1
|
Park SH, Gye MC. Dibutyl phthalate disrupts [Ca 2+] i, reactive oxygen species, [pH] i, protein kinases and mitochondrial activity, impairing sperm function. J Environ Sci (China) 2025; 151:68-78. [PMID: 39481973 DOI: 10.1016/j.jes.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 11/03/2024]
Abstract
To explore the mechanism of sperm dysfunction caused by dibutyl phthalate (DBP), the effects of DBP on intracellular [Ca2+] and [pH], reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, phosphorylation of protein kinase A (PKA) substrate proteins and phosphotyrosine (p-Tyr) proteins, sperm motility, spontaneous acrosome reaction, and tail bending were examined in mouse spermatozoa. At 100 µg/mL, DBP significantly increased tail bending and [Ca2+]i. Interestingly, DBP showed biphasic effects on [pH]i. DBP at 10-100 µg/mL significantly decreased sperm motility. Similarly, Ca2+ ionophore A23187 decreased [pH]i sperm motility, suggesting that DBP-induced excessive [Ca2+]i decreased sperm motility. DBP significantly increased ROS and LPO. DBP at 100 µg/mL significantly decreased mPTP closing, MMP, and ATP levels in spermatozoa, as did H2O2, indicative of ROS-mediated mitochondrial dysfunction caused by DBP. DBP as well as H2O2 increased p-Tyr sperm proteins and phosphorylated PKA substrate sperm proteins. DBP at 1-10 µg/mL significantly increased the spontaneous acrosome reaction, suggesting that DBP can activate sperm capacitation. Altogether, DBP showed a biphasic effect on intracellular signaling in spermatozoa. At concentrations relevant to seminal ortho-phthalate levels, DBP activates [pH]i, protein tyrosine kinases and PKA via physiological levels of ROS generation, potentiating sperm capacitation. DBP at high doses excessively raises [Ca2+]i and ROS and disrupts [pH]i, impairing the mitochondrial function, tail structural integrity, and sperm motility.
Collapse
Affiliation(s)
- Seung Hyun Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Veselinović A, Zeković M, Paunović M, Šorak M, Ristić-Medić D, Vučić V. Zinc as a Modulator of Male Fertility: Interplay Between Lipid Metabolism, Oxidative Stress, and Sperm Function. Biol Trace Elem Res 2025:10.1007/s12011-025-04615-z. [PMID: 40237945 DOI: 10.1007/s12011-025-04615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Infertility is a multifaceted and pressing global health challenge, with male reproductive impairment playing a significant role in its overall burden. Zinc (Zn), a biologically indispensable trace element, is fundamental to spermatogenesis and overall male reproductive function. This narrative review explores the following aspects: (1) the mechanistic function of Zn in spermatogenesis, (2) the impact of oxidative stress on Zn status and male infertility, (3) the interplay between Zn and lipid metabolism in male reproductive physiology, (4) the relationship between Zn concentrations and semen parameters, and (5) the effects of Zn supplementation on sperm quality, alongside relevant institutional recommendations. The molecular pathways underlying Zn deficiency-induced enzymatic dysfunction, oxidative stress, and lipid homeostasis disruption remain partially elucidated, warranting further investigation into their interdependent effects on male infertility. While accumulating evidence suggests that Zn supplementation may have therapeutic potential in male infertility management, guidelines for its clinical application vary considerably across institutions and regions. To establish a clear and evidence-based framework for the function of Zn in male reproductive health, future research should prioritize determining of optimal Zn levels, the mechanistic links between Zn and lipid metabolism, and the long-term clinical outcomes of Zn supplementation in infertile populations.
Collapse
Affiliation(s)
- Aleksandra Veselinović
- Cognitive Neuroscience Department, Research and Development Institute "Life Activities Advancement Institute", Belgrade, Serbia.
- Department of Speech, Language and Hearing Sciences, Institute for Experimental Phonetics and Speech Pathology, Belgrade, Serbia.
| | - Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Marija Paunović
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Šorak
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Biomedically Assisted Reproduction, Clinic for Gynecology and Obstetrics, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Danijela Ristić-Medić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Vučić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Napierkowska S, Froment P, Dupont J, Płuciennik N, Babapour A, Krywko-Valencia S, Niżański W, Kowalczyk A, Partyka A. Consequences of in vitro exposure of chicken spermatozoa to the fungicide tebuconazole. Poult Sci 2025; 104:105134. [PMID: 40215879 PMCID: PMC12018103 DOI: 10.1016/j.psj.2025.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/27/2025] Open
Abstract
Tebuconazole (TEB), a fungicide that inhibits 14α-demethylase (CYP51) and disrupts ergosterol synthesis, poses environmental and health risks due to its persistence and low biodegradability. This study examined TEB in vitro effects on rooster spermatozoa. In Experiment 1, semen from 10 Green-legged Partridge roosters was incubated with TEB (0, 0.1, 1, 10, 100 µM) at 36°C for 3 hours. Sperm motility was analyzed with Computer-Aided Sperm Analysis (CASA) system, while flow cytometry assessed membrane integrity, mitochondrial function, acrosome status, chromatin structure, intracellular calcium, apoptosis, caspase activity, and lipid peroxidation after 1 and 3 hours of exposure. Malondialdehyde (MDA) concentration and total antioxidant capacity (T-OAC) were measured by spectrophotometer. In Experiment 2, calcium channel blockers (SNX 325, MRS-1845, Nifedipine, HC-056456) were tested under the same conditions, focusing on motility, membrane integrity, calcium levels, apoptosis, caspase activity, and lipid peroxidation. Results in experiment 1 have shown that TEB (0.1, 1, 10 µM) reduced sperm velocity (VAP) after 3 hours (P < 0.01) without altering other motility parameters. Acrosome status, intracellular calcium level, and lipid peroxidation decreased significantly at all TEB concentrations (P < 0.01). Early apoptosis declined at 1 µM TEB (P < 0.01), while mitochondrial activity and membrane integrity remained stable. MDA levels were reduced (P < 0.01), with no effect on T-OAC. In Experiment 2, calcium channel blockers decreased motility parameters (VAP, VCL, VSL, MOT, PROG) and intracellular calcium levels (P < 0.01), but did not affect membrane integrity. Lipid peroxidation and caspase activity declined (P < 0.01), with no impact on early apoptosis. These findings underscore TEB's role in inhibiting calcium channels, reducing ion influx, blocking calcium-driven pore formation, thereby preserving membrane integrity. This mechanism mitigates early apoptosis and lipid peroxidation in chicken sperm, shedding light on TEB's impact on motility, calcium balance, and cell function.
Collapse
Affiliation(s)
- Skarlet Napierkowska
- Wroclaw University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animal, pl. Grunwaldzki 49 50-366 Wrocław, Poland
| | | | | | - Natalia Płuciennik
- Wroclaw University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animal, pl. Grunwaldzki 49 50-366 Wrocław, Poland
| | - Azindokht Babapour
- Wroclaw University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animal, pl. Grunwaldzki 49 50-366 Wrocław, Poland
| | - Sandra Krywko-Valencia
- Wroclaw University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animal, pl. Grunwaldzki 49 50-366 Wrocław, Poland
| | - Wojciech Niżański
- Wroclaw University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animal, pl. Grunwaldzki 49 50-366 Wrocław, Poland
| | - Artur Kowalczyk
- Wroclaw University of Environmental and Life Sciences, Institute of Animal Breeding, ul. Chełmońskiego 38C 51-630 Wrocław, Poland
| | - Agnieszka Partyka
- Wroclaw University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animal, pl. Grunwaldzki 49 50-366 Wrocław, Poland.
| |
Collapse
|
4
|
Khalil EM, Rady MI, Darwish SF, Abd-Allah ER. Nano Spirulina platensis countered cisplatin-induced repro-toxicity by reversing the expression of altered steroid hormones and downregulation of the StAR gene. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4053-4070. [PMID: 39414699 PMCID: PMC11978726 DOI: 10.1007/s00210-024-03483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024]
Abstract
Cisplatin is a commonly utilized chemotherapy medication for treating different sarcomas and carcinomas. Its ability interferes with cancer cells' DNA repair pathways and postpones unfavorable outcomes in cancer patients. The current investigation's goal was to ascertain if nano Spirulina platensis (NSP) might shield rat testicles from cisplatin damage by assessing the expression of the StAR and SOD genes, sex hormones, 17ß-hydroxysteroid dehydrogenase(17ß-HSD), sperm profile picture, oxidative condition of testes, testicular histology, and DNA damage. Four equal and random groups of 28 adult male Wistar rats were created; the control group was given saline for 8 weeks. An extraction of NSP at a concentration of 2500 mg/kg body weight was administered orally for 8 weeks to the NSP group. For the first 4 weeks, the cisplatin group was intraperitoneally injected with 2 mg/kg/body weight of cisplatin, and for the next 4 weeks, they were given a dosage of 4 mg/kg/body weight. The cisplatin + NSP group was given both NSP and cisplatin. The results of the experiment showed that intake of NSP and cisplatin improved sperm profile; re-established the balance of oxidizing agents and antioxidant state; enhanced testicular histology; promoted the histometric parameters of seminiferous tubules including epithelial height, their diameter, and Johnsen's score, decreasing DNA breakage in testicular tissue; increased testosterone level; decreased 17ß-HSD concentration; and upregulated both the StAR and SOD gene expression in testicles compared to rats exposed to cisplatin alone. These results demonstrate that NSP is a promising agent for improving cisplatin-induced testicular injury and infertility.
Collapse
Affiliation(s)
- Eman M Khalil
- Department of Zoology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Egypt
| | - Mohamed I Rady
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Samah F Darwish
- Biotechnology Research Unit, Animal Reproduction Research Institute, Giza, Egypt
| | - Entsar R Abd-Allah
- Department of Zoology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Egypt.
| |
Collapse
|
5
|
Moretti E, Signorini C, Menchiari S, Liguori L, Corsaro R, Gambera L, Collodel G. Are F 2-isoprostanes a better marker of semen lipid peroxidation than MDA in reproductive pathologies with inflammatory basis? Cytokine 2025; 188:156889. [PMID: 39923300 DOI: 10.1016/j.cyto.2025.156889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/20/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Many male reproductive pathologies and a part of undiagnosed infertility share an oxidative stress (OS) etiology with high reactive oxygen species and cytokine concentrations. The lack of reliable biomarkers to quantify oxidative injury is a crucial problem in the field of male infertility. In this observational study, IL-1β and the OS markers malondialdehyde (MDA) and F2-isoprostanes (F2-IsoPs) were quantified in seminal plasma of 46 infertile patients with varicocele, genitourinary infections, idiopathic infertility, and 11 fertile men. Semen analysis was performed following WHO guidelines, IL-1β was determined by ELISA, MDA was quantified by HPLC, and F2-IsoPs by GC/NICI-MS analysis. F2-IsoPs were immunolocalized in spermatozoa of fertile and infertile subjects. Results indicated that F2-IsoP, MDA, and IL-1β seminal levels positively correlated pairwise (p < 0.001) and showed negative correlations with sperm parameters (p < 0.001). Then, the studied population was grouped following the cause of infertility and the variables were compared between the different groups and a control sample. Seminal IL-1β, F2-IsoPs, and MDA were significantly higher in varicocele (p < 0.001, for MDA p < 0.01) and genitourinary infections (p < 0.001, for IL-1β p < 0.01) groups than those observed in fertile subjects. F2-IsoPs seemed to discriminate more accurately than MDA the different conditions, in particular idiopathic infertility. ROC curves demonstrated that the three analyzed indices were able to discriminate fertile and infertile patients. The immunofluorescence studies showed a low presence of F2-IsoPs in spermatozoa of fertile men and an evident labeling in the tail, and cytoplasmic residues of spermatozoa from infertile patients. In conclusion, this data confirmed that F2-IsoP level is a suitable marker of OS in seminal plasma, even more accurate than MDA and can be proposed for measuring OS in the clinical setting.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Silvia Menchiari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Laura Liguori
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
6
|
Fleming SD, Thomson LK. The Oxidative Stress of Human Sperm Cryopreservation. Antioxidants (Basel) 2025; 14:402. [PMID: 40298642 PMCID: PMC12024095 DOI: 10.3390/antiox14040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Due to their negligible cytoplasm and composition of the sperm plasmalemma, spermatozoa are particularly vulnerable to lipid peroxidative damage induced by reactive oxygen species (ROS). Most ROS are referred to as free radicals because they have unpaired electrons, causing them to scavenge electrons from atoms within tissues, resulting in oxidative damage to cellular components including cell membranes, intracellular organelles, and DNA. The potential consequences of oxidative stress include impaired sperm function, DNA fragmentation, and apoptosis. Understanding the mechanisms that mediate sperm damage during cryopreservation is key to the development of improved sperm freezing media formulations and methodology to mitigate its occurrence. Historically, elucidation of those mechanisms has proven largely elusive and is complicated by the positive role that ROS also play as messengers in redox signaling and the different pathways that mediate sperm DNA damage and apoptosis. More recently, oxidative stress has been revealed as the most likely suspect in cryopreservation-induced sperm DNA damage. This narrative review was intended to provide an in-depth analysis of the mechanisms involved and offer insight into possible improvements in sperm cryopreservation.
Collapse
Affiliation(s)
- Steven D. Fleming
- Discipline of Anatomy & Histology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Laura K. Thomson
- School of Medicine, University of Notre Dame, Fremantle, WA 6959, Australia;
| |
Collapse
|
7
|
Signorini C, Corsaro R, Collodel G, Maettner R, Sterzik K, Strehler E, Liguori L, Moretti E. Addition of Chlorogenic Acid to Human Semen: Effects on Sperm Motility, DNA Integrity, Oxidative Stress, and Nrf2 Expression. Antioxidants (Basel) 2025; 14:382. [PMID: 40298616 PMCID: PMC12024100 DOI: 10.3390/antiox14040382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
This study evaluated the effects of chlorogenic acid (CGA) on human semen and on oxidative stress (OS) induced in vitro in human spermatozoa. After the treatment of the basal semen with 100 µM CGA, rapid and slow sperm progressive motility were evaluated and seminal F2-Isoprostanes (F2-IsoPs), a marker of OS, were quantified by ELISA. In a second set of experiments, semen was treated with 100 µM CGA, 1 mM H2O2 to induce OS, or H2O2+CGA; untreated samples were used as controls. Then, sperm motility, DNA integrity by the acridine orange test, F2-IsoPs and Nrf2 mRNA expression by RT-PCR were quantified. In CGA-treated specimens, rapid progressive sperm motility was increased (p < 0.01) and F2-IsoP levels decreased (p < 0.001) versus controls. The increase of F2-IsoP levels and DNA damage and the decrease of sperm motility after H2O2 treatment was reversed in the presence of CGA, which upregulated Nrf2 mRNA expression. These findings contributed to clarifying CGA's antioxidant activity and highlighted the positive impact of CGA on sperm progressive motility, suggesting also a possible mechanism of action based on the Nrf2 pathway. CGA can be useful during human semen handling procedures in the laboratory and in optimizing the recovery of motile spermatozoa through selection techniques during assisted reproductive technology protocols.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (L.L.); (E.M.)
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (L.L.); (E.M.)
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (L.L.); (E.M.)
| | - Robert Maettner
- MVZ Next Fertility Ulm GmbH, 89077 Ulm, Germany; (R.M.); (K.S.); (E.S.)
| | - Karl Sterzik
- MVZ Next Fertility Ulm GmbH, 89077 Ulm, Germany; (R.M.); (K.S.); (E.S.)
| | - Erwin Strehler
- MVZ Next Fertility Ulm GmbH, 89077 Ulm, Germany; (R.M.); (K.S.); (E.S.)
| | - Laura Liguori
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (L.L.); (E.M.)
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (L.L.); (E.M.)
| |
Collapse
|
8
|
Scaringi M, Pintus E, Nový P, Božiková K, Maršík P, Ros-Santaella JL. Uncaria tomentosa extract exerts antimicrobial activity against boar seminal bacteria and influences sperm resilience under different conditions. Front Vet Sci 2025; 12:1558650. [PMID: 40191089 PMCID: PMC11968748 DOI: 10.3389/fvets.2025.1558650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Uncaria tomentosa (UT) or cat's claw, is a vine belonging to the Rubiaceae family and native to South and Central America. Various parts of the plant, including bark, showed many therapeutic activities (e.g., antioxidant and antibacterial), but the in vitro effects on gametes have still not been investigated. During boar semen storage for artificial insemination purposes, oxidative stress and bacterial contamination negatively affect sperm quality. In this study, we evaluated the tolerance of boar sperm to UT ethanolic extract at four concentrations (1.6 to 0.025 μg/mL). The analyses were carried out on sperm samples under oxidative stress, induced by H2O2 and Fe2+/Ascorbate, and during 96 h of semen storage at 17°C. The antibacterial activity of the extract (1,024 to 8 μg/mL) was tested against commercial strains and bacteria isolated from the semen. The treatments ranging from 0.4 to 0.025 μg/mL protected sperm membrane (p < 0.05) and preserved some kinetic parameters in samples under oxidative stress (Fe2+/Ascorbate). During semen storage, the extract did not show any cytotoxicity, and mean values of some sperm parameters were higher than the control group, although not significant (p > 0.05). All tested Gram-positive bacteria exhibited growth inhibition. The most frequently isolated Gram-negative bacteria from semen (i.e., Citrobacter koseri, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) also showed complete growth inhibition, while the remaining strains showed a partial decrease in growth. Taken together, our findings show that Uncaria tomentosa is a promising plant-based additive for boar semen storage.
Collapse
Affiliation(s)
- Maria Scaringi
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavel Nový
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Katerina Božiková
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Petr Maršík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jose Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
9
|
Chen J, Guo JM, Jiang BJ, Sun FY, Qu YC. Impact of physical activity on semen quality: a review of current evidence. Asian J Androl 2025:00129336-990000000-00294. [PMID: 40084407 DOI: 10.4103/aja20252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/13/2025] [Indexed: 03/16/2025] Open
Abstract
A growing global trend indicates a decline in semen quality, with a lack of physical activity identified as one of the contributing factors. Exercise is medication, and numerous studies have explored its effects on semen quality. However, there is no consensus on the most effective type and intensity of exercise for improving semen quality, owing to inconsistent findings across studies. These discrepancies may be attributable to variations in study populations (e.g., healthy versus infertile individuals) and research methodologies (e.g., observational versus interventional studies). This paper reviews the existing literature from the databases PubMed, Web of Science, and Google Scholar, reclassifying articles on their subject and research designs to delineate the relationship between exercise and semen quality. It also summarizes the mechanisms through which exercise influences semen quality, including hormonal regulation, oxidative stress, and inflammatory factors.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Artificial Intelligence in Sports (IAIS), Capital University of Physical and Sports, Beijing 100000, China
| | | | | | | | | |
Collapse
|
10
|
Maaßen IK, Luther AM, Varzandeh M, Hackbarth S, Waberski D. Photodynamic Inactivation of Bacteria in Boar Semen with Blue LED Light. Microorganisms 2025; 13:643. [PMID: 40142535 PMCID: PMC11944377 DOI: 10.3390/microorganisms13030643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The photodynamic inactivation (PDI) of bacteria is a promising alternative to antibiotics in boar semen extenders. It was recently established using the illumination of semen samples containing 2 µM of the photosensitizer 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine (TMPyP) with white LED light. High concentrations of TMPyP require strict sample handling in the dark to avoid uncontrolled photodynamic effects caused by ambient light. This study was designed to examine whether lower concentrations of PS could be utilized along with a narrow band blue LED light source, which aligns with TMPyP's Soret band, thereby minimizing light-induced disruption. A dose-response study with blue LED light exposure of sperm revealed no light toxicity. Importantly, substituting the established white light PDI with blue light illumination and 0.5 µM TMPyP resulted in robust antimicrobial efficiency and sperm compatibility in long-term stored semen samples. This modification led to the confirmation of the hypothesis that a diminished TMPyP concentration in concert with blue LED light facilitates semen handling in normal laboratory light while avoiding unintended light effects. In conclusion, this study plays a pivotal role in augmenting the practicality of the innovative PDI technology by establishing a method that is less susceptible to unanticipated effects of ambient light during sample management.
Collapse
Affiliation(s)
- Isabel Katharina Maaßen
- Unit for Reproductive Medicine/Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Anne-Marie Luther
- Unit for Reproductive Medicine/Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Mohammad Varzandeh
- Photobiophysics, Institute of Physics, Humboldt University of Berlin, 10117 Berlin, Germany
| | - Steffen Hackbarth
- Photobiophysics, Institute of Physics, Humboldt University of Berlin, 10117 Berlin, Germany
| | - Dagmar Waberski
- Unit for Reproductive Medicine/Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
11
|
Hai E, Li B, Song Y, Zhang J, Zhang J. Inhibiting ferroptosis mitigates sheep sperm freezing damage. Front Vet Sci 2025; 12:1526474. [PMID: 40125327 PMCID: PMC11926617 DOI: 10.3389/fvets.2025.1526474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Objectives To evaluate the roles of apoptosis and ferroptosis in cryopreservation-induced damage to sheep sperm, with a focus on assessing the effectiveness of inhibitors targeting these pathways. Methods Initial analysis compared the expression of apoptotic marker Cleaved-caspase3 (CL-caspase3) and ferroptotic marker Transferrin receptor (TFRC) between fresh and cryopreserved sheep sperm. Elevated CL-caspase3 expression and sustained high TFRC expression post-cryopreservation suggested concurrent occurrence of apoptosis and ferroptosis. Consequently, the study employed Deferoxamine Mesylate (DFO), ferrostatin-1 (Fer-1), liproxstatin-1 (Lip-1), and the apoptosis inhibitor Z-VAD-FMK (Z-VAD) at concentrations ranging from 0 to 10 μM. Post-thaw assessments encompassed plasma membrane integrity, acrosome integrity, and ferroptosis biomarkers. Additional experiments were conducted to measure the expression of GPX4, a key regulator of ferroptosis. Results Optimal concentrations (2 μM for DFO, Fer-1, and Lip-1; 5 μM for Z-VAD) significantly improved sperm motility and membrane integrity. Among these, Fer-1 demonstrated the greatest efficacy, reducing reactive oxygen species (ROS), lipid peroxidation, and Fe2+ levels. Z-VAD primarily decreased ROS but was less potent than ferroptosis inhibitors. Notably, Glutathione Peroxidase 4 (GPX4) expression was reduced post-cryopreservation, while Fer-1 supplementation restored its levels to those comparable with fresh sperm. Conclusion Both apoptosis and ferroptosis play critical roles in sheep sperm cryopreservation. Fer-1 effectively enhanced cryopreservation outcomes by inhibiting ferroptosis, as evidenced by the restoration of GPX4 expression and improvement in sperm quality indicators. These findings highlight ferroptosis inhibition as a promising strategy for preserving genetic material, with implications for animal breeding and biodiversity conservation.
Collapse
Affiliation(s)
| | | | | | | | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep and Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
12
|
Nguyen HT, Do SQ, Wakai T, Funahashi H. Mitochondrial content and mtDNA copy number in spermatozoa and penetrability into oocytes. Theriogenology 2025; 234:125-132. [PMID: 39689446 DOI: 10.1016/j.theriogenology.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
The current narrative review aims to summarize the relation of mitochondrial content (MC) and mitochondrial DNA copy number (MDCN) in spermatozoa with sperm penetrability, and to discuss the various determining factors during the process of spermatogenesis in mammals. There are many potential factors associated with the quantitative alteration of MC and MDCN in male gametes from spermatogenesis to ejaculation. Particularly, spermatogenesis may be the first step to jointly contribute to an incomplete reduction of MC and MDCN in spermatozoon. It appears to be now quite clear that some abnormalities during spermatogenesis and oxidative stress are the main factors highly associated with the quantitative change of MC and MDCN in spermatozoa, consequently affecting sperm quality and their penetrability into oocytes. Currently, a series of proteins contributing to form sperm midpiece during spermatogenesis and cytoplasmic elimination during spermiation have been currently identified. The present review provides insight into how these factors interact with sperm MC and MDCN, and handholds to gain a better understanding of their roles. This review also highlights the uniqueness of normal fertile spermatozoa which have relatively lower MC and MDCN, but have mitochondria that function completely in multiple pivotal physiological pathways.
Collapse
Affiliation(s)
- Hai Thanh Nguyen
- Department of Animal Science, Okayama University, Okayama, Japan; Department of Animal Production, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Son Quang Do
- Department of Animal Science, Okayama University, Okayama, Japan
| | - Takuya Wakai
- Department of Animal Science, Okayama University, Okayama, Japan
| | | |
Collapse
|
13
|
Sciorio R, De Paola L, Notari T, Ganduscio S, Amato P, Crifasi L, Marotto D, Billone V, Cucinella G, Perino A, Tramontano L, Marinelli S, Gullo G. Decoding the Puzzle of Male Infertility: The Role of Infection, Inflammation, and Autoimmunity. Diagnostics (Basel) 2025; 15:547. [PMID: 40075794 PMCID: PMC11899667 DOI: 10.3390/diagnostics15050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Male infertility is a complex, multifactorial condition influenced by infectious, inflammatory, and autoimmune components. Immunological factors, though implicated in reproduction, remain poorly understood. This study aims to deepen the understanding of infections, inflammation, and autoimmune factors in male infertility, with a focus on immune-related disorders affecting the testes and epididymis-immunologically privileged but vulnerable sites. These factors can impair sperm quality through oxidative stress (ROS) and antisperm antibodies (ASA), further compromising fertility. Methods: A narrative review was conducted by analyzing scientific literature from the past 10 years conducted on PubMed using keywords such as "male infertility", "autoimmunity", and "inflammatory disease". Studies focusing on testicular and epididymal disorders, immunological impacts, and therapeutic approaches were included. Results: Our research highlights that conditions like epididymitis, vasectomy, testicular trauma, and previous surgeries can trigger inflammatory responses, leading to ASA formation and oxidative stress. ASA, particularly sperm-immobilizing antibodies, inhibits sperm motility and migration in the female reproductive tract. Infections caused by sexually transmitted bacteria or urinary pathogens frequently induce epididymo-orchitis, a primary contributor to male infertility. While standardized methodologies for ASA testing remain elusive, assisted reproductive treatments such as intracytoplasmic sperm injection (ICSI), in vitro fertilization (IVF), and intrauterine insemination (IUI) show promise in overcoming immune-mediated infertility. Conclusions: This review underscores the critical role of infection, inflammation, and autoimmune responses in male infertility. It highlights the necessity of improving diagnostic methods, understanding immune-pathological mechanisms, and addressing medicolegal issues associated with male infertility. This knowledge could pave the way for innovative therapies, ultimately enhancing fertility outcomes, and mitigating the societal and legal repercussions of infertility.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynecological Endocrinology Unit, Department Woman Mother Child, Lausanne University Hospital, 1011 Lausanne, Switzerland;
| | - Lina De Paola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Tiziana Notari
- Check-Up Poly-Diagnostic and Research Laboratory, Andrology Unit, 84131 Salerno, Italy
| | - Silvia Ganduscio
- Department of Obstetrics and Gynecology, IVF UNIT-AOOR Villa Sofia—Cervello, University of Palermo, 90127 Palermo, Italy
| | - Patrizia Amato
- Rheumatology Unit, ASL Salerno, 60th District, 84124 Salerno, Italy
| | - Laura Crifasi
- Department of Obstetrics and Gynecology, IVF UNIT-AOOR Villa Sofia—Cervello, University of Palermo, 90127 Palermo, Italy
| | | | - Valentina Billone
- Department of Obstetrics and Gynecology, IVF UNIT-AOOR Villa Sofia—Cervello, University of Palermo, 90127 Palermo, Italy
| | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, IVF UNIT-AOOR Villa Sofia—Cervello, University of Palermo, 90127 Palermo, Italy
| | - Antonio Perino
- Department of Obstetrics and Gynecology, IVF UNIT-AOOR Villa Sofia—Cervello, University of Palermo, 90127 Palermo, Italy
| | - Luca Tramontano
- Département de Gynécologie-Obstétrique, Réseau Hospitalier Neuchâtelois, 2000 Neuchâtel, Switzerland
| | - Susanna Marinelli
- School of Law, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, IVF UNIT-AOOR Villa Sofia—Cervello, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
14
|
Hai E, Li B, Song Y, Zhang J, Zhang J. Ferroptosis emerges as the predominant form of regulated cell death in goat sperm cryopreservation. J Anim Sci Biotechnol 2025; 16:26. [PMID: 39966967 PMCID: PMC11834235 DOI: 10.1186/s40104-025-01158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Freezing-induced sperm damage, often associated with oxidative stress, can result in regulated cell death. Given that oxidative stress can trigger various forms of regulated cell death, the prevailing form during sperm cryopreservation remains unknown. Our study aimed to investigate this issue using cashmere goats as a model. RESULTS We found a significant increase in lyso-phospholipids in frozen-thawed sperm suggested ferroptosis. Assessment of cryopreserved sperm, with or without prior treatment with ferroptosis or apoptosis inhibitors, demonstrated the significant efficacy of ferroptosis inhibitors in reducing freezing damage. This implicates ferroptosis as the primary form of regulated cell death induced during sperm cryopreservation. Additionally, the positive rate of transferrin receptor protein 1 was significantly lower in fresh live sperm (47.8%) than in thawed live sperm (71.5%), and the latter rate was lower than that in dead sperm (82.5%). By contrast, cleaved caspase-3 positivity showed no significant difference between fresh live sperm and thawed live sperm but was notably lower in thawed live sperm than in dead sperm. CONCLUSIONS Our findings establish ferroptosis as the dominant regulated cell death form during goat sperm cryopreservation, providing novel insights into freezing-induced sperm damage mechanisms. These findings have significant implications for optimizing cryopreservation protocols and enhancing sperm viability after freezing-thawing.
Collapse
Affiliation(s)
- Erhan Hai
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Boyuan Li
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Yukun Song
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jian Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.
| |
Collapse
|
15
|
Li S, Liu W, Chen X, Chen Z, Shi J, Hua J. From Hypoxia to Oxidative Stress: Antioxidants' Role to Reduce Male Reproductive Damage. Reprod Sci 2025; 32:261-277. [PMID: 39557807 DOI: 10.1007/s43032-024-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Hypoxia is one of the main reasons causing male reproductive damage for people living in high altitude. Pathological evidences have been presented both in humans and animal models. Spermatogenesis disruption, worse sperm parameters, hormone disorder and erectile dysfunction are emblematic of male reproductive impairments brought by hypoxia. Among many mechanisms impairing male reproductive systems, oxidative stress is always a field of interest to explore. Although previous reviews have discussed about hypoxia or oxidative stress and antioxidants on male fertility respectively, no one has elucidated the concrete role of oxidative stress in hypoxia and correlating antioxidants that can ameliorate the negative effects. In this review, we firstly introduce hypoxia etiology and describe specific damage of hypoxia on male reproductive functions. Then, we emphasized interplays between hypoxia and oxidative stress as well as negative influences brought by oxidative stress. Finally, we listed antioxidants for oxidative stress and hypoxia-induced reproductive damage and discussed their controversial experimental effects for male infertility.
Collapse
Affiliation(s)
- Siyao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhaoyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingtian Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Wang S, Xue D. Asymmetric partitioning of persistent paternal mitochondria during cell divisions safeguards embryo development and mitochondrial inheritance. Dev Cell 2025:S1534-5807(25)00033-4. [PMID: 39904343 DOI: 10.1016/j.devcel.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Most eukaryotes inherit only maternal mitochondria. The reasons for paternal mitochondrial elimination and the impacts of persistent paternal mitochondria on animals remain elusive. We show that undegraded paternal mitochondria in autophagy-deficient C. elegans embryos are gradually excluded from germ blastomeres through asymmetric partitioning during cell divisions. The embryonic cortical flow drives anterior-directed movements of paternal mitochondria and contributes to their asymmetric apportioning between two daughter blastomeres. By contrast, autophagosome-enclosed paternal mitochondria cluster around and segregate with centrosomes during mitosis and are rapidly degraded through lysosomes concentrated near centrosomes. Failure to exclude persistent paternal mitochondria from the germ blastomere at first cleavage causes their enrichment in the descendant endomesodermal (EMS) blastomere, leading to elevated reactive oxygen species levels, elongated EMS lineage durations, and increased embryonic lethality, which antioxidant treatments can suppress. Thus, regulated paternal mitochondrial distribution away from germ blastomeres is a fail-safe mechanism, protecting embryo development and maternal mitochondrial inheritance.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
17
|
Lahimer M, Capelle S, Lefranc E, Bosquet D, Kazdar N, Ledu A, Agina M, Cabry R, BenKhalifa M. Micronutrient-Antioxidant Therapy and Male Fertility Improvement During ART Cycles. Nutrients 2025; 17:324. [PMID: 39861453 PMCID: PMC11768505 DOI: 10.3390/nu17020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Today, accumulating evidence highlights the impact of oxidative stress (OS) on semen quality. It is considered to be a key factor contributing to the decline in male fertility. OS is detected in 30-80% of men with infertility, highlighting its strong association with impaired reproductive function and with clinical outcomes following the use of assisted reproductive technologies. Spermatozoa are particularly vulnerable to oxidative damage due to their high content of polyunsaturated fatty acids (PUFAs) and limited antioxidant defense abilities. OS arises from an imbalance between the production of reactive oxygen species and the capacity to neutralize or repair their adverse effects. Evidence indicates that OS leads to lipid peroxidation, protein oxidation, mitochondrial dysfunction, and genomic instability. Micronutrient-antioxidant therapies can play a key role in infertility improvement by neutralizing free radicals and preventing cellular damage. Many different micronutrients, including L-carnitine, L-glutathione, coenzyme Q10, selenium, and zinc, as well as vitamins complexes, are proposed to improve sperm parameters and male fertility potential. This study aims to review the impact of antioxidant supplementation on semen parameters, including sperm volume, motility, concentration, morphology, genome integrity (maturity and fragmentation), and in vitro fertilization (IVF) outcomes. Antioxidant intake and a balanced lifestyle reduce oxidative stress and mitochondrial dysfunction, enhancing the spermatogenesis and spermiogenesis processes, improving sperm quality, and protecting DNA integrity.
Collapse
Affiliation(s)
- Marwa Lahimer
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France; (S.C.); (E.L.); (D.B.); (R.C.); (M.B.)
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France
| | - Severine Capelle
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France; (S.C.); (E.L.); (D.B.); (R.C.); (M.B.)
| | - Elodie Lefranc
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France; (S.C.); (E.L.); (D.B.); (R.C.); (M.B.)
| | - Dorian Bosquet
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France; (S.C.); (E.L.); (D.B.); (R.C.); (M.B.)
| | - Nadia Kazdar
- Eylau/Unilabs, IVF Units Cherest et la Muette, 75116 Paris, France; (N.K.); (A.L.)
| | - Anne Ledu
- Eylau/Unilabs, IVF Units Cherest et la Muette, 75116 Paris, France; (N.K.); (A.L.)
| | - Mounir Agina
- Service of Reproductive Biology, University Hospital Farhat Hached, University of Sousse, Sousse 4000, Tunisia;
| | - Rosalie Cabry
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France; (S.C.); (E.L.); (D.B.); (R.C.); (M.B.)
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France
| | - Moncef BenKhalifa
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France; (S.C.); (E.L.); (D.B.); (R.C.); (M.B.)
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France
| |
Collapse
|
18
|
Wang S, Wang Q, Min L, Cao H, Adetunji AO, Zhou K, Zhu Z. Pyrroloquinoline Quinone Improved Boar Sperm Quality via Maintaining Mitochondrial Function During Cryopreservation. Antioxidants (Basel) 2025; 14:102. [PMID: 39857436 PMCID: PMC11763317 DOI: 10.3390/antiox14010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Due to oxidative damage and mitochondrial dysfunction, boar semen cryopreservation remains a significant challenge. This study investigates the effects of pyrroloquinoline quinone (PQQ), a mitochondrial-targeted antioxidant, on the post-thaw boar sperm quality during cryopreservation. Boar semen was diluted in a freezing extender containing different concentrations of PQQ (0, 10, 100, 1000, 10,000 nM). After freezing-thawing, the sperm motility, viability, acrosome integrity, mitochondrial activity, adenosine triphosphate (ATP) levels, DNA integrity, malondialdehyde (MDA) levels, reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, mitochondrial transcription proteins levels, and fertilization capacity were assessed. The results show that 1000 nM PQQ supplementation to the freezing extender significantly enhanced post-thaw sperm motility, viability, and acrosome integrity compared to the control (p < 0.05). Additionally, 1000 nM PQQ increased mitochondrial membrane potential (MMP) and ATP levels, while decreasing MDA and mitochondrial ROS levels, and reducing DNA damage (p < 0.05). Furthermore, the levels of mitochondrial-encoded proteins were significantly elevated in the 1000 nM PQQ group compared to the control (p < 0.05). Interestingly, sperm in the 1000 nM PQQ group showed a higher binding rate to oviductal epithelial cells and the zona pellucida (ZP), indicating higher fertilization potential. These findings suggest that the use of mitochondria-target antioxidant, PQQ, can improve post-thaw boar sperm quality and fertilization via its capacity to reduce oxidative stress and protect mitochondrial function.
Collapse
Affiliation(s)
- Shanpeng Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Qi Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hailiang Cao
- Qingdao RATO Industrial and Trading Co., Ltd., Qingdao 266000, China
| | - Adedeji O. Adetunji
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Kaifeng Zhou
- Shandong Provincial Animal Husbandry General Station, Jinan 250022, China
| | - Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
19
|
Goujet H, Kaarouch I, Malki A, Mbaye MM, Cabry R, Louanjli N, Rhouda T, Benkhalifa M. Effects of Essential Oils as Antioxidant and Cryoprotective Agents in Improving Frozen and Thawed Human Sperm Criteria. Antioxidants (Basel) 2025; 14:75. [PMID: 39857409 PMCID: PMC11761269 DOI: 10.3390/antiox14010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Sperm cryopreservation provides patients undergoing oncological, surgical, or infertility treatments the opportunity to conceive their own children, using assisted reproductive technologies. However, the freezing-thawing process can negatively influence both the quantity and the quality of spermatozoa, mainly due to an excessive production of reactive oxygen species and/or an impaired antioxidant defense system in sperm. Aromatic and medicinal plants synthesize essential oils with antioxidant proprieties as a part of their ecological adaptation to environmental stress, thanks to their rich bioactive phytochemical components. This study aimed to assess sperm progressive motility, viability, plasma membrane functionality, and lipid peroxidation levels of human cryopreserved normozoospermic (n = 51) and asthenozoospermic (n = 51) samples without or with the addition of Thymus satureoides (TSEO) (20 µg/mL), Artemisia vulgaris (AVEO) (48 µg/mL), and Rosmarinus officinalis (ROEO) (13 µg/mL) essential oils. Sperm parameters were significantly better preserved with ROEO in both normozoospermic (p < 0.05) and asthenozoospermic samples (p < 0.01). In contrast, TSEO had a negative impact for both groups (p < 0.05). Meanwhile, no significant effects were observed with AVEO. In summary, the study revealed that in vitro addition of essential oils as antioxidant agents during cryopreservation can be either beneficial, which helps preserve sperm parameters and fertilizing potential, or detrimental as spermicidal agents.
Collapse
Affiliation(s)
- Hamza Goujet
- Laboratory of Physiopathology and Molecular Genetics, Ben M’Sik Faculty of Sciences, Hassan II University of Casablanca, Casablanca 20670, Morocco; (A.M.); (T.R.)
- Reproductive Medicine, Reproductive Biology and Genetics, Peritox Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, 80054 Amiens, France;
- Laboratory of Medical Analyses, Reproductive Biology, LABOMAC, IRIFIV Centre, Casablanca 20100, Morocco; (M.M.M.); (N.L.)
| | - Ismail Kaarouch
- African Fertility Center, Private Clinic of Human Reproduction and Endoscopic Surgery, Casablanca 20000, Morocco;
| | - Abderrahim Malki
- Laboratory of Physiopathology and Molecular Genetics, Ben M’Sik Faculty of Sciences, Hassan II University of Casablanca, Casablanca 20670, Morocco; (A.M.); (T.R.)
| | - Modou Mamoune Mbaye
- Laboratory of Medical Analyses, Reproductive Biology, LABOMAC, IRIFIV Centre, Casablanca 20100, Morocco; (M.M.M.); (N.L.)
| | - Rosalie Cabry
- Reproductive Medicine, Reproductive Biology and Genetics, Peritox Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, 80054 Amiens, France;
| | - Noureddine Louanjli
- Laboratory of Medical Analyses, Reproductive Biology, LABOMAC, IRIFIV Centre, Casablanca 20100, Morocco; (M.M.M.); (N.L.)
- African Fertility Center, Private Clinic of Human Reproduction and Endoscopic Surgery, Casablanca 20000, Morocco;
| | - Taha Rhouda
- Laboratory of Physiopathology and Molecular Genetics, Ben M’Sik Faculty of Sciences, Hassan II University of Casablanca, Casablanca 20670, Morocco; (A.M.); (T.R.)
| | - Moncef Benkhalifa
- Reproductive Medicine, Reproductive Biology and Genetics, Peritox Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, 80054 Amiens, France;
| |
Collapse
|
20
|
Akhigbe TM, Fidelis FB, Adekunle AO, Ashonibare VJ, Akorede BA, Shuaibu MS, Hassan SA, Adegbola CA, Ashonibare PJ, Oladapo OM, Adeogun AE, Bamidele SG, Oyedokun PA, Mukolokota M, Kukoyi OS, Oladipo AA, Adelowo OE, Akangbe MD, Hughes JR, Ricken AM, Culty M, Avellar MCW, Akhigbe RE. Does coenzyme Q10 improve semen quality and circulating testosterone level? a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2025; 15:1497930. [PMID: 39830337 PMCID: PMC11739123 DOI: 10.3389/fphar.2024.1497930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Seminal oxidative stress has been shown to be a key factor in the development of male infertility. However, the benefits of infertility treatments with antioxidants such as coenzyme Q10 (CoQ10) remains controversial. OBJECTIVES The aim of the present study was to assess the effects of CoQ10 supplementation on semen quality, i.e., semen volume, total sperm number, sperm concentration, total sperm motility, percentage of progressive sperm motility and sperm morphology. In addition, the effects of CoQ10 supplementation on circulating testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and inhibin B levels were evaluated. DESIGN A systematic review and a meta-analysis of randomized controlled trials (RCTs) were performed to assess the effects of CoQ10 supplementation on semen quality and serum levels of male reproductive hormones. METHODS We conducted a strategic literature search in the Cochrane, EMBASE, PubMed/MEDLINE, Scopus, and Web of Science databases and collected only RCTs. The data in the collected RCTs were then meta-analyzed according to PRISMA guidelines. RESULTS Out of 2,144 collected studies, only eight were classified eligible. The studies included a total of 877 male subjects; 462 CoQ10-treated and 415 untreated/placebo-treated. We found significantly higher total sperm counts (SMD -13.38 [95% CI: -16.33, -10.43] P< 0.0001), total (SMD -7.26 [95% CI: -10.15, -4.36] P< 0.00001) and progressive motility (SMD -6.386 [95% CI: -10.04, -2.73] P= 0.0006), and normally formed sperm (SMD -1.96 [95% CI: -3.29, -0.62] P= 0.004) in CoQ10-treated male subjects compared with untreated/placebo-treated male subjects. Nonetheless, there was a significant inter-study heterogeneity in these studies. Moreover, significantly higher serum testosterone (SMD -0.59 [95% CI: -0.79, -0.40] P< 0.00001) and inhibin B levels (SMD -0.92 [95% CI: -1.47, -0.37] P= 0.001) were recorded in CoQ10-treated subjects compared to untreated/placebo-treated subjects. In addition, CoQ10 supplementation significantly lowered serum LH (SMD 1.77 [95% CI: 1.26, 2.28] P< 0.00001) and FSH concentrations (SMD 1.60 [95% CI: 1.38, 1.81] P< 0.00001). Interestingly, there was no significant inter-study heterogeneity in the hormonal studies. However, CoQ10 supplementation had no significant effect on semen volume (SMD 0.12 [95% CI: -0.13, 0.37] P= 0.34) and sperm concentration (SMD -6.69 [95% CI: -16.28, 2.90] P= 0.17). CONCLUSION Our study shows that CoQ10 supplementation increases total sperm count, total and progressive sperm motility, and the proportion of normally formed sperm in association with higher serum testosterone and inhibin B levels. Our study therefore supports the view in the literature of a beneficial use of CoQ10 in male infertility treatment. However, further well-designed RCTs with sufficiently large numbers of subjects are required to reach a final conclusion.
Collapse
Affiliation(s)
- Tunmise M. Akhigbe
- Department of Agronomy, Osun State University, Ejigbo campus, Osogbo, Osun, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
| | - Fabrael B. Fidelis
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Adebayo O. Adekunle
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| | - Victory J. Ashonibare
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Cardiovascular Regenerative Medicine & Tissue Engineering 3D Lab, Department of Cardiovascular Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Bolaji A. Akorede
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Biomedical Sciences, University of Wyoming, Laramie, United States
| | - Mansur S. Shuaibu
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Biochemistry, Dokuz Eylul University, Izmir, Türkiye
| | - Suliat A. Hassan
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
| | - Cecilia A. Adegbola
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Precious J. Ashonibare
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Opeyemi M. Oladapo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Adetomiwa E. Adeogun
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
- Department of Physiology, Babcock University, Ilishan Remo, Ilishan Remo, Ogun, Nigeria
| | - Seun G. Bamidele
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiological Sciences, Obafemi Awolowo University, Ife, Osun, Nigeria
| | - Precious A. Oyedokun
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Mungala Mukolokota
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Omotolani S. Kukoyi
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Functional Microbiome Group, Uniklinik Aachen (Universitätsklinikum Aachen), Aachen, Germany
| | - Ayoola A. Oladipo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Olayinka E. Adelowo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Marvelous D. Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | | | - Albert M. Ricken
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Maria C. W. Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Roland E. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
21
|
Greco F, Guarascio G, Giannetta E, Oranges FP, Quinzi F, Emerenziani GP, Tarsitano MG. The Influence of an Intense Training Regime in Professional and Non-Professional Athletes on Semen Parameters: A Systematic Review. J Clin Med 2025; 14:201. [PMID: 39797284 PMCID: PMC11720830 DOI: 10.3390/jcm14010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Male infertility is influenced by physiological factors like age, as well as lifestyle factors, including physical activity. However, the specific impact of sport activity on semen parameters, and thus on male fertility, remains unclear. Specifically, the aim of this systematic review is to evaluate how an intense regime of training may affect sperm parameters in professional and non-profession athletes. Methods: Studies reporting sperm parameters associated with high training load were included. In April 2024, three electronic databases and literature sources (PubMed, Scopus, and Web of Science) were searched. Quality appraisal was performed independently by three authors using the National Heart, Lung, and Blood Institute Quality Assessment Tools (NHLBI-QAT). Results: Four studies met the inclusion criteria, reporting a total of 156 participants. Sixteen weeks of intensive cycling training produced a significant decrease in seminal volume, sperm concentration, sperm motility, and morphology, with a return to their initial levels, except for sperm morphology and sperm concentration, after at least one week of rest. In addition, in athletes with varicocele, a 6-month stop from sports activity went a long way toward improving sperm concentration and sperm motility. However, DNA fragmentation, a greater presence of round cells, and high numbers of active macrophages were described. At least 30 days improve semen parameters in professional and non-professional athletes. Conclusions: Intensive training could worsen seminal parameters and, consequently, male fertility. However, certainty of evidence is very low, and the results should be interpreted with caution.
Collapse
Affiliation(s)
- Francesca Greco
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (G.G.); (F.P.O.); (F.Q.)
| | - Giovanni Guarascio
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (G.G.); (F.P.O.); (F.Q.)
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Francesco Pio Oranges
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (G.G.); (F.P.O.); (F.Q.)
- Department of Neuroscience, Biomedicine and Movement, University of Verona, 37124 Verona, Italy
| | - Federico Quinzi
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (G.G.); (F.P.O.); (F.Q.)
| | - Gian Pietro Emerenziani
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.G.); (G.G.); (F.P.O.); (F.Q.)
| | - Maria Grazia Tarsitano
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, 00166 Rome, Italy;
| |
Collapse
|
22
|
Mizumoto S, Nagao Y, Watanabe H, Tanaka K, Kuramoto T. Culture media with antioxidants improved preimplantation embryo development and clinical outcomes of patients of advanced age. Reprod Biomed Online 2025; 50:104415. [PMID: 39673903 DOI: 10.1016/j.rbmo.2024.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 12/16/2024]
Abstract
RESEARCH QUESTION What are the clinical effects of using culture media supplemented with antioxidants (AOX) throughout the IVF process? DESIGN Prospective randomized single-centre study. Cumulus-oocyte complexes and semen samples collected from 127 treatment cycles were divided evenly between the study arm (culture media with AOX) and the control arm (culture media without AOX). The primary endpoint was the good-quality blastocyst (GQB) rate on day 5-6 per metaphase II (MII) oocyte. RESULTS Fertilization rate and day 5-6 blastocyst rate per MII oocyte differed significantly in favour of the study arm, whereas GQB rate did not. A subgroup analysis, stratified by maternal age, revealed significant improvements in the study arm for day 3 embryo development rate, day 5-6 blastocyst rate, GQB rate and blastocyst utilization rate for patients aged 35-40 years, while the impacts on these endpoints were much smaller in patients aged <35 years. Ninety-four single vitrified blastocyst transfers (SVBT) were performed in each arm. The blastocysts derived from the study arm showed better results of SVBT for patients aged 35-40 years, defined by embryo implantation rate, fetal heartbeat rate and live birth rate, whereas these variables did not differ significantly between the two arms when assessing the results for patients of all ages and patients aged <35 years. CONCLUSIONS Embryo development and SVBT outcomes of treatment cycles of patients aged 35-40 years improved significantly when using AOX-supplemented culture media throughout the IVF process.
Collapse
Affiliation(s)
| | - Yozo Nagao
- Kuramoto Women's Clinic, Hakata-Ku, Fukuoka City, Japan
| | | | - Keiko Tanaka
- Kuramoto Women's Clinic, Hakata-Ku, Fukuoka City, Japan
| | | |
Collapse
|
23
|
Barth A, Perry VEA, Hamilton LE, Sutovsky P, Oko R. Assessing Bovine Male Fertility in a Technological Age. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2025; 240:297-329. [PMID: 40272592 DOI: 10.1007/978-3-031-70126-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
New and emerging technologies allow for a deeper and more comprehensive understanding of sperm physiology that can be harnessed to improve bull fertility selection. This chapter focuses on (1) the use of conventional and emerging flow cytometry techniques to further enhance functional sperm assessments; (2) new developments in proteomic and metabolomic biomarkers of bull fertility and how they can better inform fertility evaluations; and (3) the use of sperm selection technologies to optimize the fertility outcomes of bulls in artificial insemination service. As our knowledge of sperm physiology continues to expand, technology will allow for a faster translational capacity and continuous development of techniques. The technologies and techniques presented are current tools that can be used to enhance the efficiency, precision and accuracy of bull fertility assessments and better inform herd management.
Collapse
Affiliation(s)
- Albert Barth
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Viv E A Perry
- Queensland Sperm Morphology Laboratory (QSML), Goondiwindi, QLD, Australia
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Science and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
24
|
Gibb Z, Griffin RA, Bromfield EG, Lambourne SR, Wilkins A, Jenkins C, Swegen A, Aitken RJ, De Iuliis GN. Evaluation of Oxidative Stress in Mammalian Spermatozoa. Methods Mol Biol 2025; 2897:363-415. [PMID: 40202649 DOI: 10.1007/978-1-0716-4406-5_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Oxidative stress, characterized by an imbalance between prooxidants and antioxidants in favor of the former, can lead to cellular damage due to the accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). In spermatozoa, oxidative stress plays a crucial role in signaling pathways associated with capacitation, a process essential for fertilization. However, the limited capacity of spermatozoa to buffer ROS makes them susceptible to oxidative stress. Measurement of oxidative stress in spermatozoa is important as it precedes or directly causes the loss of basic sperm functions-such as motility and the membrane changes required for zona binding and gamete fusion-associated with fertility. This chapter aims to describe protocols for assessing oxidative damage in spermatozoa, encompassing the generation of ROS in mitochondria to the manifestation of oxidative damage in DNA, proteins, and lipids. In addition to the detailed instructions provided within this chapter, we have sought to provide background information on the development and significance of the assays which we most commonly utilize in our laboratory.
Collapse
Affiliation(s)
- Zamira Gibb
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, The University of Newcastle, Callaghan, NSW, Australia.
| | - Róisín A Griffin
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Elizabeth G Bromfield
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Sarah R Lambourne
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Alexandra Wilkins
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Ceilidh Jenkins
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, The University of Newcastle, Callaghan, NSW, Australia
- Equine Genetics Research Centre, Hunter Valley Equine Research Centre, Scone, NSW, Australia
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - R John Aitken
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, The University of Newcastle, Callaghan, NSW, Australia
- Memphasys Ltd, Homebush West, NSW, Australia
| | - Geoffry N De Iuliis
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
25
|
Harima R, Sasaki T, Kaneko T, Aso F, Takashima H, Toyama T, Hara K, Tanemura K, Saito Y. Ccdc152 is not necessary for male fertility, but contributes to maintaining sperm morphology. J Reprod Dev 2024; 70:396-404. [PMID: 39462603 PMCID: PMC11658925 DOI: 10.1262/jrd.2024-058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024] Open
Abstract
Selenoprotein P (SeP) is synthesized in the liver and plays a vital role in maintaining selenium homeostasis via transport throughout the body. Previous studies have shown that SeP-deficient mice have severely reduced expression of selenoproteins essential for testicular function, leading to male infertility. We previously reported that the high expression of Ccdc152 in hepatocytes acts as a lncRNA, suppressing SeP expression in the liver. Ccdc152 reduces SeP translation by binding to SeP mRNA and decreasing its interaction with SECIS-binding protein 2. Although Ccdc152 is highly expressed in testes, its function remains unclear. Therefore, this study aimed to elucidate the role of Ccdc152 in the testes. Using the CRISPR/Cas9 system, we generated mice lacking all exons of Ccdc152 and found that SeP expression levels in the liver and plasma, as well as overall selenium homeostasis, remained unchanged. No significant differences were observed in the expression of glutathione peroxidase 1/4 or level of selenium in the testes. Subsequent investigation of the impact on male reproductive function revealed no abnormalities in sperm motility or Mendelian ratios of the offspring. However, a slight decrease in testicular weight and an increased rate of sperm malformations in the epididymis were observed. RNA-seq and pathway analyses identified the reduced expression of multiple genes related to kinesin and reproductive pathways. Based on these findings, Ccdc152 may not be essential for male reproductive function, but it may enhance reproductive capabilities by maintaining the expression of genes necessary for reproduction.
Collapse
Affiliation(s)
- Ryua Harima
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Takahiro Sasaki
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Takayuki Kaneko
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan
| | - Fuka Aso
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hayato Takashima
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
26
|
Jorge-Cruz CY, Roa-Espitia AL, Hernández-González EO. Guinea pig spermatozoa adhesion to an immobilized fibronectin matrix alters their physiology and increases their survival†. Biol Reprod 2024; 111:1202-1219. [PMID: 39427254 DOI: 10.1093/biolre/ioae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024] Open
Abstract
Isthmus is the region of the oviduct considered a reservoir for spermatozoa, where they are retained and released synchronously with ovulation. Integrins mediate this interaction, and it is suggested that they regulate the viability and capacitation of spermatozoa. Spermatozoa retained in the oviductal epithelial cells show specific characteristics: normal morphology, intact acrosome and plasma membrane, no DNA fragmentation, and low levels of intracellular Ca2+, and protein phosphorylation at Tyr. This work aimed to define spermatozoa's ability to adhere to an immobilized fibronectin matrix and its effects on their viability and capacitation. We found that guinea pig spermatozoa showed a high affinity for adhering to an immobilized fibronectin matrix but not to those made up of type 1 collagen or laminin. This interaction was mediated by integrins that recognize the RGD domain. Spermatozoa adhered to an immobilized fibronectin matrix were maintained in a state of low capacitation: low levels of intracellular concentration of Ca2+, protein phosphorylation in Tyr, and F-actin. Also, spermatozoa kept their plasma membrane and acrosome intact, flagellum beating and showed low activation of caspases 3/7. The spermatozoa adhered to the immobilized fibronectin matrix, gradually detached, forming rosettes and did not undergo a spontaneous acrosomal reaction but were capable of experiencing a progesterone-induced acrosomal reaction. In conclusion, the adhesion of spermatozoa to an immobilized fibronectin matrix alters the physiology of the spermatozoa, keeping them in a steady state of capacitation, increasing their viability in a similar way to what was reported for spermatozoa adhered to oviductal epithelial cells.
Collapse
Affiliation(s)
- Coral Y Jorge-Cruz
- Dept. of Cell Biology Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico city, Mexico Av. Instituto Politecnico Nacional 2508, CP 07360
| | - Ana L Roa-Espitia
- Dept. of Cell Biology Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico city, Mexico Av. Instituto Politecnico Nacional 2508, CP 07360
| | - Enrique O Hernández-González
- Dept. of Cell Biology Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico city, Mexico Av. Instituto Politecnico Nacional 2508, CP 07360
| |
Collapse
|
27
|
Van de Hoek M, Rickard JP, de Graaf SP. Manipulation of metabolism to improve liquid preservation of mammalian spermatozoa. Anim Reprod Sci 2024; 271:107631. [PMID: 39515267 DOI: 10.1016/j.anireprosci.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Reproductive success in mammals hinges on the ability of sperm to generate sufficient energy through cellular metabolism to perform the energy-intensive processes required for fertilisation, including motility, maturation, and oocyte interactions. It is now widely accepted that sperm exhibit metabolic flexibility, utilising a combination of glycolysis and oxidative phosphorylation (supported by the Krebs cycle and other complementary pathways) to meet their energy demands. However, the preferred pathway for energy production varies significantly among species, making it challenging to map species-specific metabolic strategies, particularly in species with high metabolic flexibility, like the ram. Additionally, differences in methodologies used to measure metabolism have led to biased interpretations of species' metabolic strategies, complicating the development of liquid storage methods aimed at preserving spermatozoa by manipulating energy generation based on species-specific requirements. This review examines sperm energy requirements, current methods for assessing metabolic capacity, and the current research on species-specific metabolism. Future research should focus on establishing a standardised approach for determining metabolic preferences to accurately map species-specific strategies, a critical step before developing effective liquid preservation methods. By identifying species-specific regulatory points, strategies can be designed to temporarily inhibit metabolic pathways, conserving resources and reducing the accumulation of metabolic by-products. Alternatively, supplementation with depleted metabolites can be guided by understanding areas of excessive consumption during prolonged metabolism. Applying this knowledge to develop tailored preservation techniques will help minimise sperm damage and improve survival during in vitro processing and liquid storage, ultimately enhancing the success of artificial breeding programs.
Collapse
Affiliation(s)
| | | | - Simon P de Graaf
- The University of Sydney, Faculty of Science, NSW 2006, Australia
| |
Collapse
|
28
|
Braga RF, Correia LFL, Guimarães MPP, Barbosa NO, de Oliveira TG, da Silva AA, Bragança GM, Brandão FZ, Alves BRC, Souza-Fabjan JMG. Anethole improves mitochondrial activity and quality parameters in fresh and frozen-thawed ovine semen. Res Vet Sci 2024; 181:105446. [PMID: 39531870 DOI: 10.1016/j.rvsc.2024.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Anethole, an antioxidant found in plants, appears to improve the survival of spermatozoa during semen cryopreservation. This study assessed the effects of commercial trans-anethole in ram semen cryopreservation. Thirty ejaculates from six rams were diluted in media containing anethole at the following concentrations: CONT (0 μM), AN10 (10 μM), AN50 (50 μM), and AN100 (100 μM). Semen was slow-frozen, preserved in liquid nitrogen, and thawed. Anethole at 10 μM or 50 μM did not compromise any studied sperm quality parameter but increased pre-freezing functionality of membrane and mitochondrial activity. At 10 μM, anethole reduced post-thawing spermatozoa lipoperoxidation. At 50 μM, anethole sustained higher mitochondrial activity after thawing, reduced minor defects in sperm, and increased the number of sperm binding to perivitelline membrane, while keeping lipoperoxidation levels as in control. Anethole at 100 μM promoted higher pre- and post-freezing mitochondrial activity and higher number of sperm binding to perivitelline membrane, in comparison to control. Additionally, some post-thawing kinematic parameters were enhanced by anethole at 100 μM. Of note, mitochondrial activity and lipoperoxidation were higher with anethole at 100 μM in comparison to 50 μM, not differing from control. At the hypoosmotic test, the highest concentration (100 μM) tested reduced sperm osmotic resistance. The results of this study indicate that using anethole in cryopreservation media promoted mostly positive effects on the fresh and post-thawed ram semen, and the advantages vary according to its concentration.
Collapse
Affiliation(s)
- Rachel F Braga
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil.
| | - Lucas F L Correia
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil
| | - Mariana P P Guimarães
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil
| | - Nathalia O Barbosa
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil
| | - Thais G de Oliveira
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil
| | - Andreza A da Silva
- Faculdade de Medicina Veterinária, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 07, Cep 23890-000 Seropédica, RJ, Brazil
| | - Glaucia M Bragança
- Centro Universitário da Amazônia, Rua Municipalidade, 530, CEP 66053-180 Belém, PA, Brazil
| | - Felipe Z Brandão
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil
| | - Bruna R C Alves
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil.
| | - Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Cep 24230-340, Niterói, RJ, Brazil.
| |
Collapse
|
29
|
Hakimi F, Karimi Torshizi MA, Hezavehei M, Sharafi M. Protective Effect of N-Acetylcysteine on Rooster Semen Cryopreservation. Biopreserv Biobank 2024; 22:609-615. [PMID: 38634668 PMCID: PMC11656127 DOI: 10.1089/bio.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Cryopreservation of avian semen is a useful reproductive technique in the poultry industry. However, during cooling, elevated reactive oxygen species (ROS) levels have destructive effects on both quality and function of thawed sperm. The aim of the current study is to investigate the antioxidant effects of N-acetylcysteine (NAC) during rooster semen cryopreservation. Semen samples were collected from ten Ross 308 broiler breeder roosters (32 weeks) and mixed. The mixed samples were divided into five equal parts and cryopreserved in Lake Buffer extender that contained different concentrations (0, 0.01, 0.1, 1, and 10 mM) of NAC. The optimum concentration of NAC was determined based on quality parameters of mobility, viability, membrane integrity, acrosome integrity, lipid peroxidation, and mitochondrial membrane potential after the freeze-thaw process. There was a higher percentage (p < 0.05) of total motility (TM) (60.9 ± 2.4%) and progressive motility (PM) (35.6 ± 1.9%) observed with the NAC-0.1 group compared to the other groups. Significantly higher percentages of viability (74.4 ± 2.3% and 71 ± 2.3%), membrane integrity (76.4 ± 1.5% and 74.7 ± 1.5%) and mitochondrial membrane potential (67.1 ± 1.6% and 66.3 ± 1.6%) were observed in the NAC-0.1 and NAC-1 groups compared to the other frozen groups (p < 0.05). The lowest percentage of lipid peroxidation and nonviable sperm was found in the NAC-0.1 and NAC-1 groups compared to the other groups (p < 0.05). The average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), and acrosome integrity, were not affected by different concentrations of NAC in the thawed sperm (p > 0.05). Both NAC-0.1 and NAC-1 appear to be beneficial for maintaining the quality of rooster sperm after thawing.
Collapse
Affiliation(s)
- Farhad Hakimi
- Department of Animal Sciences, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Research Center for Reproduction and Fertility, Faculty of Veterinary medicine, Montreal University, St-Hyacinthe, Canada
| | - Mohsen Sharafi
- Department of Animal Sciences, College of Agriculture, Tarbiat Modares University, Tehran, Iran
- Semex Alliance, Guelph, Canada
| |
Collapse
|
30
|
Cardenas-Padilla AJ, Jimenez-Trejo F, Cerbon M, Medrano A. The Role of Melatonin on Caprine ( Capra hircus) Sperm Freezability: A Review. Antioxidants (Basel) 2024; 13:1466. [PMID: 39765795 PMCID: PMC11673025 DOI: 10.3390/antiox13121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
In mammals, the pineal hormone melatonin is the most powerful pacemaker of the master circadian clock and is responsible for reproduction in seasonal breeders. It is also well known that melatonin and its metabolites play antioxidant roles in many tissues, including reproductive cells. Melatonin synthesis and secretion from the pineal gland occurs during scotophase (the dark phase during a day-night cycle), while its inhibition is observed during photophase (period of light during a day-night cycle). Short-day breeders, such as goats, are stimulated to breed in a manner dependent on high endogenous levels of melatonin. This hormone can be synthesized in various extra-pineal tissues, such as retina, gastrointestinal tract, ovaries, and testis, with its main function being as a local antioxidant, given that melatonin and its metabolites are potent scavengers of reactive oxygen and nitrogen species. Moreover, it has been reported that some functions of melatonin can be exerted through plasma membrane and intracellular receptors expressed in the male reproductive system, including germ cells, immature and mature spermatozoa. It has been shown that melatonin may enhance gamete cryosurvival mainly by its addition into the media and/or in exogenous melatonin treatments in several species. In the present review, the physiological effects of endogenous melatonin in mammals are described, with a deeper focus on caprine reproduction. Additionally, results from recent investigations on the roles of exogenous melatonin aimed at improving the reproductive efficiency of goat bucks are discussed. There are contradictory findings and a limited amount of research available in the field of goat sperm cryopreservation associated with the use of melatonin. Understanding and improving goat reproduction and production is essential for many marginalized human populations around the world who directly depend on goats to maintain and improve their lifestyle.
Collapse
Affiliation(s)
- Alberto Jorge Cardenas-Padilla
- Laboratorio de Reproducción Animal, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli 54714, Mexico;
| | | | - Marco Cerbon
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de Mexico, Coyoacán, Mexico City 04510, Mexico;
| | - Alfredo Medrano
- Laboratorio de Reproducción Animal, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli 54714, Mexico;
| |
Collapse
|
31
|
Shan L, Gao L, Chai Y, Li K, Yu J, Liang F, Qin J, Ni Y, Sun P. Cordycepin improves hyperactivation and acrosome reaction through adenosine receptors during human sperm capacitation in vitro. Reprod Biol Endocrinol 2024; 22:143. [PMID: 39533327 PMCID: PMC11555834 DOI: 10.1186/s12958-024-01318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sperm capacitation is a prerequisite for natural or in vitro fertilization. After capacitation, sperm become hyperactivated and undergo an acrosome reaction, which helps them penetrate the oocyte. Cordycepin, a bioactive compound first isolated from Cordyceps militaris, is an adenosine analog with numerous physiological activities. However, its effects on sperm capacitation remain unclear. This study aims to elucidate the effects and mechanisms of cordycepin on human sperm capacitation. METHODS During in vitro capacitation culture, healthy human sperm were treated with cordycepin (20, 100, 500 µM). Sperm motility and hyperactivation were detected using a computer-assisted sperm analyzer. Sperm acrosome reaction was measured using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin. Sperm protein kinase A (PKA) activity was analyzed using an ELISA kit. The levels of sperm protein tyrosine phosphorylation were detected by western blotting. Sperm DNA damage was detected by a sperm chromatin dispersion assay. Reactive oxygen species (ROS) were measured using the fluorescence probe 2',7'-dichlorodihydrofluorescein diacetate. The expression and localization of adenosine receptors were analyzed by western blotting and immunofluorescence. The specific inhibitors of adenosine receptors were used to confirm their effects on cordycepin-induced sperm capacitation. Finally, molecular docking was performed to analyze the interaction between cordycepin and adenosine receptors. RESULTS Cordycepin improved hyperactivated sperm motility, acrosome reaction, PKA activity, and protein tyrosine phosphorylation during capacitation while having no obvious effects on sperm ROS or DNA damage. Four adenosine receptor subtypes were expressed in human sperm, but their localizations differed. Inhibition of adenosine receptors significantly decreased cordycepin-induced sperm hyperactivation and the acrosome reaction. Molecular docking showed that cordycepin can bind to the four subtypes of adenosine receptors. CONCLUSION Cordycepin may promote human sperm capacitation through adenosine receptor-mediated signaling pathways. These findings may be useful for assisted reproductive technology and animal breeding.
Collapse
Affiliation(s)
- Lijun Shan
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Linmei Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhao Chai
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianmin Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Liang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiangfeng Qin
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
32
|
Scalisi EM, Pecoraro R, Scalisi A, Dragotto J, Bracchitta G, Zimbone M, Impellizzeri G, Brundo MV. Susceptibility of Human Spermatozoa to Titanium Dioxide Nanoparticles: Evaluation of DNA Damage and Biomarkers. Life (Basel) 2024; 14:1455. [PMID: 39598253 PMCID: PMC11595473 DOI: 10.3390/life14111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Nowadays, developing countries have seen a reduction in male reproductive parameters, and it has been linked to the exposure of endocrine disrupting chemicals (EDCs), which are able to mimic or disrupt steroid hormone actions. Also, nanoparticles have shown effects on the male reproductive system, in particular the use of TiO2-NPs in drugs, cosmetics, and food as pigment additives, and, thanks to their small size (1-100 nm), provide themselves the opportunity to be internalized by the body and pass the blood-testis barrier (BTB). Therefore, TiO2-NPs can act on spermatogenesis and spermatozoa. In this study, we carried out an in vitro assay on human spermatozoa to evaluate the effects of TiO2-NPs at the concentrations of 500, 250, 100, and 50 ppm. Exposure did not statistically alter sperm parameters (e.g., motility and viability) but induced damage to sperm DNA and the expression of biomarkers by spermatozoa. This immunofluorescence investigation showed a positivity for biomarkers of stress (HSP70 and MTs) on the connecting piece of spermatozoa and also for sex hormone binding globulin (SHBG) biomarkers. The SHBG protein acts as a carrier of androgens and estrogens, regulating their bioavailability; therefore, its expression in the in vitro assay did not rule out the ability of TiO2-NPs to act as endocrine disruptors.
Collapse
Affiliation(s)
- Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (R.P.); (A.S.); (M.V.B.)
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (R.P.); (A.S.); (M.V.B.)
| | - Agata Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (R.P.); (A.S.); (M.V.B.)
| | - Jessica Dragotto
- U.O. Fisiopatologia della Riproduzione Umana—Clinica del Mediterraneo, 97100 Ragusa, Italy; (J.D.); (G.B.)
| | - Giovanni Bracchitta
- U.O. Fisiopatologia della Riproduzione Umana—Clinica del Mediterraneo, 97100 Ragusa, Italy; (J.D.); (G.B.)
| | | | | | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (R.P.); (A.S.); (M.V.B.)
| |
Collapse
|
33
|
Stigliani S, Ravera S, Maccarini E, Rizzo C, Massarotti C, Anserini P, Bozzo M, Amaroli A, Scaruffi P. The power of 810 nm near-infrared photobiomodulation therapy for human asthenozoospermia. Sci Rep 2024; 14:26819. [PMID: 39501019 PMCID: PMC11538380 DOI: 10.1038/s41598-024-77823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Sperm motility is a crucial factor in male fertility. Photobiomodulation (PBM) has been reported to increase sperm motility, but a consistent approach suitable for identifying standardizable protocols is lacking. We collected asthenozoospermic (n = 70) and normozoospermic (n = 20) semen. The asthenozoospermic samples were irradiated with an 810 nm diode laser, in continuous wave mode, at 0.25 W, 0.5 W, 1 W and 2 W for 60 s on a circular area of 1 cm2 through a novel handpiece with an innovative flat-top profile. Sperm motility was assessed immediately, after 30 and 60 min. A sample size calculator, unpaired t-test and one-way ANOVA with post-hoc Tukey HSD tests were used for statistics. One and 2 W were the most effective outputs in increasing progressive motility compared to control (p < 0.001). The maximum effect was immediately after 1 W-PBM (p < 0.001) and decreased after 60 min (p < 0.001). Time physiologically decreased vitality (p < 0.001), but less in the 1 W-PBM samples (p < 0.05). 1 W-PBM did not affect chromatin condensation. Asthenozoospermic samples displayed an impairment of 80% in oxygen consumption and ATP production and a slight inefficiency of oxidative phosphorylation compared to normozoospermic samples (p < 0.001). 1 W-PBM partially restored the functionality of aerobic metabolism (p < 0.001) by recovery of oxidative phosphorylation efficiency. PBM did not affect lactate dehydrogenase (glycolysis pathway). No irradiated samples increased accumulated malondialdehyde, a marker of lipidic peroxidation. In conclusion, PBM improves progressive motility in asthenozoospermia through increased mitochondrial energetic metabolism without harmful oxidative stress.
Collapse
Affiliation(s)
- Sara Stigliani
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Elena Maccarini
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Camilla Rizzo
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Massarotti
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Health (DiNOGMI), University of Genova, Genova, Italy
| | - Paola Anserini
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Bozzo
- BIO-Photonics Overarching Research laboratory, Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Andrea Amaroli
- BIO-Photonics Overarching Research laboratory, Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Genova, Italy.
| | - Paola Scaruffi
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
34
|
Ye JJ, Chen ZY, Wang QH, Liao XY, Wang XY, Zhang CC, Liu LR, Wei Q, Bao YG. Current treatment for male infertility: an umbrella review of systematic reviews and meta-analyses. Asian J Androl 2024; 26:645-652. [PMID: 39028629 PMCID: PMC11614172 DOI: 10.4103/aja202428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT This umbrella review aimed to summarize and provide a general evaluation of the effectiveness of current treatments for male infertility and assess the quality of evidence and possible biases. An umbrella review of systematic reviews and meta-analyses available in PubMed, Web of Science, and Scopus, covering studies published up to October 2023, was conducted. Sperm concentration, morphology, and motility were used as endpoints to evaluate the effectiveness of the treatments. Of 2998 studies, 18 published meta-analyses were extracted, yielding 90 summary effects on sperm concentration ( n = 36), sperm morphology ( n = 26), and sperm motility ( n = 28) on 28 interventions. None of the meta-analyses were classified as having low methodological quality, whereas 12 (66.7%) and 6 (33.3%) had high and moderate quality, respectively. Of the 90 summary effects, none were rated high-evidence quality, whereas 53.3% ( n = 48), 25.6% ( n = 23), and 21.1% ( n = 19) were rated moderate, low, and very low, respectively. Significant improvements in sperm concentration, morphology, and motility were observed with pharmacological interventions (N-acetyl-cysteine, antioxidant therapy, aromatase inhibitors, selective estrogen receptor modulators, hormones, supplements, and alpha-lipoic acid) and nonpharmacological interventions (varicocele repair and redo varicocelectomy). In addition, vitamin supplementation had no significant positive effects on sperm concentration, motility, or morphology. Treatments for male infertility are increasingly diverse; however, the current evidence is poor because of the limited number of patients. Further well-designed studies on single treatment and high-quality meta-analysis of intertreatment comparisons are recommended.
Collapse
Affiliation(s)
- Jian-Jun Ye
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Ze-Yu Chen
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi-Hao Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xin-Yang Liao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing-Yuan Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Chi-Chen Zhang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Liang-Ren Liu
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi-Ge Bao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Gřešková A, Petřivalský M. Thioredoxin System in Insects: Uncovering the Roles of Thioredoxins and Thioredoxin Reductase beyond the Antioxidant Defences. INSECTS 2024; 15:797. [PMID: 39452373 PMCID: PMC11508645 DOI: 10.3390/insects15100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Increased levels of reactive oxygen species (ROS) produced during aerobic metabolism in animals can negatively affect the intracellular redox status, cause oxidative stress and interfere with physiological processes in the cells. The antioxidant defence regulates ROS levels by interplaying diverse enzymes and non-enzymatic metabolites. The thioredoxin system, consisting of the enzyme thioredoxin reductase (TrxR), the redox-active protein thioredoxin (Trx) and NADPH, represent a crucial component of antioxidant defence. It is involved in the signalling and regulation of multiple developmental processes, such as cell proliferation or apoptotic death. Insects have evolved unique variations of TrxR, which resemble mammalian enzymes in overall structure and catalytic mechanisms, but the selenocysteine-cysteine pair in the active site is replaced by a cysteine-cysteine pair typical of bacteria. Moreover, the role of the thioredoxin system in insects is indispensable due to the absence of glutathione reductase, an essential enzyme of the glutathione system. However, the functions of the Trx system in insects are still poorly characterised. In the present review, we provide a critical overview of the current knowledge on the insect Trx system, focusing mainly on TrxR's role in the antioxidant and immune system of model insect species.
Collapse
Affiliation(s)
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| |
Collapse
|
36
|
Wang H, Liu K, Zeng W, Bai J, Xiao L, Qin Y, Liu Y, Xu X. Pyrroroquinoline Quinone (PQQ) Improves the Quality of Holstein Bull Semen during Cryopreservation. Animals (Basel) 2024; 14:2940. [PMID: 39457870 PMCID: PMC11503688 DOI: 10.3390/ani14202940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Cryopreserved semen is extensively utilized in the artificial insemination (AI) of domestic animals; however, suboptimal conception rates due to oxidative damage following AI continue to pose a challenge. The present study investigated the effects of Pyrroroquinoline Quinone (PQQ), a novel antioxidant, on the semen quality of Holstein bulls during cryopreservation, as well as its potential molecular mechanisms. Semen samples were diluted with varying concentrations of PQQ (0, 50 μmol/L, 100 μmol/L, 150 μmol/L) prior to cryopreservation. Following the freeze-thaw process, a comprehensive evaluation was conducted to assess sperm motility, plasma membrane integrity, acrosome integrity, and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and adenosine triphosphate (ATP). Western blot analysis was employed to examine the levels of proteins including PGAM2, CAPZB, CAT, SOD1, and GPX1. Notably, the inclusion of 100 μmol/L PQQ significantly enhanced sperm motility, membrane integrity, and acrosome integrity post freeze-thawing (p < 0.05). Furthermore, the group treated with 100 μmol/L PQQ exhibited reduced levels of MDA and ROS (p < 0.05), while ATP levels were significantly elevated (p < 0.05). Interestingly, treatment with 100 μmol/L PQQ resulted in decreased consumption of PGAM2, CAPZB, CAT, SOD1, and GPX1 proteins in sperm after freeze-thawing, compared to the control group (p < 0.05). These findings indicate that PQQ treatment enhances the quality of bull semen, mitigates oxidative stress damage, and ultimately improves the efficacy of sperm cryopreservation.
Collapse
Affiliation(s)
- Hai Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China;
| | - Kexiong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China;
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| |
Collapse
|
37
|
Chen W, Zou H, Xu H, Cao R, Zhang H, Zhang Y, Zhao J. The potential influence and intervention measures of gut microbiota on sperm: it is time to focus on testis-gut microbiota axis. Front Microbiol 2024; 15:1478082. [PMID: 39439945 PMCID: PMC11493703 DOI: 10.3389/fmicb.2024.1478082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
As the global male infertility rate continues to rise, there is an urgent imperative to investigate the underlying causes of sustained deterioration in sperm quality. The gut microbiota emerges as a pivotal factor in host health regulation, with mounting evidence highlighting its dual influence on semen. This review underscores the interplay between the Testis-Gut microbiota axis and its consequential effects on sperm. Potential mechanisms driving the dual impact of gut microbiota on sperm encompass immune modulation, inflammatory responses mediated by endotoxins, oxidative stress, antioxidant defenses, gut microbiota-derived metabolites, epigenetic modifications, regulatory sex hormone signaling. Interventions such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and Traditional natural herbal extracts are hypothesized to rectify dysbiosis, offering avenues to modulate gut microbiota and enhance Spermatogenesis and motility. Future investigations should delve into elucidating the mechanisms and foundational principles governing the interaction between gut microbiota and sperm within the Testis-Gut microbiota Axis. Understanding and modulating the Testis-Gut microbiota Axis may yield novel therapeutic strategies to enhance male fertility and combat the global decline in sperm quality.
Collapse
Affiliation(s)
- Wenkang Chen
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hede Zou
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoran Xu
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Rui Cao
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hekun Zhang
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yapeng Zhang
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayou Zhao
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Pastrana YM, Marcon JL, Amaral APD, Santos FBP, Lima ES, Acho LDR, Souza ROSD, Grando CC, Streit Junior DP, Godoy L. Catalase and Uric Acid Prevent Morphological Damage to the Sperm Flagella of Colossoma macropomum During 96 Hours at Low Storage Temperatures. Biopreserv Biobank 2024; 22:452-462. [PMID: 38526565 DOI: 10.1089/bio.2022.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Oxidative stress is one of the main causes of loss of sperm function during chilled storage. The aim of the current study was to evaluate the effects of a fructose-based extender, which was supplemented with catalase or uric acid, on the motility, viability, morphological integrity, and lipid peroxidation (LPO) of Colossoma macropomum spermatozoa. Sperm was diluted in extenders containing catalase (0; 0.1; 0.8; and 1.5 kU/L) or uric acid (0; 0.25; 0.5; and 1.0 mmol/L) and then stored at 4.3 ± 0.6°C for 96 hours. The chilling storage time had more significant and pronounced effects on practically all the measured sperm quality parameters than the different concentrations of both antioxidants added to the extenders. This was true for sperm motility, motility duration, sperm viability, and the percentage of normal spermatozoa. In fact, for all these parameters, values were higher in the extenders supplemented with catalase or uric acid, than those not supplemented with these antioxidants, especially after 96 hours. The LPO process showed an antioxidant-dependent response. In catalase-supplemented extenders thiobarbituric acid reactive substance (TBARS) levels increased gradually and significantly with time, but remained stable during the 96 hours of chilled storage in all samples in which uric acid was added. Despite this, TBARS levels were lower in the extenders supplemented with both catalase and uric acid than in those not having these antioxidants. Inverse correlations were found between sperm motility and the damage in sperm flagella. Our findings suggest that the supplementation of an extender with catalase or uric acid is beneficial and protects fish sperm membranes from damage caused by oxidative stress during low-temperature storage. The extenders containing 0.1 kU/L of catalase and 0.25 mmol/L of uric acid provided effective antioxidant protection for the spermatozoa of this important Amazonian fish.
Collapse
Affiliation(s)
- Yugo M Pastrana
- Programa de Pós-Graduação em Aquicultura, Universidade Nilton Lins e Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Jaydione L Marcon
- Laboratório de Fisiologia Animal, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Amanda P de Amaral
- Programa de Pós-Graduação em Aquicultura, Universidade Nilton Lins e Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Francisco Bruno P Santos
- Programa de Pós-Graduação em Aquicultura, Universidade Nilton Lins e Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Emerson S Lima
- Laboratório de Atividades Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Leonard D R Acho
- Laboratório de Atividades Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Rodrigo Otávio S de Souza
- Laboratório de Atividades Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Carolina C Grando
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Danilo P Streit Junior
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leandro Godoy
- Programa de Pós-Graduação em Aquicultura, Universidade Nilton Lins e Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
39
|
Barraza J, Cleofas P, Villamil S, García M, López A, Casas E, Salazar Z, Pichardo F, Barajas-Salinas A, Núñez-Macías E, Ramírez Y, Bonilla E, Bahena I, Ortíz-Muñíz R, Cortés-Barberena E, Betancourt M, Casillas F. In vitro exposure of porcine spermatozoa to methylparaben, and propylparaben, alone or in combination adversely affects sperm quality. J Appl Toxicol 2024; 44:1540-1554. [PMID: 38862408 DOI: 10.1002/jat.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Parabens (PBs) are widely used in the cosmetic, pharmaceutical, and food industries as preservatives of products. Because of its great use, humans and other organisms are highly exposed daily. However, little is known about the effect of PBs on male infertility. Therefore, the aim of the present study was to evaluate the effect of methylparaben (MePB) and propylparaben (PrPB), alone or in combination, on the physiological characteristics of pig in vitro exposed sperm to different concentrations (0, 200, 500, and 700 μM) for viability, motility, and acrosome integrity evaluation and (0, 200, 500, 700, 1000, and 2000 μM) for DNA fragmentation index evaluation, after 4 h of exposure. The results showed that sperm viability decreased after exposure to MePB from the concentration of 500 μM. In the PrPB and mixture groups, viability decreased at all concentrations except for the control. The decrease in viability of sperm exposed to PrPB was greater than that of the mixture and MePB groups. Sperm motility decreased in all the experimental groups exposed to PBs, at all concentrations, except for the control group. Acrosome integrity was not decreased in the MePB group; however, in the PrPB group, it decreased at a concentration of 200 μM and in the mixture at 500 μM. All groups exhibited DNA damage at different concentrations, except for the control group. Additionally, the effect of PBs on sperm quality was concentration-dependent. The results demonstrated that MePB and PrPB alone or in combination can have adverse effects on sperm quality parameters. MePB had lower toxicity than did both PrPB and the mixture. The mixture did not have an additive effect on any of the parameters evaluated. This could partially explain the link between PB exposure and infertility.
Collapse
Affiliation(s)
- J Barraza
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
- Master's degree in Animal Reproduction Biology, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - P Cleofas
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - S Villamil
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - M García
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - A López
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - E Casas
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - Z Salazar
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - F Pichardo
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - A Barajas-Salinas
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - E Núñez-Macías
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - Y Ramírez
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - E Bonilla
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - I Bahena
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - R Ortíz-Muñíz
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - E Cortés-Barberena
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - M Betancourt
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Campus, Mexico City, Mexico
| | - F Casillas
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| |
Collapse
|
40
|
Rotimi DE, Acho MA, Falana BM, Olaolu TD, Mgbojikwe I, Ojo OA, Adeyemi OS. Oxidative Stress-induced Hormonal Disruption in Male Reproduction. Reprod Sci 2024; 31:2943-2956. [PMID: 39090335 DOI: 10.1007/s43032-024-01662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Research into the impacts of oxidative stress (OS), and hormonal balance on reproductive potential has increased over the last 40 years possibly due to rising male infertility. Decreased antioxidant levels and increased OS in tissues result from hormonal imbalance, which in turn leads to male infertility. Increased reactive oxygen species (ROS) generation in seminal plasma has been linked to many lifestyle factors such as alcohol and tobacco use, toxicant exposure, obesity, varicocele, stress, and aging. This article provides an overview of the crosslink between OS and gonadal hormone disruption, as well as a potential mode of action in male infertility. Disrupting the equilibrium between ROS generation and the antioxidant defense mechanism in the male reproductive system may affect key hormonal regulators of male reproductive activities. Unchecked ROS production may cause direct injury on reproductive tissues or could disrupt normal regulatory mechanisms of the hypothalamic-pituitary-gonadal (HPG) axis and its interaction with other endocrine axes, both of which have negative effects on male reproductive health and can lead to male infertility.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria.
| | - Marvellous A Acho
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Babatunde Michael Falana
- Department of Animal Science, College of Agricultural Sciences, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Tomilola Debby Olaolu
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Ifunaya Mgbojikwe
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwafemi Adeleke Ojo
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria.
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria.
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria
| |
Collapse
|
41
|
Panghal A, Jena G. β-aminoisobutyric acid ameliorated type 1 diabetes-induced germ cell toxicity in rat: Studies on the role of oxidative stress and IGF-1/AMPK/SIRT-1 signaling pathway. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 899:503820. [PMID: 39326943 DOI: 10.1016/j.mrgentox.2024.503820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 09/28/2024]
Abstract
Diabetes mellitus is known as the "epidemic of the century" due to its global prevalence. Several pre-clinical and clinical studies have shown that male germ cell toxicity is one of the major consequences of diabetes mellitus. Although β-aminoisobutyric acid (BAIBA) has been shown to be advantageous in the diabetic nephropathy and cardiomyopathy, its specific role in the diabetes-induced testicular toxicity remains unknown. In this study, an attempt was made to elucidate the molecular mechanisms of BAIBA-mediated germ cell protection in diabetic rats. Adult male Sprague-dawley rats were subjected to either no treatment (control) or BAIBA (100 mg/kg; BAIBA control) or Streptozotocin (50 mg/kg; diabetic control) or low (25 mg/kg), medium (50 mg/kg) and high (100 mg/kg) doses of BAIBA in diabetic conditions. Significant alterations in sperm related parameters, oxidative stress and apoptotic biomarkers, pancreatic and testicular histology, DNA damage and changes in expression of proteins in testes were found in the diabetic rats. 100 mg/kg of BAIBA significantly reduced the elevated blood glucose levels (P ≤ 0.05), increased body weight (P ≤ 0.01 in the 4th week), lowered malondialdehyde (P ≤ 0.05) and nitrite levels (P ≤ 0.01), elevated testosterone (P ≤ 0.05) and FSH levels (P ≤ 0.05), increased sperm count and motility (P ≤ 0.01), decreased testicular DNA damage (P ≤ 0.001), improved histological features of pancreas and testes, decreased TUNEL positive cells (P ≤ 0.01), decreased RAGE (P ≤ 0.01) and Bax (P ≤ 0.05) expressions and increased SIRT1 (P ≤ 0.05) and Atg 12 (P ≤ 0.05) expressions in the testes. 50 mg/kg of BAIBA partially restored the above-mentioned parameters whereas 25 mg/kg of BAIBA was found to be insignificant in counteracting the toxicity. It is interesting to note that BAIBA protects male germ cell damage in diabetic rats by regulating the IGF-1/AMPK/SIRT-1 signaling pathway.
Collapse
Affiliation(s)
- Archna Panghal
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| |
Collapse
|
42
|
Jorge M, Ferreira FC, Marques CC, Batista MC, Oliveira PJ, Lidon F, Duarte SC, Teixeira J, Pereira RMLN. Effect of Urolithin A on Bovine Sperm Capacitation and In Vitro Fertilization. Animals (Basel) 2024; 14:2726. [PMID: 39335315 PMCID: PMC11428424 DOI: 10.3390/ani14182726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) play a critical role in the functional competence of sperm cells. Conversely, excessive generation of ROS can impair sperm function, including their fertilization ability. Urolithin A (UA), a gut bacteria-derived metabolite produced from the transformation of ellagitannins, with anti-aging and antioxidant properties, was investigated for the first time in bovine sperm cells in the present study. Firstly, different doses of UA (0, 1, and 10 μM; 8-16 sessions) were used during the capacitation process of frozen-thawed bovine sperm. Sperm motility was assessed using optical microscopy and CASA. Sperm vitality (eosin-nigrosin), ROS, and ATP levels, as well as mitochondrial membrane potential (JC1) and oxygen consumption were evaluated. A second experiment to test the effect of different doses of UA (0, 1, and 10 μM; 9 sessions) in both the capacitation medium, as above, and the fertilization medium, was also implemented. The embryonic development and quality were evaluated. UA, at a concentration of 1 μM, significantly improved sperm movement quality (p < 0.03). There was a trend towards an increase in the oxygen consumption rate (OCR) of capacitated sperm with 1 μM and 10 μM UA supplementation. Moreover, an increase in ATP levels (p < 0.01) was observed, accompanied by a reduction in ROS levels at the higher UA concentration. These results suggest that UA may enhance spermatozoa mitochondrial function, modifying their metabolic activity while reducing the oxidative stress. Also, the number of produced embryos appears to be positively affected by UA supplementation, although differences between the bulls may have mitigated this effect. In conclusion, presented results further support previous findings indicating the potential therapeutic value of UA for addressing reproductive sub/infertility problems and improving ART outcomes. In addition, our results also reinforce the important bull effect on ART and that male sperm bioenergetic parameters should be used to predict spermatozoa functionality and developmental potential.
Collapse
Affiliation(s)
- Manuela Jorge
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
- Department of Veterinary Sciences Research Centre, Vasco da Gama University School, Lordemão University Campus, 3020-210 Coimbra, Portugal;
| | - Filipa C. Ferreira
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
- GeoBioTec—Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal;
| | - Carla C. Marques
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
| | - Maria C. Batista
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
| | - Paulo J. Oliveira
- CNC—Centre for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (P.J.O.); (J.T.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - F. Lidon
- GeoBioTec—Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal;
| | - Sofia C. Duarte
- Department of Veterinary Sciences Research Centre, Vasco da Gama University School, Lordemão University Campus, 3020-210 Coimbra, Portugal;
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, 3000-548 Coimbra, Portugal
| | - José Teixeira
- CNC—Centre for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (P.J.O.); (J.T.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rosa M. L. N. Pereira
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
- Department of Veterinary Sciences Research Centre, Vasco da Gama University School, Lordemão University Campus, 3020-210 Coimbra, Portugal;
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
43
|
Wei G, Tang Y, Dai L, An T, Li Y, Wang Y, Wang L, Wang X, Zhang J. Identification and functional prediction of miRNAs that regulate ROS levels in dielectric barrier discharge plasma-treated boar spermatozoa. Theriogenology 2024; 226:308-318. [PMID: 38959841 DOI: 10.1016/j.theriogenology.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Dielectric barrier discharge (DBD) plasma regulates the levels of reactive oxygen species (ROS), which are critical for sperm quality. MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which regulate post-transcriptional gene expression in animals. At present, it is unknown whether DBD plasma can regulate sperm ROS levels through miRNAs. To further understand the regulatory mechanism of DBD plasma on sperm ROS levels, miRNAs in fresh boar spermatozoa were detected using Illumina deep sequencing technology. We found that 25 known miRNAs and 50 novel miRNAs were significantly upregulated, and 14 known miRNAs and 74 novel miRNAs were significantly downregulated in DBD plasma-treated spermatozoa. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that target genes of differentially expressed miRNAs were involved in many activities and pathways associated with antioxidants. We verified that DBD plasma significantly increased boar sperm quality and reduced ROS levels. These results suggest that DBD plasma can improve sperm quality by regulating ROS levels via miRNAs. Our findings provide a potential strategy to improve sperm quality through miRNA-targeted regulation of ROS, which helps to increase male reproduction and protect cryopreserved semen in clinical practice.
Collapse
Affiliation(s)
- Gege Wei
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Yunping Tang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Li Dai
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Tianyi An
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Yaqi Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China; Jianyang Municipal People's Government Shiqiao Street Office Comprehensive Convenience Service Center, Jianyang, Sichuan, 641400, China
| | - Yusha Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Lijuan Wang
- Sichuan Animal Husbandry Station, Chengdu, 610041, China
| | - Xianzhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
44
|
Hallberg I, Morrell JM, Malaluang P, Johannisson A, Sjunnesson Y, Laskowski D. Sperm quality and in vitro fertilizing ability of boar spermatozoa stored at 4 °C versus conventional storage for 1 week. Front Vet Sci 2024; 11:1444550. [PMID: 39376925 PMCID: PMC11457738 DOI: 10.3389/fvets.2024.1444550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Since boar spermatozoa show a marked deterioration in sperm quality when cooled, insemination doses are usually stored at 16-18 °C. However, maintaining this temperature during transport of semen doses is challenging, particularly during the summer months. An alternative could be to store the doses at 4 °C if cold-shock to the sperm could be prevented. The objective of this study was to evaluate boar sperm quality and fertility in in vitro fertilization after storage in AndroStar Premium at 4 °C for 1 week. Methods Insemination doses (n = 9) in AndroStar Premium from a commercial boar semen collection station were transported to the laboratory at approximately 20 °C. At the laboratory, sperm quality evaluation and was preformed and each dose was split; half of each ejaculate was stored in a climate-controlled box at 16-18 °C, the other was slowly cooled to 4 °C. Both samples were stored for 1 week before further sperm quality evaluation and in vitro fertilization (IVF) were performed. Mean values were tested using generalized linear regression, with treatment and boar as fixed factors; p ≤ 0.05 was considered significant. Results Sperm membrane integrity (mean ± sem: 91 ± 0.05 and 83 ± 0.09% for 16 and 4 °C, respectively) and superoxide production (6.79 ± 2.37 and 13.54 ± 6.23% for 16 and 4 °C, respectively), were different between treatments. The DNA fragmentation index was lower in cold-stored samples than in conventionally stored samples (3.74 ± 2.25 and 7.40 ± 3.36% for 4 and 16 °C, respectively). The numbers of oocytes developing to blastocyst on Day 6 (mean ± sd: 9.0 ± 8.0 and 6.0 ± 5.0%, for storage at 16 and 4 °C, respectively) were not different between treatments. Discussion Therefore, storage of boar semen doses in AndroStar Premium at 4 °C for up to 7 days would be a viable alternative to current praxis.
Collapse
Affiliation(s)
- Ida Hallberg
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jane M. Morrell
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pack Malaluang
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders Johannisson
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ylva Sjunnesson
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Denise Laskowski
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
45
|
Oke OE, Akosile OA, Oni AI, Opowoye IO, Ishola CA, Adebiyi JO, Odeyemi AJ, Adjei-Mensah B, Uyanga VA, Abioja MO. Oxidative stress in poultry production. Poult Sci 2024; 103:104003. [PMID: 39084145 PMCID: PMC11341942 DOI: 10.1016/j.psj.2024.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Oxidative stress (OS) is a major concern that impacts the overall health of chickens in modern production systems. It is characterized by an imbalance between antioxidant defence mechanisms and the production of reactive oxygen species (ROS). This literature review aims to provide a comprehensive overview of oxidative stress in poultry production, with an emphasis on its effects on growth performance, immune responses, and reproductive outcomes. This review highlights the intricate mechanisms underlying OS and discusses how various factors, including dietary components, genetic predispositions, and environmental stressors can exacerbate the production of ROS. Additionally, the impact of oxidative stress on the production performance and physiological systems of poultry is examined. The study also emphasizes the relationship between oxidative stress and poultry diseases, highlighting how impaired antioxidant defenses increase bird's susceptibility to infections. The review assesses the existing approaches to reducing oxidative stress in chickens in response to these challenges. This includes managing techniques to lower stress in the production environment, antioxidant supplements, and nutritional interventions. The effectiveness of naturally occurring antioxidants, including plant extracts, minerals, and vitamins to improve poultry resistance to oxidative damage is also examined. To improve the antioxidant defenses of poultry under stress conditions, the activation of cellular homeostatic networks termed vitagenes, such as Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is necessary for the synthesis of protective factors that can counteract the increased production of ROS and RNS. Future studies into novel strategies for managing oxidative stress in chicken production would build on these research advances and the knowledge gaps identified in this review.
Collapse
Affiliation(s)
- O E Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria; Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo.
| | - O A Akosile
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A I Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - I O Opowoye
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - C A Ishola
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - J O Adebiyi
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - A J Odeyemi
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - B Adjei-Mensah
- Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo
| | - V A Uyanga
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Abioja
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
46
|
Yeste M, Ahmad A, Viñolas E, Recuero S, Bonet S, Pinart E. Inhibition of forward and reverse transport of Ca 2+ via Na +/Ca 2+ exchangers (NCX) prevents sperm capacitation. Biol Res 2024; 57:57. [PMID: 39175101 PMCID: PMC11342557 DOI: 10.1186/s40659-024-00535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND While calcium is known to play a crucial role in mammalian sperm physiology, how it flows in and out of the male gamete is not completely understood. Herein, we investigated the involvement of Na+/Ca2+ exchangers (NCX) in mammalian sperm capacitation. Using the pig as an animal model, we first confirmed the presence of NCX1 and NCX2 isoforms in the sperm midpiece. Next, we partially or totally blocked Ca2+ outflux (forward transport) via NCX1/NCX2 with different concentrations of SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline; 0, 0.5, 5 and 50 µM) and Ca2+ influx (reverse transport) with SN6 (ethyl 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-1,3-thiazolidine-4-carboxylate; 0, 0.3, 3 or 30 µM). Sperm were incubated under capacitating conditions for 180 min; after 120 min, progesterone was added to induce the acrosome reaction. At 0, 60, 120, 130, and 180 min, sperm motility, membrane lipid disorder, acrosome integrity, mitochondrial membrane potential (MMP), tyrosine phosphorylation of sperm proteins, and intracellular levels of Ca2+, reactive oxygen species (ROS) and superoxides were evaluated. RESULTS Partial and complete blockage of Ca2+ outflux and influx via NCX induced a significant reduction of sperm motility after progesterone addition. Early alterations on sperm kinematics were also observed, the effects being more obvious in totally blocked than in partially blocked samples. Decreased sperm motility and kinematics were related to both defective tyrosine phosphorylation and mitochondrial activity, the latter being associated to diminished MMP and ROS levels. As NCX blockage did not affect the lipid disorder of plasma membrane, the impaired acrosome integrity could result from reduced tyrosine phosphorylation. CONCLUSIONS Inhibition of outflux and influx of Ca2+ triggered similar effects, thus indicating that both forward and reverse Ca2+ transport through NCX exchangers are essential for sperm capacitation.
Collapse
Affiliation(s)
- Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, ES-08010, Spain
| | - Adeel Ahmad
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Estel Viñolas
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain.
| |
Collapse
|
47
|
Jannatifar R, Piroozmanesh H, Sahraei SS, Verdi A, Asa E. The evaluation effect of nanoliposome-loaded Mito-Tempo on sperm parameters during human sperm cryopreservation. J Assist Reprod Genet 2024; 41:2053-2063. [PMID: 38753089 PMCID: PMC11339217 DOI: 10.1007/s10815-024-03132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/01/2024] [Indexed: 08/22/2024] Open
Abstract
AIM The aim of this study is the evaluation effect of nanoliposome-loaded Mito-Tempo on sperm parameters during human sperm cryopreservation. METHODS Semen samples of 50 Asthenoteratozoospermia men (random) were collected. Sperm parameters were analyzed based on World Health Organization (WHO, 2010) criteria (2021) and each sample was divided into 5 groups (E1-E5). E1 (control group): the sperm was cryopreserved without nanoliposome, and Mito-Tempo. E2: sperm cryopreservation with Mito-Tempo-loaded nanoliposome (Mito-Tempo 0.1 mM) + freezing medium. E3: sperm cryopreservation with Mito-Tempo-loaded nanoliposome (Mito-Tempo 0.2 mM) + freezing medium. E4: in this group, the cryopreservation sperm with Mito-Tempo 0.3 mM + freezing medium. E5: the cryopreservation sperm with Mito-Tempo 0.2 mM + freezing medium. RESULTS The result of this study indicated that sperm parameters and total antioxidant capacity (TAC) significantly increase in E3 and E4 groups, compared to E1, E2, and E5 groups respectively (P < 0.05). The percentage of abnormal morphology, DNA fragmentation index (DFI), malondialdehyde (MDA), and the levels of ROS significantly decrease in E3 and E4 groups, compared to E1, E2, and E5 groups (P < 0.05). In addition, the sperm parameters and stress oxidative factors significantly improve in E3 group compared to other groups (P < 0.05). CONCLUSIONS In conclusion, the combination of Mito-Tempo with nanoliposome due to its ability to cooperate with lipid layers may lead to significant performance in reducing oxidative stress damage and increasing the quality of sperm parameters.
Collapse
Affiliation(s)
- Rahil Jannatifar
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom, Iran.
- Infertility Treatment Center of ACECR, Bonyad Street, P.O. box: 3713746611, Qom, Iran.
| | | | - Seyedeh Saeideh Sahraei
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom, Iran
| | - Atefeh Verdi
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom, Iran
| | - Elham Asa
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom, Iran
| |
Collapse
|
48
|
Vahedi Raad M, Firouzabadi AM, Tofighi Niaki M, Henkel R, Fesahat F. The impact of mitochondrial impairments on sperm function and male fertility: a systematic review. Reprod Biol Endocrinol 2024; 22:83. [PMID: 39020374 PMCID: PMC11253428 DOI: 10.1186/s12958-024-01252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Besides adenine triphosphate (ATP) production for sustaining motility, the mitochondria of sperm also host other critical cellular functions during germ cell development and fertilization including calcium homeostasis, generation of reactive oxygen species (ROS), apoptosis, and in some cases steroid hormone biosynthesis. Normal mitochondrial membrane potential with optimal mitochondrial performance is essential for sperm motility, capacitation, acrosome reaction, and DNA integrity. RESULTS Defects in the sperm mitochondrial function can severely harm the fertility potential of males. The role of sperm mitochondria in fertilization and its final fate after fertilization is still controversial. Here, we review the current knowledge on human sperm mitochondria characteristics and their physiological and pathological conditions, paying special attention to improvements in assistant reproductive technology and available treatments to ameliorate male infertility. CONCLUSION Although mitochondrial variants associated with male infertility have potential clinical use, research is limited. Further understanding is needed to determine how these characteristics lead to adverse pregnancy outcomes and affect male fertility potential.
Collapse
Affiliation(s)
- Minoo Vahedi Raad
- Department of Biology & Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Masoud Firouzabadi
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Physiology, School of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Tofighi Niaki
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Ralf Henkel
- LogixX Pharma, Theale, Berkshire, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
49
|
Gill K, Machałowski T, Harasny P, Grabowska M, Duchnik E, Piasecka M. Low human sperm motility coexists with sperm nuclear DNA damage and oxidative stress in semen. Andrology 2024; 12:1154-1169. [PMID: 38018344 DOI: 10.1111/andr.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Low sperm motility, one of the common causes of male infertility, is associated with abnormal sperm quality. Currently, important sperm/semen biomarkers are sperm chromatin status and oxidation‒reduction potential (ORP) in semen. Because the association between sperm motility and these biomarkers is still not fully clarified, our study was designed to verify the distribution and risk of sperm DNA fragmentation (SDF) and oxidative stress in semen in asthenozoospermic men. MATERIALS AND METHODS This study was carried out on discharged sperm cells of asthenozoospermic men (isolated asthenozoospermia or coexisted with reduced sperm number and/or morphology), nonasthenozoospermic men (reduced total sperm count and/or sperm morphology) (experimental groups) and normozoospermic men (proven and presumed fertility) (control group). Basic semen analysis was evaluated according to the 6th edition of the World Health Organization manual guidelines. SDF was assessed using the sperm chromatin dispersion test, while static(s) ORP in semen was measured by means of a MiOXSYS analyser. RESULTS The men from the asthenozoospermic group had lower basic semen parameters than those from the control and nonasthenozoospermic groups. In men with poor sperm motility SDF and sORP, prevalence and risk for > 20% SDF (high level of DNA damage) and for > 1.37 sORP (oxidative stress) were significantly higher than those of control and nonasthenozoospermic subjects. The risk for sperm DNA damage and oxidative stress in asthenozoospermic men was over 10-fold higher and almost 6-fold higher than those in control subjects and almost or over 3-fold higher than those in nonasthenozoospermic men. CONCLUSIONS AND DISCUSSION Poor human sperm motility coexisted with low basic sperm quality. Sperm DNA damage and oxidative stress in semen were much more frequent in asthenozoospermia. These abnormalities can decrease the sperm fertilizing capability under both natural and medically assisted reproduction conditions. Thus, in asthenozoospermia, the evaluation of sperm chromatin status and oxidation-reduction potential in semen is justified and inevitable, and the appropriate antioxidant therapy can be suggested.
Collapse
Affiliation(s)
- Kamil Gill
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Machałowski
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Perinatology, Obstetrics and Gynecology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Police, Poland
| | - Patryk Harasny
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Urology and Urological Oncology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Duchnik
- Department of Aesthetic Dermatology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Małgorzata Piasecka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
50
|
Pavuluri H, Bakhtiary Z, Panner Selvam MK, Hellstrom WJG. Oxidative Stress-Associated Male Infertility: Current Diagnostic and Therapeutic Approaches. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1008. [PMID: 38929625 PMCID: PMC11205999 DOI: 10.3390/medicina60061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Infertility is a prevalent global issue affecting approximately 17.5% of adults, with sole male factor contributing to 20-30% of cases. Oxidative stress (OS) is a critical factor in male infertility, disrupting the balance between reactive oxygen species (ROS) and antioxidants. This imbalance detrimentally affects sperm function and viability, ultimately impairing fertility. OS also triggers molecular changes in sperm, including DNA damage, lipid peroxidation, and alterations in protein expression, further compromising sperm functionality and potential fertilization. Diagnostic tools discussed in this review offer insights into OS markers, antioxidant levels, and intracellular ROS concentrations. By accurately assessing these parameters, clinicians can diagnose male infertility more effectively and thus tailor treatment plans to individual patients. Additionally, this review explores various treatment options for males with OS-associated infertility, such as empirical drugs, antioxidants, nanoantioxidants, and lifestyle modifications. By addressing the root causes of male infertility and implementing targeted interventions, clinicians can optimize treatment outcomes and enhance the chances of conception for couples struggling with infertility.
Collapse
Affiliation(s)
| | | | | | - Wayne J. G. Hellstrom
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (H.P.); (Z.B.); (M.K.P.S.)
| |
Collapse
|