue affecting approximately 17.5% of adults, with sole male factor contributing to 20-30% of cases. Oxidative stress (OS) is a critical factor in male infertility, disrupting the balance between reactive oxygen species (ROS) and antioxidants. This imbalance detrimentally affects sperm function and viability, ultimately impairing fertility. OS also triggers molecular changes in sperm, including DNA damage, lipid peroxidation, and alterations in protein expression, further compromising sperm functionality and potential fertilization. Diagnostic tools discussed in this review offer insights into OS markers, antioxidant levels, and intracellular ROS concentrations. By accurately assessing these parameters, clinicians can diagnose male infertility more effectively and thus tailor treatment plans to individual patients. Additionally, this review explores various treatment options for males with OS-associated infertility, such as empirical drugs, antioxidants, nanoantioxidants, and lifestyle modifications. By addressing the root causes of male infertility and implementing targeted interventions, clinicians can optimize treatment outcomes and enhance the chances of conception for couples struggling with infertility.
Collapse
Affiliation(s)
| | | | | | - Wayne J. G. Hellstrom
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (H.P.); (Z.B.); (M.K.P.S.)
| |
Collapse
|
31
|
Vasseur C, Serra L, El Balkhi S, Lefort G, Ramé C, Froment P, Dupont J. Glyphosate presence in human sperm: First report and positive correlation with oxidative stress in an infertile French population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116410. [PMID: 38696871 DOI: 10.1016/j.ecoenv.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Environmental exposure to endocrine disruptors, such as pesticides, could contribute to a decline of human fertility. Glyphosate (GLY) is the main component of Glyphosate Based Herbicides (GBHs), which are the most commonly herbicides used in the world. Various animal model studies demonstrated its reprotoxicity. In Europe, GLY authorization in agriculture has been extended until 2034. Meanwhile the toxicity of GLY in humans is still in debate. The aims of our study were firstly to analyse the concentration of GLY and its main metabolite, amino-methyl-phosphonic acid (AMPA) by LC/MS-MS in the seminal and blood plasma in an infertile French men population (n=128). We secondly determined Total Antioxidant Status (TAS) and Total Oxidant Status (TOS) using commercial colorimetric kits and some oxidative stress biomarkers including malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) by ELISA assays. We next analysed potential correlations between GLY and oxidative stress biomarkers concentration and sperm parameters (sperm concentration, progressive speed, anormal forms). Here, we detected for the first time GLY in the human seminal plasma in significant proportions and we showed that its concentration was four times higher than those observed in blood plasma. At the opposite, AMPA was undetectable. We also observed a strong positive correlation between plasma blood GLY concentrations and plasma seminal GLY and 8-OHdG concentrations, the latter reflecting DNA impact. In addition, TOS, Oxidative Stress Index (OSI) (TOS/TAS), MDA blood and seminal plasma concentrations were significantly higher in men with glyphosate in blood and seminal plasma, respectively. Taken together, our results suggest a negative impact of GLY on the human reproductive health and possibly on his progeny. A precaution principle should be applied at the time of the actual discussion of GLY and GBHs formulants uses in Europe by the authorities.
Collapse
Affiliation(s)
- Claudine Vasseur
- Centre de fertilité, Pôle Santé Léonard de Vinci, Chambray-lès-Tours, France.
| | - Loïse Serra
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Souleiman El Balkhi
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, Limoges, CHU F-87042, France
| | - Gaëlle Lefort
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Christelle Ramé
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France.
| |
Collapse
|
32
|
Chilaka KN, Namoju R. Maternal supplementation of alpha-lipoic acid ameliorates prenatal cytarabine-induced mutilation in reproductive development and function in F1 male adult rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4035-4053. [PMID: 38010397 DOI: 10.1007/s00210-023-02852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
AIMS Cytarabine (CYT), a prevalent anticancer drug for blood cancers, detrimentally affects male reproductive development and function. Alpha-lipoic acid (ALA), a universal antioxidant, offers defense against chemical-induced reproductive dysfunction. Our study sought to explore ALA's protective role against prenatal CYT-induced reproductive impairment in F1 male adult rats. MAIN METHODS Pregnant rats were divided into 5 groups and administered normal saline, ALA 200 mg/kg, CYT 12.5 mg/kg, CYT 25 mg/kg, and CYT 25 mg/kg + ALA 200 mg/ kg from gestational day 8 to 21. On postnatal day 73, F1 male rats were sacrificed, and general, oxidative, steroidogenic, spermatogenic, histological, and morphometrical parameters were evaluated. KEY FINDINGS Prenatal CYT caused dose-dependent reductions in body weight, testis, and accessory gland weights; elevated oxidative stress; delayed puberty onset; sperm anomalies (decreased count, motility, viability, seminal fructose; increased morphological anomalies); impeded steroidogenesis (lower testosterone, follicle-stimulating hormone, luteinizing hormone, 3β-Hydroxysteroid dehydrogenase(HSD), 17β-HSD, and elevated cholesterol); and testicular histopathological and morphometric disturbances. Maternal supplementation of ALA was found to alleviate all the CYT-induced reproductive disruptions. SIGNIFICANCE The present work accentuates the beneficial actions of ALA against CYT-induced impairment in reproductive development and functions by combating disruptions in oxidative balance, steroidogenesis, spermatogenesis, and testicular histological aberrations. However, future experimental and clinical studies are warranted to explore the molecular mechanisms involved in the ALA's protection against prenatal CYT-induced testicular injury.
Collapse
Affiliation(s)
- Kavitha N Chilaka
- GITAM Institute of Pharmacy, GITAM Deemed to Be University, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Ramanachary Namoju
- GITAM Institute of Pharmacy, GITAM Deemed to Be University, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India.
- Department of Pharmacology, Bhaskar Pharmacy College, Jawaharlal Nehru Technical University, Hyderabad, Telangana, 500075, India.
| |
Collapse
|
33
|
Zhang G, Xiong D, Ye F, Zhao Y, Du X, Zhi W, Liu F, Zeng J, Xu W, Liu W, Shi Y. A Key regulatory protein QRICH2 governing sperm function with profound antioxidant properties, enhancing sperm viability. Reprod Biol 2024; 24:100881. [PMID: 38772286 DOI: 10.1016/j.repbio.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 05/23/2024]
Abstract
Infertility poses a global health and social challenge, affecting approximately 15% of couples at childbearing age, with half of the cases attributed to male factors, wherein genetic factors exert a substantial role. In our prior investigation, we identified loss-of-function variants within the gene encoding glutamine-rich protein 2 (QRICH2) in two consanguineous families, leading to various morphological abnormalities in sperm flagella and male infertility. Moreover, our observations in Qrich2 knockout mice revealed a pronounced reduction in spermatozoa count. However, the underlying mechanism remains elusive, prompting further investigation in the current study. By conducting experiments such as Hematoxylin-eosin (HE) staining, immunofluorescence staining, flow cytometry, and single sperm metabolism analysis on the testes and spermatozoa of Qrich2 knockout mice, we found a strong antioxidant capacity mediated by QRICH2 both in vivo and in vitro. Qrich2 knockout led to elevated levels of ROS, consequently inducing DNA damage in spermatids, which in turn triggered increased autophagy and apoptosis, ultimately causing a significant decrease in spermatozoa count. Incubation with the N-terminal purified protein of QRICH2 exhibited potent strong antioxidant activity at the cell and spermatozoa levels in vitro, thereby enhancing spermatozoa viability and motility. Therefore, QRICH2 plays a crucial role in safeguarding spermatids from excessive ROS-induced damage by augmenting antioxidant capacity, thereby promoting spermatozoa survival and improving motility. Furthermore, the N-terminal purified protein of QRICH2 shows promise as an additive for protecting spermatozoa during preservation and cryopreservation.
Collapse
Affiliation(s)
- Guohui Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Key Laboratory of Reproductive Medicine, Center of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Dongsheng Xiong
- Key Laboratory of Reproductive Medicine, Center of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Fei Ye
- Key Laboratory of Reproductive Medicine, Center of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Yuhong Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Xinrong Du
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Weiwei Zhi
- Key Laboratory of Reproductive Medicine, Center of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Fulin Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Jiuzhi Zeng
- Key Laboratory of Reproductive Medicine, Center of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Wenming Xu
- Department of Obstetrics and Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Weixin Liu
- Key Laboratory of Reproductive Medicine, Center of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China.
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| |
Collapse
|
34
|
Kim E, Yu IJ, Lee J, Jeon Y. Effects of MnTBAP on Porcine Semen Cryopreservation and Capacitation. Antioxidants (Basel) 2024; 13:672. [PMID: 38929111 PMCID: PMC11201202 DOI: 10.3390/antiox13060672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Antioxidants protect cellular function and structure by neutralizing the oxidative stress caused by increased reactive oxygen species (ROS) during sperm freezing. Studies on cryopreservation using various antioxidants have demonstrated encouraging results. Many studies have used antioxidants to increase the efficiency of sperm freezing and to improve the success rate of artificial insemination and pregnancy. Manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) is a newly synthesized antioxidant with positive effects on sperm morphology and capacitation in humans, rams, and stallions. In this study, porcine semen was treated with 0, 50, 100, and 150 μM of MnTBAP based on a Tris-egg-yolk extender and frozen to determine whether MnTBAP can assist the status of sperm during cryopreservation. First, motility was assessed using the computer-assisted sperm analysis (CASA) system, with the 100 μM treatment group showing the highest motile rate (66.8%) compared with that of the other groups (control, 51.1%; 50 μM and 150 μM, 59.6%); therefore, the remaining analyses were conducted comparing the two groups (control vs. 100 μM group; p < 0.01). Second, fluorescence staining was applied to examine the control and 100 μM groups using fluorescence microscopy. The viability (41.7% vs. 62.4%) and the acrosome integrity (77.9% vs. 86.4%) differed significantly (p < 0.05). In addition, the mitochondrial membrane potential (MMP) was 46.5% vs. 51.9%; the fragmentation rate, estimated using the Sperm-sus-Halomax kit, was 63.4% vs. 57.4%; and the detected caspase activity was 30.1% vs. 22.9%. These tended to be higher in the treated group but did not differ significantly. Third, measurements using FACSLyric revealed that the 100 μM treatment group exhibited a state of elevated normal lipid arrangement within the plasma membrane and diminished levels of apoptosis and ROS (p < 0.01). We assessed the expression of genes relevant to antioxidant effectiveness using real-time RT-qPCR. Our findings indicated significant alterations in the expression levels of various mRNA species, with the exception of NOX5 (p < 0.05). Finally, the straws were dissolved and used to treat matured denuded oocytes to investigate the effect on fertilization and embryo development in vitro. The cleavage rate was (77.6% vs. 84.1%), and the blastocyst rate was 9.7% vs. 11.4% (p < 0.05). In conclusion, these results suggest that MnTBAP positively affected sperm freeze-thawing, improving the fertilization capacity, and leading to increased embryo development.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (E.K.); (I.-J.Y.)
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (E.K.); (I.-J.Y.)
| | - Joohyeong Lee
- Department of Companion Animal Industry, Semyung University, Jecheon 27136, Republic of Korea
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (E.K.); (I.-J.Y.)
| |
Collapse
|
35
|
Hernández-Avilés C, Ramírez-Agámez L, Weintraub ST, Scoggin CF, Davis BW, Raudsepp T, Varner DD, Love CC. Proteomic analysis of sperm from fertile stallions and subfertile stallions due to impaired acrosomal exocytosis. Sci Rep 2024; 14:12446. [PMID: 38816557 PMCID: PMC11139894 DOI: 10.1038/s41598-024-63410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
Thoroughbred stallions that carry a double-homozygous genotype A/A-A/A for SNPs rs397316122 and rs69101140 in exon 5 of the FKBP6 gene (chr13; EquCab3.0) are uniquely subfertile due to impaired acrosomal exocytosis (IAE). In this study, the sperm proteome in frozen/thawed semen from subfertile Thoroughbred stallions was studied and compared to that of frozen/thawed sperm from fertile Thoroughbred stallions. A total of 2,220 proteins was identified, of which 140 proteins were found to be differentially abundant in sperm from the subfertile stallions compared to that of fertile stallions (83 less and 57 more abundant). Proteins of differential abundance in sperm from the subfertile stallions were mainly overrepresented in the "metabolism" and the "metabolism of lipids" pathways. One of these proteins, arylsulfatase F (ARSF), was studied by immunofluorescence. A lower proportion of sperm displaying ARSF signal at the acrosome region was observed in sperm from subfertile Thoroughbred stallions. In addition, heterologous zona pellucida binding assays revealed that sperm from subfertile Thoroughbred stallions bound at a lower proportion to zonae pellucidae than sperm from fertile Thoroughbred stallions. In conclusion, a group of differential abundance proteins, including some of acrosome origin, were identified in sperm from subfertile stallions with acrosome dysfunction.
Collapse
Affiliation(s)
- Camilo Hernández-Avilés
- Equine Fertility Laboratory, Department of Large Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 500 Raymond Stotzer Parkway, College Station, TX, 77843, USA.
| | - Luisa Ramírez-Agámez
- Equine Fertility Laboratory, Department of Large Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 500 Raymond Stotzer Parkway, College Station, TX, 77843, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Charles F Scoggin
- LeBlanc Reproduction Center, Rood & Riddle Equine Hospital, Lexington, KY, USA
| | - Brian W Davis
- Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Terje Raudsepp
- Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Dickson D Varner
- Equine Fertility Laboratory, Department of Large Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 500 Raymond Stotzer Parkway, College Station, TX, 77843, USA
| | - Charles C Love
- Equine Fertility Laboratory, Department of Large Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 500 Raymond Stotzer Parkway, College Station, TX, 77843, USA
| |
Collapse
|
36
|
Hai E, Li B, Zhang J, Zhang J. Sperm freezing damage: the role of regulated cell death. Cell Death Discov 2024; 10:239. [PMID: 38762505 PMCID: PMC11102515 DOI: 10.1038/s41420-024-02013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Substantial progress in research on sperm cryopreservation has occurred since the twentieth century, especially focusing on improving sperm freezing procedures and optimizing semen extenders. However, the cellular biological mechanisms of sperm freezing damage are still unclear, which greatly restricts the promotion and development of sperm cryopreservation. An essential component of sperm freezing damage is the occurrence of cell death. Considering the existence of multiple types of cell death pathways, this review discusses connections between characteristics of regulated cell death (e.g., apoptosis and ferroptosis), and accidental cell death (e.g., intracellular ice crystals) with sperm freezing damage and explores possible future research directions in this field.
Collapse
Affiliation(s)
- Erhan Hai
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Boyuan Li
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Jian Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
37
|
Elkhawagah AR, Ricci A, Bertero A, Poletto ML, Nervo T, Donato GG, Vincenti L, Martino NA. Supplementation with MitoTEMPO before cryopreservation improves sperm quality and fertility potential of Piedmontese beef bull semen. Front Vet Sci 2024; 11:1376057. [PMID: 38812559 PMCID: PMC11135289 DOI: 10.3389/fvets.2024.1376057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of this study was to improve the quality of frozen-thawed Piedmontese bull semen by incorporating MitoTEMPO (MT) in extended semen before cryopreservation. Semen was collected from 4 fertile bulls, using an artificial vagina, once weekly for 6 consecutive weeks. Semen samples were pooled, diluted with Bullxcell® extender, and supplemented with different concentrations of MT (0 as control, 5, 10, 20, 40, and 80 μM) before cooling, equilibration, and freezing procedures. The frozen-thawed semen was assessed for motility, vitality, acrosome intactness, plasma membrane integrity, DNA integrity, apoptosis, mitochondrial membrane potential, intracellular ROS level and in vitro fertilizing capability. The results showed that MT at concentrations of 10, 20, and 40 μM improved the total, progressive, and rapid motility directly after thawing while, at the highest tested concentration (80 μM), it decreased the progressive and rapid motility after 1, 2, and 3 h of incubation. The sperm kinetics including STR and LIN were noticeably increased at concentrations of 10, 20, and 40 μM directly after thawing (0 h), whereas the MT effect was variable on the other sperm kinetics during the different incubation periods. MitoTEMPO improved the sperm vitality at all tested concentrations, while the acrosomal and DNA integrity were improved at 20 μM and the mitochondrial membrane potentials was increased at 80 μM. The cleavage and blastocyst formation rates were significantly increased by using semen treated with 20 μM MT compared with controls. These findings suggest a potential use of MT mainly at a concentration of 20 μM as an additive in the cryopreservation media of bull semen to improve sperm quality.
Collapse
Affiliation(s)
- Ahmed R. Elkhawagah
- Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Alessandro Ricci
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Alessia Bertero
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | | | - Tiziana Nervo
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Gian Guido Donato
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Leila Vincenti
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
38
|
Cinar B, Bollwein H, Siuda M, Lautner M, Leiding C, Malama E. Impact of bull age, sperm processing, and microclimatic conditions on the viability and DNA integrity of cryopreserved bovine sperm. Reprod Fertil Dev 2024; 36:RD23219. [PMID: 38713807 DOI: 10.1071/rd23219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/11/2024] [Indexed: 05/09/2024] Open
Abstract
Context Seasonal microclimatic fluctuations can cause changes in sperm quality even in dairy bulls bred under temperate climate. These changes can vary between sires of different age and affect sperm freezability. Aims We aimed to evaluate the modulating effect of bull age and equilibration time before freezing on the seasonal pattern of sperm viability and DNA integrity post-thaw. Methods In the frame of systematic sperm quality control, we assessed the integrity of sperm plasma membrane and acrosome (PMAI) in 15,496 cryopreserved bovine batches, and the percentage of sperm with high DNA fragmentation index (%DFI) after 0h and 3h incubation at 38°C post-thaw (3h) in 3422 batches. Semen was equilibrated for 24h before freezing if collected on Monday or Wednesday and 72h if produced on Friday. We investigated the effect of season, bull age, equilibration, and temperature-humidity index (THI) on the day of semen collection on sperm traits using mixed-effects linear models. Key results PMAI and %DFI (0h and 3h) deteriorated with increasing THI. The effect of THI on %DFI was detected with a 30-day time lag. Seasonal fluctuations of sperm quality were similar between young, mature, and older sires. Prolonged equilibration did not affect PMAI but was linked to elevated %DFI (3h) in summer. Conclusions Extending equilibration from 24 to 72h is compatible with commercial standards of bovine sperm quality post-thaw; however, it could interfere with the seasonal pattern of the latter. Implications Systematic monitoring of bovine sperm quality enables the prompt detection of stress factors related to microclimate and semen processing.
Collapse
Affiliation(s)
- Burcu Cinar
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland
| | - Mathias Siuda
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland
| | - Matthias Lautner
- Besamungsverein Neustadt a.d. Aisch e.V., Karl-Eibl-Straße 17-27, Neustadt a.d. Aisch 91413, Germany
| | - Claus Leiding
- Besamungsverein Neustadt a.d. Aisch e.V., Karl-Eibl-Straße 17-27, Neustadt a.d. Aisch 91413, Germany
| | - Eleni Malama
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland
| |
Collapse
|
39
|
Wang L, Yang S, Ma X, Yang L, Ma J, Zhao X, Zhang Q. Bibliometric and visual analysis on oxidative stress in gynecological and reproductive diseases: A systematic review. Medicine (Baltimore) 2024; 103:e37815. [PMID: 38608064 PMCID: PMC11018168 DOI: 10.1097/md.0000000000037815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The imbalance between the generation and elimination of reactive oxygen species (ROS) is defined as oxidative stress (OS). Elevated levels of OS are implicated in various diseases, especially in gynecological and reproductive disorders. The abundance of recent literature makes it challenging to assimilate all available information. This bibliometric analysis seeks to depict the research landscape of OS in gynecological and reproductive diseases and to identify future hotspots and trends. METHODS The Web of Science Core Collection served as the source for articles related to OS in gynecological and reproductive diseases. CtieSpace and VOSviewer software were utilized to analyzed countries/regions, institutions, journals, authors, and keywords of all eligible articles. RESULTS A total of 1423 articles were included. There was a gradual increase in the number of publications in this field. The USA maintained the highest number of publications, with 372 articles. Cleveland Clinic was the leading institution in terms of publication volume, contributing 67 articles. In total, 6925 authors were identified. Agarwal A as the most frequently co-cited author, received 812 citations across 43 publications. The predominant clusters included "placenta," "polycystic ovary syndrome," "male infertility," and "oocyte quality." Notably, "oocyte quality'" was identified as a current key research topic. CONCLUSION There was an uptrend in the number of articles addressing OS in gynecological and reproductive diseases. However, international collaboration and exchange were limited. The topic of male infertility had remained a consistent area of interest, and research on oocyte quality is poised to become a potential focal point in the future.
Collapse
Affiliation(s)
- Ling Wang
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Sichen Yang
- The Third School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaona Ma
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Liuqing Yang
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Ma
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxuan Zhao
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Zhang
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
40
|
Yilmazer Y, Moshfeghi E, Cetin F, Findikli N. In vitro effects of the combination of serotonin, selenium, zinc, and vitamins D and E supplementation on human sperm motility and reactive oxygen species production. ZYGOTE 2024; 32:154-160. [PMID: 38379192 DOI: 10.1017/s0967199424000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Infertility affects 15% of all couples worldwide and 50% of cases of infertility are solely due to male factors. A decrease in motility in the semen is considered one of the main factors that is directly related to infertility. The use of supplementation to improve the overall sperm quality has become increasingly popular worldwide. The purpose of this study was to evaluate whether sperm motility was affected by the combination of serotonin (5-HT), selenium (Se), zinc (Zn), and vitamins D, and E supplementation. Semen samples were incubated for 75 min at 37°C in medium containing varying concentrations of 5-HT, Se, Zn, vitamin D, and E. 5-HT (200 μM), Se (2 μg/ml), Zn (10 μg/ml), vitamin D (100 nM), and vitamin E (2 mmol) have also been shown to increase progressive sperm motility. Three different mixtures of supplements were also tested for their combined effects on sperm motility and reactive oxygen species (ROS) production. While the total motility in the control group was 71.96%, this was found to increase to 82.85% in the first mixture. In contrast the average ROS level was 8.97% in the control group and decreased to 4.23% in the first mixture. Inclusion of a supplement cocktail (5-HT, Se, Zn, vitamins D and E) in sperm processing and culture medium could create an overall improvement in sperm motility while decreasing ROS levels during the incubation period. These molecules may enhance the success of assisted reproduction techniques when present in sperm preparation medium.
Collapse
Affiliation(s)
- Yasemin Yilmazer
- Department of Molecular Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Elnaz Moshfeghi
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Fadime Cetin
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | | |
Collapse
|
41
|
Cornejo-Guerra C, Salazar-Ardiles C, Morales P, Andrade DC. Consequences of Exposure to Hypobaric Hypoxia Associated with High Altitude on Spermatogenesis and Seminal Parameters: A Literature Review. Cells 2024; 13:592. [PMID: 38607031 PMCID: PMC11011536 DOI: 10.3390/cells13070592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 04/13/2024] Open
Abstract
Preclinical research has provided compelling evidence indicating that exposure to hypobaric hypoxia (HH) results in a deterioration of spermatogenesis. This adverse effect extends to the underlying molecular mechanisms, progressively leading to impairments in the seminiferous epithelium and germ cells and alterations in semen parameters. Indeed, several studies have demonstrated that animals exposed to HH, whether in natural high-altitude environments or under simulated hypoxic conditions, exhibit damage to the self-renewal and differentiation of spermatogenesis, an increase in germline cell apoptosis, and structural alterations in the seminiferous tubules. One of the primary mechanisms associated with the inhibition of differentiation and an increase in apoptosis among germ cells is an elevated level of oxidative stress, which has been closely associated with HH exposure. Human studies have shown that individuals exposed to HH, such as mountaineers and alpinists, exhibit decreased sperm count, reduced motility, diminished viability, and increased sperm with abnormal morphology in their semen. This evidence strongly suggests that exposure to HH may be considered a significant risk factor that could elevate the prevalence of male infertility. This literature review aims to provide a comprehensive description and propose potential mechanisms that could elucidate the infertility processes induced by HH. By doing so, it contributes to expanding our understanding of the challenges posed by extreme environments on human physiology, opening new avenues for research in this field.
Collapse
Affiliation(s)
- Carlos Cornejo-Guerra
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1271155, Chile; (C.C.-G.); (C.S.-A.)
| | - Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1271155, Chile; (C.C.-G.); (C.S.-A.)
| | - Patricio Morales
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1271155, Chile;
| | - David C. Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1271155, Chile; (C.C.-G.); (C.S.-A.)
| |
Collapse
|
42
|
Torres TM, Almeida-Monteiro PSD, Nascimento RVD, Cândido-Sobrinho SA, Sousa CTN, Ferreira YM, de Paula KT, Salmito-Vanderley CSB. Effects of taurine, cysteine and melatonin as antioxidant supplements to the freezing medium of Prochilodus brevis sperm. Cryobiology 2024; 114:104858. [PMID: 38346570 DOI: 10.1016/j.cryobiol.2024.104858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/17/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Cryopreservation consist of a set of methods to preserve cells and tissues by drastically reducing the temperature. Among some undesired effects, cryopreservation might generate reactive oxygen species that lead to an increase of oxidative stress, causing damage to cells. This study aimed to test taurine, cysteine, and melatonin on the freezing of Prochilodus brevis sperm and assess its effects on post-thawed sperm quality. Sperm was collected and seven pools were formed (n = 7). They were diluted (1:9) in standard medium (5% glucose, 10% dimethyl sulfoxide and 5% egg yolk) supplemented or not (control) with taurine (0.3, 1.0, 3.16 or 10.0 mM), cysteine (0.3, 1.0, 3.16 or 10.0 mM) or melatonin (0.6, 1.12, 2.0 or 3.56 mM). Post-thawed sperm was evaluated for kinetic (total motility, velocities, and percentage of rapid cells), morphology and membrane and DNA integrity. Differences were found when melatonin was used as an antioxidant. For the variables rapid sperm and sperm velocities, 3.56 mM melatonin presented higher results than the control (melatonin 0 mM). Melatonin 2 mM was similar to 3.56 mM on rapid sperm, average path velocity (VAP) and curvilinear velocity (VCL). No difference was found between concentration 0 mM (control) and taurine treatments. As for cysteine, 0.3 mM presented the best results for rapid sperm than 10 mM, and higher VCL and VAP than 1 mM. Melatonin 3.56 mM presented higher results on kinetic parameters (rapid motility, VCL, VSL and VAP) than other tested antioxidants. Therefore, melatonin 3.56 mM is recommended to be added to the sperm freezing medium of P. brevis.
Collapse
Affiliation(s)
- Thais Maia Torres
- Fish Reproduction Biotechnology Laboratory, Postgraduate Program in Veterinary Science, State University of Ceará, Ceará, Brazil.
| | | | | | | | - Carla Tatiana Nascimento Sousa
- Fish Reproduction Biotechnology Laboratory, Postgraduate Program in Veterinary Science, State University of Ceará, Ceará, Brazil
| | - Yasmim Maia Ferreira
- Fish Reproduction Biotechnology Laboratory, Postgraduate Program in Veterinary Science, State University of Ceará, Ceará, Brazil
| | | | | |
Collapse
|
43
|
Hu B, Zhang H, Li Y, Xue Q, Yang M, Cao C, Gao L, Chu G, Cai R, Zheng Y, Pang W. Kojic acid inhibits pig sperm apoptosis and improves capacitated sperm state during liquid preservation at 17°C. Mol Reprod Dev 2024; 91:e23738. [PMID: 38462735 DOI: 10.1002/mrd.23738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 03/12/2024]
Abstract
The parameters of sperm apoptosis and capacitation during liquid storage at 17°C can indicate the quality of pig sperm and the potential development of early embryos. However, the effect of kojic acid (KA) on semen preservation and its mechanism has not been fully understood. In this study, we discovered that adding KA to the diluent improved the antioxidant capacity of sperm mitochondria, maintained the normal structure of sperm mitochondria, and reduced sperm apoptosis. Western blot analysis revealed that KA prevented the release of Cytochrome c from mitochondria to the cytoplasm, reduced the expression of pro-apoptosis proteins cleaved Caspase-3 and cleaved Caspase-9, and increased the expression of the antiapoptosis protein Bcl-XL. Furthermore, KA also enhanced the motility parameters, oxidative phosphorylation level, adenosine triphosphate level, and protein tyrosine phosphorylation of capacitated sperm, while preserving the acrosome integrity and plasma membrane integrity of capacitated sperm. In conclusion, this study offers new insights into the molecular mechanism of how KA inhibits porcine sperm apoptosis and improves capacitated sperm parameters. Additionally, it suggests that KA can serve as an alternative to antibiotics.
Collapse
Affiliation(s)
- Bingyan Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haize Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuqing Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Xue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Menghao Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaoyue Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
44
|
Irigoyen P, Mansilla S, Castro L, Cassina A, Sapiro R. Mitochondrial function and reactive oxygen species production during human sperm capacitation: Unraveling key players. FASEB J 2024; 38:e23486. [PMID: 38407497 DOI: 10.1096/fj.202301957rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Sperm capacitation is a critical process for male fertility. It involves a series of biochemical and physiological changes that occur in the female reproductive tract, rendering the sperm competent for successful fertilization. The precise mechanisms and, specifically, the role of mitochondria, in sperm capacitation remain incompletely understood. Previously, we revealed that in mouse sperm mitochondrial activity (e.g., oxygen consumption, membrane potential, ATP/ADP exchange, and mitochondrial Ca2+ ) increases during capacitation. Herein, we studied mitochondrial function by high-resolution respirometry (HRR) and reactive oxygen species production in capacitated (CAP) and non-capacitated (NC) human spermatozoa. We found that in capacitated sperm from normozoospermic donors, the respiratory control ratio increased by 36%, accompanied by a double oxygen consumption rate (OCR) in the presence of antimycin A. Extracellular hydrogen peroxide (H2 O2 ) detection was three times higher in CAP than in NC sperm cells. To confirm that H2 O2 production depends on mitochondrial superoxide (O 2 · - $$ {\mathrm{O}}_2^{\cdotp -} $$ ) formation, we evaluated mitochondrial aconitase (ACO2) amount, activity, and role in the metabolic flux from the sperm tricarboxylic acid cycle. We estimated that CAP cells produce, on average by individual, (59 ± 22)% moreO 2 · - $$ {\mathrm{O}}_2^{\cdotp -} $$ in the steady-state compared to NC cells. Finally, we analyzed two targets of oxidative stress: lipid peroxidation by western blot against 4-hydroxynonenal and succinate dehydrogenase (SDH) activity by HRR. We did not observe modifications in lipoperoxidation nor the activity of SDH, suggesting that during capacitation, the increase in mitochondrial H2 O2 production does not damage sperm and it is necessary for the normal CAP process.
Collapse
Affiliation(s)
- Pilar Irigoyen
- Unidad Académica Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mansilla
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Castro
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rossana Sapiro
- Unidad Académica Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
45
|
Xu Y, Gan K, Hou L, Wang H, Cai J, Liu L, Wen W, Rao M, Tang L. The association between hepatitis B virus and semen quality: a systematic review and meta-analysis. BMC Urol 2024; 24:47. [PMID: 38389059 PMCID: PMC10885473 DOI: 10.1186/s12894-024-01424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Some studies have suggested that hepatitis B virus (HBV) infection had a negative association with semen quality, but the conclusions have been inconsistent. The purpose of our study was to systematically assess the association between HBV infection and semen parameters. METHODS We searched electronic databases for studies published from January 1980 to August 2023. Eleven studies were included in the analysis. Primary outcomes were semen volume, sperm concentration, sperm morphology, sperm motility and sperm progressive motility. We also conducted a subgroup analysis between China and other countries. RESULT Compared with the semen quality of HBV-negative men, HBV infection had a negative association with semen volume (MD: -0.20 mL, 95%CI: -0.32 to - 0.09, P = 0.0004), sperm concentration (MD: -4.46 × 106/mL, 95%CI: -7.09 to - 1.84, P = 0.0009), sperm morphology (MD: -2.49%, 95%CI: -4.35 to - 0.64, P = 0.008), sperm motility (MD: -6.85%, 95%CI: -11.53 to - 2.18, P = 0.004), and sperm progressive motility (MD: -6.63%, 95%CI: -10.24 to - 3.02, P = 0.0003). However, HBV infection had no significant association with total sperm count (MD: -31.50 × 106, 95%CI: -74.11 to 11.10, P = 0.15). The association between HBV and semen quality were inconsistent between the subgroups. CONCLUSION HBV infection had a negative association with sperm concentration, motility, morphology, and semen volume. However, The association between HBV and total sperm count remain unclear. This metaanalysis suggests that we should pay attention to the adverse effect of HBV on sperm quality, and several studies have reported the relevant mechanisms. But due to the significant heterogeneity among studies on some semen parameters, further large and well-designed researches are needed before introducing clinical management recommendations.
Collapse
Affiliation(s)
- Yuting Xu
- Department of Reproductive genetics, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Kai Gan
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Liqing Hou
- Department of Reproductive genetics, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Huawei Wang
- Department of Reproductive genetics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan Province, 650032, China
| | - June Cai
- Department of Reproductive genetics, Yan 'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Liu Liu
- Department of Reproductive genetics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan Province, 650032, China
| | - Wen Wen
- Department of Reproductive genetics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan Province, 650032, China
| | - Meng Rao
- Department of Reproductive genetics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan Province, 650032, China.
| | - Li Tang
- Department of Reproductive genetics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan Province, 650032, China.
| |
Collapse
|
46
|
Sciorio R, Tramontano L, Adel M, Fleming S. Decrease in Sperm Parameters in the 21st Century: Obesity, Lifestyle, or Environmental Factors? An Updated Narrative Review. J Pers Med 2024; 14:198. [PMID: 38392631 PMCID: PMC10890002 DOI: 10.3390/jpm14020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Semen quality represents a compelling factor for fertility, and delineating the normal values has proven difficult. In the last four decades, several authors have reported a noticeable decline in sperm parameters. Also, studies investigating 'time to pregnancy' have shown that fecundity begins to be reduced when sperm numbers decrease below 30 million, even though according to the 6th edition of the WHO manual, the normal value is currently 16 million/mL or 39 million per ejaculate. There exists sufficient data to suggest a decline in sperm counts over time, even though the clear reason for this adverse trend is not well established, but some associations have been hypothesised, such as maternal smoking during pregnancy. Additional potential factors have yet to be fully illustrated but involve poor diet, increased obesity, and exposure to environmental toxins. Moreover, the change in environmental conditions and more common exposure to endocrine-disrupting chemicals (EDCs), such as pesticides and herbicides, as well as bisphenol A, phthalates, polychlorinated biphenyls, and heavy metals, starting from prenatal life and continuing into adulthood, may exhibit probable features explaining the reduction in sperm parameters. Therefore, the main goal of this narrative review is to furnish an overview of the possible effects of exposure to EDCs on testicular function and spermatogenesis and, also, to summarise the evidence regarding a decrease in sperm quality and examine its potential consequences.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Luca Tramontano
- Department of Women, Infants and Adolescents, Division of Obstetrics, Geneva University Hospitals, 1211 Geneve, Switzerland
| | - Mohammed Adel
- Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Steven Fleming
- Discipline of Anatomy & Histology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
47
|
Park SH, Gye MC. Dibutyl phthalate disrupts glycogen synthase kinase 3α essential for sperm motility. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115977. [PMID: 38242044 DOI: 10.1016/j.ecoenv.2024.115977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
To unravel the toxic mechanism of phthalate ester plasticizer endocrine disruptor in spermatozoa, we examined the effect of dibutyl phthalate (DBP) on the stability and inhibitory phosphorylation of glycogen synthase kinase 3α (GSK3α), a protein kinase crucial for sperm motility in mice. In DBP-treated spermatozoa, reactive oxygen species (ROS) and lipid peroxide were significantly increased. In computer-assisted sperm analysis, DBP at concentrations of 10 - 100 μg/mL significantly decreased total motility and progressive motility of spermatozoa. On western blots, DBP decreased p-GSK3α(Ser21) and increased p-GSK3α(Tyr279) in spermatozoa. Similarly, hydrogen peroxide decreased p-GSK3α(Ser21) but not p-GSK3α(Tyr279) in spermatozoa. Immunofluorescent labeling demonstrated that DBP markedly decreased immunoreactivities of GSK3α and p-GSK3α(Ser21) but increased immunoreactivity of p-GSK3α(Tyr279) in spermatozoa. DBP at a concentration of 100 μg/mL significantly increased phosphatase activity in spermatozoa. Calyculin A, a protein phosphatase 1 and 2 A inhibitor, markedly increased p-GSK3α(Ser21) and sperm motility and attenuated a DBP-induced decrease of p-GSK3α(Ser21) and sperm motility. On western blot, 1-100 μg/mL DBP decreased GSK3α in spermatozoa. On immunoprecipitation western blot, DBP at 10 - 100 μg/mL increased polyubiquitinated sperm proteins including GSK3α. The MG115, proteasome inhibitor attenuated degradation of GSK3α in DBP-treated spermatozoa. Hydrogen peroxide at 10 μM increased polyubiquitinated sperm proteins, suggesting that DBP may increase ubiquitination of GSK3α via ROS induction. Together, DBP may decrease the cellular amount of GSK3α through the ubiquitin-proteasome pathway and p-GSK3α(Ser21) through ROS generation and activation of protein phosphatases, impairing sperm motility.
Collapse
Affiliation(s)
- Seung Hyun Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
48
|
Kimmins S, Anderson RA, Barratt CLR, Behre HM, Catford SR, De Jonge CJ, Delbes G, Eisenberg ML, Garrido N, Houston BJ, Jørgensen N, Krausz C, Lismer A, McLachlan RI, Minhas S, Moss T, Pacey A, Priskorn L, Schlatt S, Trasler J, Trasande L, Tüttelmann F, Vazquez-Levin MH, Veltman JA, Zhang F, O'Bryan MK. Frequency, morbidity and equity - the case for increased research on male fertility. Nat Rev Urol 2024; 21:102-124. [PMID: 37828407 DOI: 10.1038/s41585-023-00820-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
Currently, most men with infertility cannot be given an aetiology, which reflects a lack of knowledge around gamete production and how it is affected by genetics and the environment. A failure to recognize the burden of male infertility and its potential as a biomarker for systemic illness exists. The absence of such knowledge results in patients generally being treated as a uniform group, for whom the strategy is to bypass the causality using medically assisted reproduction (MAR) techniques. In doing so, opportunities to prevent co-morbidity are missed and the burden of MAR is shifted to the woman. To advance understanding of men's reproductive health, longitudinal and multi-national centres for data and sample collection are essential. Such programmes must enable an integrated view of the consequences of genetics, epigenetics and environmental factors on fertility and offspring health. Definition and possible amelioration of the consequences of MAR for conceived children are needed. Inherent in this statement is the necessity to promote fertility restoration and/or use the least invasive MAR strategy available. To achieve this aim, protocols must be rigorously tested and the move towards personalized medicine encouraged. Equally, education of the public, governments and clinicians on the frequency and consequences of infertility is needed. Health options, including male contraceptives, must be expanded, and the opportunities encompassed in such investment understood. The pressing questions related to male reproductive health, spanning the spectrum of andrology are identified in the Expert Recommendation.
Collapse
Affiliation(s)
- Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- The Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- The Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Christopher L R Barratt
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, University Hospital, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sarah R Catford
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Melbourne, Victoria, Australia
| | | | - Geraldine Delbes
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Sante Biotechnologie, Laval, Quebec, Canada
| | - Michael L Eisenberg
- Department of Urology and Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Nicolas Garrido
- IVI Foundation, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Brendan J Houston
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia
| | - Niels Jørgensen
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences, 'Mario Serio', University of Florence, University Hospital of Careggi Florence, Florence, Italy
| | - Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Robert I McLachlan
- Hudson Institute of Medical Research and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
- Monash IVF Group, Richmond, Victoria, Australia
| | - Suks Minhas
- Department of Surgery and Cancer Imperial, London, UK
| | - Tim Moss
- Healthy Male and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Allan Pacey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lærke Priskorn
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Stefan Schlatt
- Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jacquetta Trasler
- Departments of Paediatrics, Human Genetics and Pharmacology & Therapeutics, McGill University and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Leonardo Trasande
- Center for the Investigation of Environmental Hazards, Department of Paediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Mónica Hebe Vazquez-Levin
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Fundación IBYME, Buenos Aires, Argentina
| | - Joris A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
49
|
Sugai N, Werre S, Cecere JT, Balogh O. Comparing different sperm concentrations for optimizing cooled semen use in the dog. Front Vet Sci 2024; 10:1339840. [PMID: 38347887 PMCID: PMC10860413 DOI: 10.3389/fvets.2023.1339840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
The use of shipping canine semen for artificial insemination has bloomed over the last 20 years. This allows for the spread of genetic material while overcoming geographical or time-related challenges. The optimal sperm concentration for cooled semen transport in the dog is unknown. Often canine semen is extended 1:3-5 vol:vol without standardized sperm concentrations for cooled shipment. We compared different sperm concentrations for cooled storage and hypothesized that lower concentrations would result in better semen quality. Semen was collected from healthy client-owned dogs (n = 8). Individual ejaculates were divided into a control aliquot (CON) extended 1:3 vol:vol with a commercial extender. The remaining sample was centrifuged and extended to 200 ×106 sperm/ml (C200), then serially diluted to 100, 50, and 25 ×106 sperm/ml concentrations (C100-C25). Aliquots were cooled for 24 h and then centrifuged and re-extended. Sperm concentration, plasma membrane integrity (PMI, %), motility (subjective total, STM; computer-assisted sperm analysis (CASA) total and progressive, TM, PM; %), and normal morphology (NM, %) were assessed in raw semen (T0), post-extension (T1), after 24 h of cooling (T2), and after processing at 24 h (T3). Cooling resulted in significant declines in STM and NM for all groups and in decreased PMI for CON and C25-50. After cooling (at T2), PMI was significantly lower for C25 compared with all the groups and higher for CON compared with C25-100 (p ≤ 0.038). Processing and re-extension after cooling further decreased the spermiogram parameters. At T3, PMI for CON was similar to C200 but significantly higher than C25-100, while C25 had the lowest PMI. For motility parameters and NM, C25 performed worse than all or most of the other groups. Comparing CON at T3 with C25-200 at T2, PMI, STM, and NM for CON were significantly lower than C25-200, C200, and C100-200, respectively. In conclusion, our results show that cooling canine semen for 24 h at 200 ×106 sperm/ml final concentration after processing or extending 1:3 vol:vol without centrifugation is preferred based on the highest PMI. If volume restrictions apply, processing raw semen and extending to the desired volume with higher sperm concentrations at the collection facility is superior to centrifugation and volume adjustment after 24 h of cooled storage.
Collapse
Affiliation(s)
- Nicole Sugai
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| | - Stephen Werre
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| | - Julie T. Cecere
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| | - Orsolya Balogh
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| |
Collapse
|
50
|
Panga MJ, Zhao Y. Male Reproductive Toxicity of Antifouling Chemicals: Insights into Oxidative Stress-Induced Infertility and Molecular Mechanisms of Zinc Pyrithione (ZPT). Antioxidants (Basel) 2024; 13:173. [PMID: 38397771 PMCID: PMC10886347 DOI: 10.3390/antiox13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Zinc pyrithione (ZPT), a widely utilized industrial chemical, is recognized for its versatile properties, including antimicrobial, antibacterial, antifungal, and antifouling activities. Despite its widespread use, recent research has shed light on its toxicity, particularly towards the male reproductive system. While investigations into ZPT's impact on male reproduction have been conducted, most of the attention has been directed towards marine organisms. Notably, ZPT has been identified as a catalyst for oxidative stress, contributing to various indicators of male infertility, such as a reduced sperm count, impaired sperm motility, diminished testosterone levels, apoptosis, and degenerative changes in the testicular tissue. Furthermore, discussions surrounding ZPT's effects on DNA and cellular structures have emerged. Despite the abundance of information regarding reproductive toxicity, the molecular mechanisms underlying ZPT's detrimental effects on the male reproductive system remain poorly understood. This review focuses specifically on ZPT, delving into its reported toxicity on male reproduction, while also addressing the broader context by discussing other antifouling chemicals, and emphasizing the need for further exploration into its molecular mechanisms.
Collapse
Affiliation(s)
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|