1
|
Yurchuk T, Likszo P, Witek K, Petrushko M, Skarzynski DJ. New Approach to the Cryopreservation of GV Oocytes and Cumulus Cells through the Lens of Preserving the Intercellular Gap Junctions Based on the Bovine Model. Int J Mol Sci 2024; 25:6074. [PMID: 38892259 PMCID: PMC11172894 DOI: 10.3390/ijms25116074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/19/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Differences in structural and functional properties between oocytes and cumulus cells (CCs) may cause low vitrification efficiency for cumulus-oocyte complexes (COCs). We have suggested that the disconnection of CCs and oocytes in order to further cryopreservation in various ways will positively affect the viability after thawing, while further co-culture in vitro will contribute to the restoration of lost intercellular gap junctions. This study aimed to determine the optimal method of cryopreservation of the suspension of CCs to mature GV oocytes in vitro and to determine the level of mRNA expression of the genes (GJA1, GJA4; BCL2, BAX) and gene-specific epigenetic marks (DNMT3A) after cryopreservation and in vitro maturation (IVM) in various culture systems. We have shown that the slow freezing of CCs in microstraws preserved the largest number of viable cells with intact DNA compared with the methods of vitrification and slow freezing in microdroplets. Cryopreservation caused the upregulation of the genes Cx37 and Cx43 in the oocytes to restore gap junctions between cells. In conclusion, the presence of CCs in the co-culture system during IVM of oocytes played an important role in the regulation of the expression of the intercellular proteins Cx37 and Cx43, apoptotic changes, and oocyte methylation. Slow freezing in microstraws was considered to be an optimal method for cryopreservation of CCs.
Collapse
Affiliation(s)
- Taisiia Yurchuk
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (P.L.)
- Department of Cryobiology of Reproductive System, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 61-016 Kharkiv, Ukraine
| | - Pawel Likszo
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (P.L.)
| | - Krzysztof Witek
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (P.L.)
| | - Maryna Petrushko
- Department of Cryobiology of Reproductive System, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 61-016 Kharkiv, Ukraine
| | - Dariusz J. Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (P.L.)
| |
Collapse
|
2
|
Jia B, Xiang D, Yang H, Liang J, Lv C, Yang Q, Huang X, Quan G, Wu G. Transcriptome analysis of porcine embryos derived from oocytes vitrified at the germinal vesicle stage. Theriogenology 2024; 218:99-110. [PMID: 38316086 DOI: 10.1016/j.theriogenology.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Vitrification of porcine immature oocytes at the germinal vesicle (GV) stage reduces subsequent embryo yield and changes at the molecular level may occur during embryonic development. Therefore, the present study used porcine parthenogenetic embryos as a model to investigate the effect of GV oocyte vitrification on the transcriptional profiles of the resultant embryos at the 4-cell and blastocyst stages using the Smart-seq2 RNA-seq technique. We identified 743 (420 up-regulated and 323 down-regulated) and 994 (554 up-regulated and 440 down-regulated) differentially expressed genes (DEGs) from 4-cell embryos and blastocysts derived from vitrified GV oocytes, respectively. Functional enrichment analysis of DEGs in 4-cell embryos showed that vitrification of GV oocytes influenced regulatory mechanisms related to transcription regulation, apoptotic process, metabolism and key pathways such as the MAPK signaling pathway. Moreover, DEGs in blastocysts produced from vitrified GV oocytes were enriched in critical biological functions including cell adhesion, cell migration, AMPK signaling pathway, GnRH signaling pathway and so on. In addition, the transcriptomic analysis and quantitative real-time PCR results were consistent. In summary, the present study revealed that the vitrification of porcine GV oocytes could alter gene expression patterns during subsequent embryonic developmental stages, potentially affecting their developmental competence.
Collapse
Affiliation(s)
- Baoyu Jia
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Decai Xiang
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Han Yang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jiachong Liang
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Chunrong Lv
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Qige Yang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xinyu Huang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Guobo Quan
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China.
| | - Guoquan Wu
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China.
| |
Collapse
|
3
|
Cho JR, Yu EH, Lee HJ, Kim IH, Jeong JH, Lee DB, Cho SK, Joo JK. Ultra-Fast Vitrification: Minimizing the Toxicity of Cryoprotective Agents and Osmotic Stress in Mouse Oocyte Cryopreservation. Int J Mol Sci 2024; 25:1884. [PMID: 38339162 PMCID: PMC10856457 DOI: 10.3390/ijms25031884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Globally, women have been adopting oocyte cryopreservation (OC) for fertility preservation for various reasons, such as inevitable gonadotoxic treatment for specific pathologic states and social preferences. While conventional vitrification (C-VIT) has improved the success rate of OC, challenges of possible toxicities of high-concentration cryoprotective agents and osmotic stress persist. To overcome these challenges, we evaluated the ultra-fast vitrification (UF-VIT) method, which reduces the equilibration solution stage exposure time compared to C-VIT by observing mouse oocyte intracellular organelles and embryonic development. Consequently, compared to fresh mouse oocytes, UF-VIT presented significant differences only in endoplasmic reticulum (ER) intensity and mitochondrial (MT) distribution. Meanwhile, C-VIT showed substantial differences in the survival rate, key ER and MT parameters, and embryonic development rate. UF-VIT exhibited considerably fewer negative effects on key MT parameters and resulted in a notably higher blastocyst formation rate than C-VIT. Meiotic spindle (spindle and chromosomes) morphology showed no significant changes between the groups during vitrification/warming (VW), suggesting that VW did not negatively affect the meiotic spindle of the oocytes. In conclusion, UF-VIT seems more effective in OC owing to efficient cytoplasmic water molecule extraction, osmotic stress reduction, and minimization of cell contraction and expansion amplitude, thus compensating for the drawbacks of C-VIT.
Collapse
Affiliation(s)
- Jung-Ran Cho
- Infertility Center of Pusan National University Hospital, Busan 49241, Republic of Korea; (J.-R.C.); (J.-H.J.); (D.-B.L.)
- Laboratory of Animal Reproductive Physiology & Biotechnology, Department of Animal Science, Pusan National University Graduate School, Miryang 50463, Republic of Korea
| | - Eun-Hee Yu
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital Biomedical Research Institute, Busan 49241, Republic of Korea; (E.-H.Y.); (H.-J.L.); (I.-H.K.)
| | - Hyun-Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital Biomedical Research Institute, Busan 49241, Republic of Korea; (E.-H.Y.); (H.-J.L.); (I.-H.K.)
| | - In-Hye Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital Biomedical Research Institute, Busan 49241, Republic of Korea; (E.-H.Y.); (H.-J.L.); (I.-H.K.)
| | - Ji-Hye Jeong
- Infertility Center of Pusan National University Hospital, Busan 49241, Republic of Korea; (J.-R.C.); (J.-H.J.); (D.-B.L.)
- Laboratory of Animal Reproductive Physiology & Biotechnology, Department of Animal Science, Pusan National University Graduate School, Miryang 50463, Republic of Korea
| | - Dan-Bi Lee
- Infertility Center of Pusan National University Hospital, Busan 49241, Republic of Korea; (J.-R.C.); (J.-H.J.); (D.-B.L.)
| | - Seong-Keun Cho
- Laboratory of Animal Reproductive Physiology & Biotechnology, Department of Animal Science, Pusan National University Graduate School, Miryang 50463, Republic of Korea
| | - Jong-Kil Joo
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital Biomedical Research Institute, Busan 49241, Republic of Korea; (E.-H.Y.); (H.-J.L.); (I.-H.K.)
| |
Collapse
|
4
|
Somfai T. Vitrification of immature oocytes in pigs. Anim Sci J 2024; 95:e13943. [PMID: 38578008 DOI: 10.1111/asj.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Cryopreservation of oocytes is an important technology for the in vitro gene banking of female germplasm. Although slow freezing is not feasible, porcine oocytes survive vitrification at high rates. Cryopreservation at the germinal vesicle stage appears to be more advantageous than that at the metaphase-II stage. Several factors are considered to affect the success of vitrification and subsequent utilization of immature porcine oocytes such as the device, the protocols for cryoprotectant application, warming, and the post-warming culture. Although live piglets could be obtained from vitrified immature oocytes, their competence to develop to the blastocyst stage is still reduced compared to their non-vitrified counterparts, indicating that there is room for further improvement. Vitrified oocytes suffer various types of damage and alteration which may reduce their developmental ability. Some of these can recover to some extent during subsequent culture, such as the damage of the cytoskeleton and mitochondria. Others such as premature nuclear progression, DNA damage and epigenetic alterations will require further research to be clarified and addressed. To date, the practical application of oocyte vitrification in pigs has been confined to the gene banking of a few native breeds.
Collapse
Affiliation(s)
- Tamás Somfai
- Animal Model Development Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
5
|
Gordon CE, Combelles CM, Lanes A, Patel J, Racowsky C. Cumulus cell co-culture in media drops does not improve rescue in vitro maturation of vitrified-warmed immature oocytes. F&S SCIENCE 2023; 4:185-192. [PMID: 37201752 DOI: 10.1016/j.xfss.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE To assess whether co-culture with vitrified-warmed cumulus cells (CCs) in media drops improves rescue in vitro maturation (IVM) of previously vitrified immature oocytes. Previous studies have shown improved rescue IVM of fresh immature oocytes when cocultured with CCs in a three-dimensional matrix. However, the scheduling and workload of embryologists would benefit from a simpler IVM approach, particularly in the setting of time-sensitive oncofertility oocyte cryopreservation (OC) cases. Although the yield of developmentally competent mature metaphase II (MII) oocytes is increased when rescue IVM is performed before cryopreservation, it is unknown whether maturation of previously vitrified immature oocytes is improved after coculture with CCs in a simple system not involving a three-dimensional matrix. DESIGN Randomized controlled trial. SETTING Academic hospital. PATIENTS A total of 320 (160 germinal vesicles [GVs] and 160 metaphase I [MI]) immature oocytes and autologous CC clumps were vitrified from patients who were undergoing planned OC or intracytoplasmic sperm injection from July 2020 until September 2021. INTERVENTIONS On warming, the oocytes were randomized to culture in IVM media with CCs (+CC) or without CCs (-CC). Germinal vesicles and MI oocytes were cultured in 25 μL (SAGE IVM medium) for 32 hours and 20-22 hours, respectively. MAIN OUTCOME MEASURES Oocytes with a polar body (MII) were randomized to confocal microscopy for analysis of spindle integrity and chromosomal alignment to assess nuclear maturity or to parthenogenetic activation to assess cytoplasmic maturity. Wilcoxon rank sum tests for continuous variables and the chi square or Fisher's exact test for categorical variables assessed statistical significance. Relative risks (RRs) and 95% confidence intervals (CIs) were calculated. RESULTS Patient demographic characteristics were similar for both the GV and MI groups after randomization to +CC vs. -CC. No statistically significant differences were observed between +CC vs. -CC groups regarding the percentage of MII from either GV (42.5% [34/80] vs. 52.5% [42/80]; RR 0.81; 95% CI: 0.57-1.15]) or MI (76.3% [61/80]; vs. 72.5% [58/80]; RR 1.05; 95% CI: 0.88-1.26]) oocytes. An increased percentage of GV-matured MIIs underwent parthenogenetic activation in the +CC group (92.3% [12/13] vs. 70.8% [17/24]), but the difference was not statistically significant (RR 1.30; 95% CI: 0.97-1.75), whereas the activation rate was identical for MI-matured oocytes (74.3% [26/35] vs. 75.0% [18/24], CC+ vs. CC-; RR 0.99; 95% CI: 0.74-1.32). No significant differences were observed between +CC vs. -CC groups for cleavage of parthenotes from GV-matured oocytes (91.7% [11/12] vs. 82.4% [14/17]) or blastulation (0 for both) or for MI-matured oocytes (cleavage: 80.8% [21/26] vs. 94.4% [17/18]; blastulation: 0 [0/26] vs. 16.7% [3/18]). Further, no significant differences were observed between +CC vs. -CC for GV-matured oocytes regarding incidence of bipolar spindles (38.9% [7/18] vs. 33.3% [5/15]) or aligned chromosomes (22.2% [4/18] vs. 0.0 [0/15]); or for MI-matured oocytes (bipolar spindle: 38.9% [7/18] vs. 42.9% [2/28]); aligned chromosomes (35.3% [6/17] vs. 24.1% [7/29]). CONCLUSIONS Cumulus cell co-culture in this simple two-dimensional system does not improve rescue IVM of vitrified, warmed immature oocytes, at least by the markers assessed here. Further work is required to assess the efficacy of this system given its potential to provide flexibility in a busy, in vitro fertilization clinic.
Collapse
Affiliation(s)
- Catherine E Gordon
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts.
| | | | - Andrea Lanes
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts
| | - Jay Patel
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts
| | - Catherine Racowsky
- Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts; Department of Obstetrics, Gynecology and Reproductive Medicine, Hôpital Foch, Suresnes, France
| |
Collapse
|
6
|
Zhuan Q, Du X, Bai J, Zhou D, Luo Y, Liu H, Sun W, Wan P, Hou Y, Li J, Fu X. Proteomic profile of mouse oocytes after vitrification: A quantitative analysis based on 4D label-free technique. Theriogenology 2022; 187:64-73. [DOI: 10.1016/j.theriogenology.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
7
|
Xiang D, Jia B, Zhang B, Liang J, Hong Q, Wei H, Wu G. Astaxanthin Supplementation Improves the Subsequent Developmental Competence of Vitrified Porcine Zygotes. Front Vet Sci 2022; 9:871289. [PMID: 35433903 PMCID: PMC9011099 DOI: 10.3389/fvets.2022.871289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cryopreservation of embryos has been confirmed to cause oxidative stress as a factor responsible for impaired developmental competence. Currently, astaxanthin (Ax) raises considerable interest as a strong exogenous antioxidant and for its potential in reproductive biology. The present study aimed to investigate the beneficial effects of Ax supplementation during in vitro culture of vitrified porcine zygotes and the possible underlying mechanisms. First, the parthenogenetic zygotes were submitted to vitrification and then cultured in the medium added with various concentrations of Ax (0, 0.5, 1.5, and 2.5 μM). Supplementation of 1.5 μM Ax achieved the highest blastocyst yield and was considered as the optimal concentration. This concentration also improved the blastocyst formation rate of vitrified cloned zygotes. Moreover, the vitrified parthenogenetic zygotes cultured with Ax exhibited significantly increased mRNA expression of CDX2, SOD2, and GPX4 in their blastocysts. We further analyzed oxidative stress, mitochondrial and lysosomal function in the 4-cell embryos and blastocysts derived from parthenogenetic zygotes. For the 4-cell embryos, vitrification disturbed the levels of reactive oxygen species (ROS) and glutathione (GSH), and the activities of mitochondria, lysosome and cathepsin B, and Ax supplementation could fully or partially rescue these values. The blastocysts obtained from vitrified zygotes showed significantly reduced ATP content and elevated cathepsin B activity, which also was recovered by Ax supplementation. There were no significant differences in other parameters mentioned above for the resultant blastocysts. Furthermore, the addition of Ax significantly enhanced mitochondrial activity and reduced lysosomal activity in resultant blastocysts. In conclusion, these findings revealed that Ax supplementation during the culture period improved subsequent embryonic development and quality of porcine zygotes after vitrification and might be used to ameliorate the recovery culture condition for vitrified embryos.
Collapse
Affiliation(s)
- Decai Xiang
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Baoyu Jia
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Bin Zhang
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jiachong Liang
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Hongjiang Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Guoquan Wu
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
- *Correspondence: Guoquan Wu
| |
Collapse
|
8
|
Jia B, Xiang D, Shao Q, Hong Q, Quan G, Wu G. Proteomic Exploration of Porcine Oocytes During Meiotic Maturation in vitro Using an Accurate TMT-Based Quantitative Approach. Front Vet Sci 2022; 8:792869. [PMID: 35198619 PMCID: PMC8859466 DOI: 10.3389/fvets.2021.792869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/20/2021] [Indexed: 01/19/2023] Open
Abstract
The dynamic changes in protein expression are well known to be required for oocyte meiotic maturation. Although proteomic analysis has been performed in porcine oocytes during in vitro maturation, there is still no full data because of the technical limitations at that time. Here, a novel tandem mass tag (TMT)-based quantitative approach was used to compare the proteomic profiles of porcine immature and in vitro mature oocytes. The results of our study showed that there were 763 proteins considered with significant difference−450 over-expressed and 313 under-expressed proteins. The GO and KEGG analyses revealed multiple regulatory mechanisms of oocyte nuclear and cytoplasmic maturation such as spindle and chromosome configurations, cytoskeletal reconstruction, epigenetic modifications, energy metabolism, signal transduction and others. In addition, 12 proteins identified with high-confidence peptide and related to oocyte maturation were quantified by a parallel reaction monitoring technique to validate the reliability of TMT results. In conclusion, we provided a detailed proteomics dataset to enrich the understanding of molecular characteristics underlying porcine oocyte maturation in vitro.
Collapse
Affiliation(s)
- Baoyu Jia
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Decai Xiang
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qingyong Shao
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Guobo Quan
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
- *Correspondence: Guobo Quan
| | - Guoquan Wu
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
- Guoquan Wu
| |
Collapse
|
9
|
Qin J, Guo S, Yang J, Qazi IH, Pan B, Lv T, Zang S, Fang Y, Zhou G. Melatonin Promotes in vitro Development of Vitrified-Warmed Mouse GV Oocytes, Potentially by Modulating Phosphorylation of Drp1. Front Vet Sci 2021; 8:752001. [PMID: 34631868 PMCID: PMC8497800 DOI: 10.3389/fvets.2021.752001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
Previous studies have shown that melatonin can mitigate cryopreservation-induced mitochondrial dysfunction in oocytes; however, the underlying molecular mechanism remains unclear. The objective of the present study was to investigate whether melatonin can improve the mitochondrial function during in vitro maturation of vitrified-warmed mouse germinal vesicle (GV) oocytes by modulating phosphorylation of dynamin related protein 1 (Drp1). Vitrification/warming procedures resulted in the following: (1) After cryopreservation of mouse GV oocytes, the phosphorylation level of Drp1 at Ser616 (p-Drp1 Ser616) in metaphase II (MII) oocytes was increased (P < 0.05). Furthermore, the rates of in vitro maturation, cleavage and blastocyst formation after parthenogenetic activation were decreased (P < 0.05). (2) In MII oocytes, the expression levels of translocase of the mitochondrial outer membrane 20 (TOMM20), mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, and mRNA levels of mitochondrial biogenesis-related genes (Sirt1, Pgc-1α, Tfam) were all decreased (P < 0.05), and (3) Reactive oxygen species (ROS) level, early apoptosis level, Cytochrome C release and mRNA levels of pro-apoptotic related genes (Bax, Caspase9, Caspase3) in MII oocytes were all increased (P < 0.05). The results of this study further revealed that negative impacts of GV oocyte cryopreservation were mitigated by supplementation of warming and in vitro maturation media with 10−7mol /L melatonin or 2 x 10−5mol/L Mdivi-1 (Drp1 inhibitor). Therefore, we concluded that 10−7mol/L melatonin improved mitochondrial function, reduced oxidative stress and inhibited apoptosis by regulating phosphorylation of Drp1, thereby enhancing in vitro development of vitrified-warmed mouse GV oocytes.
Collapse
Affiliation(s)
- Jianpeng Qin
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shichao Guo
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jinyu Yang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Izhar Hyder Qazi
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Bo Pan
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tianyi Lv
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shengqin Zang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yi Fang
- Department of Grassland Resources and Animal Husbandry, Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agoecology, Chinese Academy of Sciences, Changchun, China
| | - Guangbin Zhou
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
López A, Ducolomb Y, Casas E, Retana-Márquez S, Betancourt M, Casillas F. Effects of Porcine Immature Oocyte Vitrification on Actin Microfilament Distribution and Chromatin Integrity During Early Embryo Development in vitro. Front Cell Dev Biol 2021; 9:636765. [PMID: 33959606 PMCID: PMC8093386 DOI: 10.3389/fcell.2021.636765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Vitrification is mainly used to cryopreserve female gametes. This technique allows maintaining cell viability, functionality, and developmental potential at low temperatures into liquid nitrogen at −196°C. For this, the addition of cryoprotectant agents, which are substances that provide cell protection during cooling and warming, is required. However, they have been reported to be toxic, reducing oocyte viability, maturation, fertilization, and embryo development, possibly by altering cell cytoskeleton structure and chromatin. Previous studies have evaluated the effects of vitrification in the germinal vesicle, metaphase II oocytes, zygotes, and blastocysts, but the knowledge of its impact on their further embryo development is limited. Other studies have evaluated the role of actin microfilaments and chromatin, based on the fertilization and embryo development rates obtained, but not the direct evaluation of these structures in embryos produced from vitrified immature oocytes. Therefore, this study was designed to evaluate how the vitrification of porcine immature oocytes affects early embryo development by the evaluation of actin microfilament distribution and chromatin integrity. Results demonstrate that the damage generated by the vitrification of immature oocytes affects viability, maturation, and the distribution of actin microfilaments and chromatin integrity, observed in early embryos. Therefore, it is suggested that vitrification could affect oocyte repair mechanisms in those structures, being one of the mechanisms that explain the low embryo development rates after vitrification.
Collapse
Affiliation(s)
- Alma López
- Biological and Health Sciences Program, Metropolitan Autonomous University-Iztapalapa, Mexico City, Mexico.,Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Mexico City, Mexico
| | - Yvonne Ducolomb
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Mexico City, Mexico
| | - Eduardo Casas
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Mexico City, Mexico
| | - Socorro Retana-Márquez
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa, Mexico City, Mexico
| | - Miguel Betancourt
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa, Mexico City, Mexico
| | - Fahiel Casillas
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa, Mexico City, Mexico
| |
Collapse
|
11
|
Xiang DC, Jia BY, Fu XW, Guo JX, Hong QH, Quan GB, Wu GQ. Role of astaxanthin as an efficient antioxidant on the in vitro maturation and vitrification of porcine oocytes. Theriogenology 2021; 167:13-23. [PMID: 33743504 DOI: 10.1016/j.theriogenology.2021.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 12/16/2022]
Abstract
As one of the most powerful natural antioxidants, astaxanthin (Ax) has begun to be applied to the field of reproductive biology. Here we used porcine oocyte as a model to explore how Ax improves the oocyte potential during in vitro maturation (IVM), and we also investigated the cytoprotective effects of Ax on the vitrified oocytes. Ax supplementation (final concentration of 2.5 μM) was subjected for immature oocytes during vitrification and subsequent IVM; fresh oocytes were also matured in vitro in the presence or absence of 2.5 μM Ax. Our results showed that Ax significantly increased the survival rate of vitrified oocytes, and promoted the blastocyst yield of both fresh and vitrified oocytes after parthenogenetic activation and somatic cell nuclear transfer. The oocytes treated with Ax displayed significantly lower reactive oxygen species generation and higher glutathione level. Vitrification of oocytes had no impact on caspase-3, cathepsin B and autophagic activities; Ax significantly decreased the cathepsin B activity in both fresh and vitrified oocytes. Moreover, the relative fluorescence intensity of lysosomes was significantly increased in vitrified oocytes, which was recovered by Ax treatment. The mitochondrial activity did not differ between fresh and vitrified oocytes, and was significantly enhanced in Ax-treated oocytes. Furthermore, Ax significantly restored the decreased expression of BMP15, ZAR1, POU5F1, GPX4 and LAMP2 genes in vitrified oocytes. Both fresh and vitrified oocytes treated with Ax showed significantly higher mRNA levels of GDF9, POU5F1, SOD2, NRF2 and ATG5. Taken together, this study provides new perspectives in understanding the mechanisms by which Ax improves the developmental competence of both fresh and vitrified porcine oocytes.
Collapse
Affiliation(s)
- De-Cai Xiang
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Bao-Yu Jia
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xiang-Wei Fu
- College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Jian-Xiong Guo
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Qiong-Hua Hong
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Guo-Bo Quan
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China.
| | - Guo-Quan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China.
| |
Collapse
|
12
|
Lee SH. Human Adipose-Derived Stem Cells' Paracrine Factors in Conditioned Medium Can Enhance Porcine Oocyte Maturation and Subsequent Embryo Development. Int J Mol Sci 2021; 22:ijms22020579. [PMID: 33430095 PMCID: PMC7826973 DOI: 10.3390/ijms22020579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
An essential requirement for the success of in vitro maturation (IVM) of the oocyte is to provide an optimal microenvironment similar to in vivo conditions. Recently, somatic cell-based coculture or supplementation of a conditioned medium during IVM has been performed to obtain better quality of oocytes, because they mimic the in vivo reproductive tract by secreting paracrine factors. In this study, human adipose-derived stem cells (ASC) and their conditioned medium (ASC-CM) were applied to IVM of porcine oocytes to evaluate the effectiveness of ASC on oocyte development and subsequent embryo development. In results, both ASC and ASC-CM positively influence on oocyte maturation and embryo development by regulating growth factor receptors (VEGF, FGFR, and IGFR), apoptosis (BCL2), cumulus expansion (PTGS2, HAS2, and TNFAIP6), and oocyte maturation-related genes (GDF9 and BMP15). In particular, the fluorescence intensity of GDF9 and BMP15 was markedly upregulated in the oocytes from the ASC-CM group. Furthermore, significantly high levels of growth factors/cytokine including VEGF, bFGF, IGF-1, IL-10, and EGF were observed in ASC-CM. Additionally, the ASC-CM showed active scavenging activity by reducing the ROS production in a culture medium. Consequently, for the first time, this study demonstrated the effect of human ASC-CM on porcine oocyte development and the alteration of mRNA transcript levels in cumulus–oocyte complexes.
Collapse
Affiliation(s)
- Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; ; Tel.: +1-4154760932
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Inhibitory effects of astaxanthin on postovulatory porcine oocyte aging in vitro. Sci Rep 2020; 10:20217. [PMID: 33214659 PMCID: PMC7677382 DOI: 10.1038/s41598-020-77359-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Mammalian oocytes represent impaired quality after undergoing a process of postovulatory aging, which can be alleviated through various effective ways such as reagent treatment. Accumulating evidences have revealed the beneficial effects of astaxanthin (Ax) as a potential antioxidant on reproductive biology. Here, porcine matured oocytes were used as a model to explore whether Ax supplement can protect against oocyte aging in vitro and the underlying mechanism, and therefore they were cultured with or without 2.5 μM Ax for an additional 24 h. Aged oocytes treated with Ax showed improved yield and quality of blastocysts as well as recovered expression of maternal genes. Importantly, oxidative stress in aged oocytes was relieved through Ax treatment, based on reduced reactive oxygen species and enhanced glutathione and antioxidant gene expression. Moreover, inhibition in apoptosis and autophagy of aged oocyte by Ax was confirmed through decreased caspase-3, cathepsin B and autophagic activities. Ax could also maintain spindle organization and actin expression, and rescue functional status of organelles including mitochondria, endoplasmic reticulum, Golgi apparatus and lysosomes according to restored fluorescence intensity. In conclusion, Ax might provide an alternative for ameliorating the oocyte quality following aging in vitro, through the mechanisms mediated by its antioxidant properties.
Collapse
|
14
|
Effects of Human Endothelial Progenitor Cell and Its Conditioned Medium on Oocyte Development and Subsequent Embryo Development. Int J Mol Sci 2020; 21:ijms21217983. [PMID: 33121114 PMCID: PMC7662943 DOI: 10.3390/ijms21217983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Human endothelial progenitor cells (EPCs) secrete numerous growth factors, and they have been applied to regenerative medicine for their roles in angiogenesis as well as neovascularization. Angiogenesis is one of the essential factors for the maturation of ovarian follicles; however, the physiological function of EPCs or their derivatives on in vitro culture systems has not been fully understood. The aim of this study was to evaluate the effectiveness of EPCs and their conditioned medium (EPC-CM) on oocyte development and subsequent embryo development. In the results, the oocyte development and subsequent embryo development were significantly improved in EPCs and the EPC-CM group. In addition, markedly increased levels of growth factors/cytokines, such as basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin growth factor-1 (IGF-1), interleukin-10 (IL-10), and epidermal growth factor (EGF), were observed in medium from the EPC-CM group. Additionally, EPC-CM after in vitro maturation (IVM) had significantly decreased reactive oxygen species (ROS) levels compared to those of other groups. Transcriptional levels of growth factor receptor-related genes (FGFR2, IGF1R) and anti-apoptotic-related gene (BCL2) were significantly upregulated in cumulus cells/oocytes from the EPC-CM group compared with those from the control. Furthermore, the expression levels of cumulus expansion-related genes (PTGS2, TNFAIP6, HAS2) and oocyte-maturation-related factors (GDF9, BMP15) were significantly enhanced in the EPC-CM group. Consequently, the present study provides the first evidence that EPC-CM contains several essential growth factors for oocyte development by regulating genes involved in oocyte maturation.
Collapse
|
15
|
Silyukova YL, Stanishevskaya OI, Dementieva NV. The current state of the problem of in vitro gene pool preservation in poultry. Vavilovskii Zhurnal Genet Selektsii 2020; 24:176-184. [PMID: 33659797 PMCID: PMC7716548 DOI: 10.18699/vj20.611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This review presents the current progress in and approaches to in vitro conservation of reproductive
cells of animals, including birds, such as cryopreservation and freeze-drying, as well as epigenetic conditions for
restoring
viable spermatozoa and female gametes after conservation. Cryopreservation is an effective way to preserve
reproductive cells of various species of animals and birds. In vitro gene pool conservation is aimed primarily
to the restoration of extinct breeds and populations and to the support of genetic diversity in populations prone
to genetic drift. It is the combination of ex situ in vivo and ex situ in vitro methods that can form the basic principles
of the strategy of animal genetic diversity preservation. Also, use of cryopreserved semen allows faster breeding
in industrial poultry farming. Despite numerous advances in semen cryobiology, new methods that can more efficiently
restore semen fertility after cryopreservation are being sought. The mechanisms underlying the effect of
cryopreservation on the semen parameters of cocks are insufficiently understood. The review reflects the results
of recent research in the field of cryopreservation of female and male germ cells, embryonic cells, the search for
new ways in the field of genetic diversity in vitro (the development of new cryoprotective media and new conservation
technologies: freeze-drying). Molecular aspects of cryopreservation and the mechanisms of cryopreservation
influence on the epigenetic state of cells are highlighted. Data on the results of studies in the field of male
reproductive cell lyophilization are presented. The freeze-drying of reproductive cells, as a technology for cheaper
access to the genetic material of wild and domestic animals, compared to cryopreservation, attracts the attention
of scientists in Japan, Israel, Egypt, Spain, and France. There is growing interest in the use of lyophilized semen
in genetic engineering technologies. Methods of freeze-drying are developed taking into account the species of
birds. Organizational and legal ways of solving the problems of in vitro conservation of genetic resources of farm
animals, including birds, are proposed.
Collapse
Affiliation(s)
- Y L Silyukova
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L.K. Ernst Federal Science Center for Animal Husbandry, Pushkin, St. Petersburg, Russia
| | - O I Stanishevskaya
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L.K. Ernst Federal Science Center for Animal Husbandry, Pushkin, St. Petersburg, Russia
| | - N V Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L.K. Ernst Federal Science Center for Animal Husbandry, Pushkin, St. Petersburg, Russia
| |
Collapse
|
16
|
TMT-based quantitative proteomic analysis of cumulus cells derived from vitrified porcine immature oocytes following in vitro maturation. Theriogenology 2020; 152:8-17. [PMID: 32361306 DOI: 10.1016/j.theriogenology.2020.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/26/2022]
Abstract
As the immature oocytes are submitted to cryopreservation, their surrounding cumulus cells (CCs) will inevitably suffer, which may have some adverse effects on subsequent oocyte maturation and development. So far, little is known about the molecular differences in CCs of immature oocytes after vitrification. The aim of this study therefore was to analyze the protein profile of CCs derived from vitrified porcine immature oocytes following in vitro maturation, using TMT-based quantitative proteomic approach. A total of 5910 proteins were identified, and 88 of them presented significant difference, with 46 up-regulated and 42 down-regulated proteins. Gene Ontology enrichment analysis revealed that cell cycle phase transition, mitotic cell cycle phase transition, positive regulation of cell differentiation and regulation of oogenesis were significantly down-regulated within the biological process. After Kyoto Encyclopedia of Genes and Genomes pathway analysis, some up-regulated proteins were significantly enriched in TGF-beta signaling pathway and 4 pathways related to steroid hormones. Furthermore, 10 selected proteins were quantified and verified by a parallel reaction monitoring technique, indicating a high reliability of the TMT results. In conclusion, vitrification affects protein profile of CCs as well as their biological functions, which will offer a new perspective to understand the reasons for decline in maturation quality of vitrified immature oocytes.
Collapse
|
17
|
Ito J, Shirasuna K, Kuwayama T, Iwata H. Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes. Cryobiology 2020; 93:37-43. [DOI: 10.1016/j.cryobiol.2020.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/24/2022]
|