1
|
Njoroge WE, Zhu Z, Umehara T, Yamanaka T, Zeng W, Okazaki T, Shimada M. Synthesis of functional enzymes involved in glutathione production during linear motility in boar sperm. Free Radic Biol Med 2024:S0891-5849(24)01160-2. [PMID: 39740733 DOI: 10.1016/j.freeradbiomed.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Sperm cells are highly susceptible to oxidative stress, which decreases their motility and fertility. However, glutathione (GSH) plays a critical role in protecting sperm cells from oxidative damage, a common byproduct of mitochondrial oxidative phosphorylation. On the other hand, GSH biosynthesis in sperm is limited by the availability of cysteine (Cys), which is inherently unstable and found at low concentrations in boar seminal plasma. In somatic cells, Cys can be produced through the transsulfuration pathway, catalyzed by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH). In this study, we report that a group of enzymes involved in GSH synthesis is present in boar sperm. Notably, CBS and CTH protein levels increase during incubation, suggesting active regulation of their synthesis. This increase is inhibited by cycloheximide (CHX), indicating that ongoing protein synthesis is necessary for maintaining these levels. Our study also identified the presence of translation factors, such as eukaryotic initiation factor 4E (eIF4E), and their activation through phosphorylation of the ERK1/2-RSK-eIF4E pathway during incubation. Additionally, we found that CBS mRNA transcripts with short poly(A) tails are present in boar sperm, and polyadenylation of these short-tailed mRNAs occurs during incubation to enhance their translation. The use of cordycepin, a polyadenylation inhibitor, significantly reduced the translation of CBS, leading to decreased GSH synthesis and impaired sperm motility. However, the addition of cysteine counteracted the inhibitory effects of cordycepin, underscoring the essential role of cysteine in maintaining GSH levels. These findings provide new insights into the post-transcriptional regulation of GSH synthesis in sperm and suggest potential strategies for enhancing sperm preservation and fertility by targeting polyadenylation and translation mechanisms.
Collapse
Affiliation(s)
- Wambugu Enoc Njoroge
- Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4, Kagamiyama, Higashihiroshima, Hiroshima, 7398528, Japan
| | - Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agriculture University, 700 Chang-cheng Road., Qingdao, Shangdong 266109, China
| | - Takashi Umehara
- Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4, Kagamiyama, Higashihiroshima, Hiroshima, 7398528, Japan
| | - Takahiro Yamanaka
- Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4, Kagamiyama, Higashihiroshima, Hiroshima, 7398528, Japan
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
| | - Tetsuji Okazaki
- Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4, Kagamiyama, Higashihiroshima, Hiroshima, 7398528, Japan.
| |
Collapse
|
2
|
Rani R, Sri NS, Medishetti R, Chatti K, Sevilimedu A. Loss of FMRP affects ovarian development and behaviour through multiple pathways in a zebrafish model of fragile X syndrome. Hum Mol Genet 2024; 33:1391-1405. [PMID: 38710511 PMCID: PMC7616351 DOI: 10.1093/hmg/ddae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder and the leading genetic cause of autism spectrum disorders. FXS is caused by loss of function mutations in Fragile X mental retardation protein (FMRP), an RNA binding protein that is known to regulate translation of its target mRNAs, predominantly in the brain and gonads. The molecular mechanisms connecting FMRP function to neurodevelopmental phenotypes are well understood. However, neither the full extent of reproductive phenotypes, nor the underlying molecular mechanisms have been as yet determined. Here, we developed new fmr1 knockout zebrafish lines and show that they mimic key aspects of FXS neuronal phenotypes across both larval and adult stages. Results from the fmr1 knockout females also showed that altered gene expression in the brain, via the neuroendocrine pathway contribute to distinct abnormal phenotypes during ovarian development and oocyte maturation. We identified at least three mechanisms underpinning these defects, including altered neuroendocrine signaling in sexually mature females resulting in accelerated ovarian development, altered expression of germ cell and meiosis promoting genes at various stages during oocyte maturation, and finally a strong mitochondrial impairment in late stage oocytes from knockout females. Our findings have implications beyond FXS in the study of reproductive function and female infertility. Dissection of the translation control pathways during ovarian development using models like the knockout lines reported here may reveal novel approaches and targets for fertility treatments.
Collapse
Affiliation(s)
- Rita Rani
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
| | - N Sushma Sri
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
| | - Raghavender Medishetti
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
| | - Kiranam Chatti
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
- Center for Rare Disease Models, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
| | - Aarti Sevilimedu
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
- Center for Rare Disease Models, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
| |
Collapse
|
3
|
Soeda S, Oyama M, Kozuka-Hata H, Yamamoto T. The CCR4-NOT complex suppresses untimely translational activation of maternal mRNAs. Development 2023; 150:dev201773. [PMID: 37767629 PMCID: PMC10617601 DOI: 10.1242/dev.201773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Control of mRNA poly(A) tails is essential for regulation of mRNA metabolism, specifically translation efficiency and mRNA stability. Gene expression in maturing oocytes relies largely on post-transcriptional regulation, as genes are transcriptionally silent during oocyte maturation. The CCR4-NOT complex is a major mammalian deadenylase, which regulates poly(A) tails of maternal mRNAs; however, the function of the CCR4-NOT complex in translational regulation has not been well understood. Here, we show that this complex suppresses translational activity of maternal mRNAs during oocyte maturation. Oocytes lacking all CCR4-NOT deadenylase activity owing to genetic deletion of its catalytic subunits, Cnot7 and Cnot8, showed a large-scale gene expression change caused by increased translational activity during oocyte maturation. Developmental arrest during meiosis I in these oocytes resulted in sterility of oocyte-specific Cnot7 and Cnot8 knockout female mice. We further showed that recruitment of CCR4-NOT to maternal mRNAs is mediated by the 3'UTR element CPE, which suppresses translational activation of maternal mRNAs. We propose that suppression of untimely translational activation of maternal mRNAs via deadenylation by CCR4-NOT is essential for proper oocyte maturation.
Collapse
Affiliation(s)
- Shou Soeda
- Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, 904-0495, Japan
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, 565-0871, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, 904-0495, Japan
| |
Collapse
|
4
|
Ozturk S. Genetic variants underlying developmental arrests in human preimplantation embryos. Mol Hum Reprod 2023; 29:gaad024. [PMID: 37335858 DOI: 10.1093/molehr/gaad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Developmental arrest in preimplantation embryos is one of the major causes of assisted reproduction failure. It is briefly defined as a delay or a failure of embryonic development in producing viable embryos during ART cycles. Permanent or partial developmental arrest can be observed in the human embryos from one-cell to blastocyst stages. These arrests mainly arise from different molecular biological defects, including epigenetic disturbances, ART processes, and genetic variants. Embryonic arrests were found to be associated with a number of variants in the genes playing key roles in embryonic genome activation, mitotic divisions, subcortical maternal complex formation, maternal mRNA clearance, repairing DNA damage, transcriptional, and translational controls. In this review, the biological impacts of these variants are comprehensively evaluated in the light of existing studies. The creation of diagnostic gene panels and potential ways of preventing developmental arrests to obtain competent embryos are also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
5
|
Ozturk S, Kosebent EG, Talibova G, Bilmez Y, Tire B, Can A. Embryonic poly(A)-binding protein interacts with translation-related proteins and undergoes phosphorylation on the serine, threonine, and tyrosine residues in the mouse oocytes and early embryos. J Assist Reprod Genet 2023; 40:929-941. [PMID: 36823316 PMCID: PMC10224904 DOI: 10.1007/s10815-023-02746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Expression of the embryonic poly(A)-binding protein (EPAB) in frog, mouse, and human oocytes and early-stage embryos is maintained at high levels until embryonic genome activation (EGA) after which a significant decrease occurs in EPAB levels. Studies on the vertebrate oocytes and early embryos revealed that EPAB plays key roles in the translational regulation, stabilization, and protection of maternal mRNAs during oocyte maturation and early embryogenesis. However, it remains elusive whether EPAB interacts with other cellular proteins and undergoes phosphorylation to perform these roles. For this purpose, we identified a group of Epab-interacting proteins and its phosphorylation status in mouse germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, and in 1-cell, 2-cell, and 4-cell preimplantation embryos. In the oocytes and early preimplantation embryos, Epab-interacting proteins were found to play roles in the translation and transcription processes, intracellular signaling and transport, maintenance of structural integrity, metabolism, posttranslational modifications, and chromatin remodeling. Moreover, we discovered that Epab undergoes phosphorylation on the serine, threonine, and tyrosine residues, which are localized in the RNA recognition motifs 2, 3, and 4 or C-terminal. Conclusively, these findings suggest that Epab not only functions in the translational control of maternal mRNAs through binding to their poly(A) tails but also participates in various cellular events through interacting with certain group proteins. Most likely, Epab undergoes a dynamic phosphorylation during the oocyte maturation and the early embryo development to carry out these functions.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, Antalya, 07070, Turkey.
| | - Esra Gozde Kosebent
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, Antalya, 07070, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, Antalya, 07070, Turkey
| | - Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, Antalya, 07070, Turkey
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, Antalya, 07070, Turkey
| | - Alp Can
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, 06410, Turkey
| |
Collapse
|
6
|
Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development. Nat Cell Biol 2022; 24:968-980. [PMID: 35697785 DOI: 10.1038/s41556-022-00928-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
In mammals, translational control plays critical roles during oocyte-to-embryo transition (OET) when transcription ceases. However, the underlying regulatory mechanisms remain challenging to study. Here, using low-input Ribo-seq (Ribo-lite), we investigated translational landscapes during OET using 30-150 mouse oocytes or embryos per stage. Ribo-lite can also accommodate single oocytes. Combining PAIso-seq to interrogate poly(A) tail lengths, we found a global switch of translatome that closely parallels changes of poly(A) tails upon meiotic resumption. Translation activation correlates with polyadenylation and is supported by polyadenylation signal proximal cytoplasmic polyadenylation elements (papCPEs) in 3' untranslated regions. By contrast, translation repression parallels global de-adenylation. The latter includes transcripts containing no CPEs or non-papCPEs, which encode many transcription regulators that are preferentially re-activated before zygotic genome activation. CCR4-NOT, the major de-adenylation complex, and its key adaptor protein BTG4 regulate translation downregulation often independent of RNA decay. BTG4 is not essential for global de-adenylation but is required for selective gene de-adenylation and production of very short-tailed transcripts. In sum, our data reveal intimate interplays among translation, RNA stability and poly(A) tail length regulation underlying mammalian OET.
Collapse
|
7
|
Voronina AS, Pshennikova ES. mRNPs: Structure and role in development. Cell Biochem Funct 2021; 39:832-843. [PMID: 34212408 DOI: 10.1002/cbf.3656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 11/11/2022]
Abstract
In eukaryotic cells, mRNA molecules are coated with numerous RNA-binding proteins and so exist in ribonucleoproteins (mRNPs). The proteins associated with the mRNA regulate the fate of mRNA, including its localization, translation and decay. Before activation of translation, the mRNA does not display any template functions-it is masked. The coordinated activity of certain RNA-binding proteins determines the future fate of each mRNA individually. In embryo development, the temporal and spatial regulation of translation can cause a situation when the mRNA and the encoded protein are localized in different compartments and so the differentiation of the cells can be determined. The fundamentals of regulation of the mRNAs fate and functioning in nerves are similar to those already described for oo- and embryogenesis. Disorders in the mRNA masking and demasking result in the emergence of various diseases, in particular cancers and neuro-degenerative diseases.
Collapse
Affiliation(s)
- Anna S Voronina
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena S Pshennikova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Similar Repair Effects of Human Placenta, Bone Marrow Mesenchymal Stem Cells, and Their Exosomes for Damaged SVOG Ovarian Granulosa Cells. Stem Cells Int 2020; 2020:8861557. [PMID: 33376492 PMCID: PMC7738794 DOI: 10.1155/2020/8861557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/07/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Background This study is aimed at investigating the repairing effect of mesenchymal stem cells and their exosomes from different sources on ovarian granulosa cells damaged by chemotherapy drugs—phosphoramide mustard (PM). Methods In this study, we choose bone marrow mesenchymal stem cells (BMSCs) and human placental mesenchymal stem cells (HPMSCs) for research. Then, they were cocultured with human ovarian granulosa cells (SVOG) injured by phosphoramide mustard (PM), respectively. β-Galactosidase staining, flow cytometry, and Western blot were used to detect the changes in the senescence and apoptosis of SVOG cells before and after their coculture with the above two types of MSCs. Subsequently, exosomes from these two types of MSCs were extracted and added to the culture medium of SVOG cells after PM injury to test whether these two types of exosomes played a role similar to that of MSCs in repairing damaged SVOG cells. Results PM treatment-induced apoptotic SVOG cells were significantly decreased after HPMSCs and BMSCs as compared with control group. After coculturing with these two types of MSCs, PM-treated SVOG cells showed significantly reduced senescence and apoptosis proportions as well as cleaved-Caspase 3 expression, and HPMSCs played a slightly stronger role than BMSCs in repairing SVOG cells in terms of the above three indicators. In addition, the ratios of senescent and apoptotic SVOG cells were also significantly reduced by the two types of exosomes, which played a role similar to that of MSCs in repairing cell damages. Conclusions The results indicated that BMSCs, HPMSCs, and their exosomes all exerted a certain repair effect on SVOG cells damaged by PM, and consistent repair effect was observed between exosomes and MSCs. The repair effect of exosomes secreted from BMSCs and HPMSCs on the SVOG cells was studied for the first time, and the results fully demonstrated that exosomes are the key carriers for MSCs to play their role.
Collapse
|