1
|
Tricotteaux-Zarqaoui S, Lahimer M, Abou Diwan M, Corona A, Candela P, Cabry R, Bach V, Khorsi-Cauet H, Benkhalifa M. Endocrine disruptor chemicals exposure and female fertility declining: from pathophysiology to epigenetic risks. Front Public Health 2024; 12:1466967. [PMID: 39735741 PMCID: PMC11672798 DOI: 10.3389/fpubh.2024.1466967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024] Open
Abstract
Over the last decades, human infertility has become a major concern in public health, with severe societal and health consequences. Growing evidence shows that endocrine disruptors chemicals (EDCs) have been considered as risk factors of infertility. Their presence in our everyday life has become ubiquitous because of their universal use in food and beverage containers, personal care products, cosmetics, phytosanitary products. Exposure to these products has an impact on human reproductive health. Recent studies suggest that women are more exposed to EDCs than men due to higher chemical products use. The aim of this review is to understand the possible link between reproductive disorders and EDCs such as phthalates, bisphenol, dioxins, and pesticides. In women, the loss of endocrine balance leads to altered oocyte maturation, competency, anovulation and uterine disorders, endometriosis, premature ovarian insufficiency (POI) or embryonic defect and decreases the in vitro fertilization outcomes. In this review, we consider EDCs effects on the women's reproductive system, embryogenesis, with a focus on associated reproductive pathologies.
Collapse
Affiliation(s)
- Sophian Tricotteaux-Zarqaoui
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Marwa Lahimer
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Maria Abou Diwan
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, Lens, France
| | - Aurélie Corona
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, Lens, France
| | - Rosalie Cabry
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Véronique Bach
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
| | - Hafida Khorsi-Cauet
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Moncef Benkhalifa
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| |
Collapse
|
2
|
He B, Xu HM, Li SW, Zhang YF, Tian JW. Emerging regulatory roles of noncoding RNAs induced by bisphenol a (BPA) and its alternatives in human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124447. [PMID: 38942269 DOI: 10.1016/j.envpol.2024.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Bisphenols (BPs), including BPA, BPF, BPS, and BPAF, are synthetic phenolic organic compounds and endocrine-disrupting chemicals. These organics have been broadly utilized to produce epoxy resins, polycarbonate plastics, and other products. Mounting evidence has shown that BPs, especially BPA, may enter into the human body and participate in the development of human diseases mediated by nuclear hormone receptors. Moreover, BPA may negatively affect human health at the epigenetic level through processes such as DNA methylation and histone acetylation. Recent studies have demonstrated that, as part of epigenetics, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs), have vital impacts on BP-related diseases, such as reproductive system diseases, nervous system diseases, digestive system diseases, endocrine system diseases, and other diseases. Moreover, based on the bioinformatic analysis, changes in ncRNAs may be relevant to normal activities and functions and BP-induced diseases. Thus, we conducted a meta-analysis to identify more promising ncRNAs as biomarkers and therapeutic targets for BP exposure and relevant human diseases. In this review, we summarize the regulatory functions of ncRNAs induced by BPs in human diseases and latent molecular mechanisms, as well as identify prospective biomarkers and therapeutic targets for BP exposure and upper diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shu-Wei Li
- Department of Neurology, Qingdao Huangdao District Central Hospital, Qingdao 266555, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Adu-Gyamfi EA, Salamah J, Cheeran EA, Lee BK. Bisphenol S moderately decreases the expression of syncytiotrophoblast marker genes and induces apoptosis in human trophoblast lineages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123259. [PMID: 38159624 DOI: 10.1016/j.envpol.2023.123259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol S (BPS) is currently used in the manufacturing of several household equipment such as water pipes and food containers. Hence, its entrance into the human body is almost inevitable. The presence of BPS in body fluids has been reported. However, its potential toxicity, especially on human placenta development and pregnancy progression, has not been explored. In this study, we assessed the impacts of BPS on the self-renewal and differentiation potentials of placental stem cells, also known as trophoblast stem cells (TSCs), by exposing them to three different BPS concentrations during their self-renewal and differentiation into syncytiotrophoblast (ST), extravillous trophoblast (EVT), and trophoblast organoids. Interestingly, BPS treatment did not affect the stemness, cell cycle and proliferation of the TSCs but it induced apoptosis in each trophoblast lineage. BPS altered the expression of several fusion-related genes. However, this alteration did not translate into significant morphological defects in the STs and organoids. Moreover, BPS did not impair the differentiation of TSCs into EVTs. These findings suggest that the presence of BPS at the feto-maternal interface may exaggerate trophoblast apoptosis and moderately inhibit the trophoblast fusion pathway to affect placenta development and pregnancy. Our study offers valuable insights into the potential toxicity of BPS on human placenta development, emphasizing the need for epidemiological assessment of the relationship between maternal serum levels of BPS and pregnancy complications.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Joudi Salamah
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Elisha Ann Cheeran
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA.
| |
Collapse
|
4
|
Park JE, Lee SG, Lee SJ, Yu WJ, Kim JM. Downregulation of the Expression of Steroidogenic Acute Regulatory Protein and Aromatase in Steroidogenic KGN Human Granulosa Cells after Exposure to Bisphenol A. Dev Reprod 2023; 27:185-193. [PMID: 38292236 PMCID: PMC10824569 DOI: 10.12717/dr.2023.27.4.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/29/2023] [Accepted: 11/24/2023] [Indexed: 02/01/2024]
Abstract
Although increasing evidence of cause-and-effect relationship between BPA exposure and female reproductive disorders have been suggested through many studies, the precise biochemical and molecular mechanism(s) by which BPA interferes with steroidogenesis in the ovarian cells still remain unclear. Therefore, the purpose of this study was to discover the steroidogenic biomarker(s) associated with BPA treatment in human granulosa cell line, KGN. In this study, our results obtained via the analysis of steroidogenesis-related protein expression in KGN cells using quantitative polymerase chain reaction (qPCR) and western blot analyses revealed that the expression levels of steroidogenic acute regulatory (StAR) and aromatase decreased considerably and gradually after BPA treatment in a dose-dependent manner under BPA treatment. Further, remarkable decreases in their expression levels at the cellular levels were also confirmed via immunocytochemistry, and subsequent StAR and aromatase mRNA expression levels showed profiles similar to those observed for their proteins, i.e., both StAR and aromatase mRNA expression levels were significantly decreased under BPA treatment at concentrations ≥0.1 μM. We observed that follicle stimulating hormone upregulated StAR and aromatase protein expression levels; however, this effect was suppressed in the presence of BPA. Regarding the steroidogenic effects of BPA on KGN cells, controversies remain regarding the ultimate outcomes. Nevertheless, we believe that the results here presented imply that KGN cells have a good cellular and steroidogenic machinery for evaluating endocrine disruption. Therefore, StAR and aromatase could be stable and sensitive biomarkers in KGN cells for the cellular screening of the potential risk posed by exogenous and environmental chemicals to female reproductive (endocrine) function.
Collapse
Affiliation(s)
- Ji-Eun Park
- Department of Anatomy and Cell Biology,
College of Medicine, Dong-A University, Busan
49201, Korea
| | - Seung Gee Lee
- Department of Anatomy and Cell Biology,
College of Medicine, Dong-A University, Busan
49201, Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology
Research Group, Korea Institute of Toxicology,
Daejeon 34114, Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology
Research Group, Korea Institute of Toxicology,
Daejeon 34114, Korea
| | - Jong-Min Kim
- Department of Anatomy and Cell Biology,
College of Medicine, Dong-A University, Busan
49201, Korea
| |
Collapse
|
5
|
Khan NG, Tungekar B, Adiga D, Chakrabarty S, Rai PS, Kabekkodu SP. Alterations induced by Bisphenol A on cellular organelles and potential relevance on human health. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119505. [PMID: 37286138 DOI: 10.1016/j.bbamcr.2023.119505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is a chemical partially soluble in water and exists in a solid state. Its structural similarity with estrogen makes it an endocrine-disrupting chemical. BPA can disrupt signaling pathways at very low doses and may cause organellar stress. According to in vitro and in vivo studies, BPA interacts with various cell surface receptors to cause organellar stress, producing free radicals, cellular toxicity, structural changes, DNA damage, mitochondrial dysfunction, cytoskeleton remodeling, centriole duplication, and aberrant changes in several cell signaling pathways. The current review summarizes the impact of BPA exposure on the structural and functional aspects of subcellular components of cells such as the nucleus, mitochondria, endoplasmic reticulum, lysosome, ribosome, Golgi apparatus, and microtubules and its consequent impact on human health.
Collapse
Affiliation(s)
- Nadeem G Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Bushra Tungekar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
6
|
Derakhshan A, Shu H, Broeren MAC, Kortenkamp A, Lindh CH, Demeneix B, Peeters RP, Bornehag CG, Korevaar TIM. Association of endocrine disrupting chemicals exposure with human chorionic gonadotropin concentrations in pregnancy. ENVIRONMENT INTERNATIONAL 2023; 178:108091. [PMID: 37459690 DOI: 10.1016/j.envint.2023.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Human chorionic gonadotropin (hCG) is produced by the placenta and plays an essential role in the maintenance of pregnancy. Endocrine disrupting chemicals (EDCs) have the potential to interfere with functions related to the production and secretion of hCG; however associations between exposure to EDCs and hCG concentrations in humans remain to be elucidated. OBJECTIVES To investigate the association of urinary, serum and plasma concentrations of EDCs during pregnancy with serum hCG concentrations. METHODS We utilized data form the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study. We investigated the association of 26 EDCs measured in early pregnancy urine or blood with serum hCG concentrations using multi-variable adjusted linear regression models per EDC and Weighted Quantile Sum (WQS) regression with repeated holdout validation for the EDCs mixture. RESULTS In 2,039 included women, higher exposure to bisphenol A was associated with lower hCG (beta [95% CI]: -0.06 [-0.11 to -0.002]) while higher triclosan exposure was associated with a higher hCG (0.02 [0.003 to 0.04]). Higher exposure to several phthalates, including mono-ethyl and mono-butyl phthalates (MEP and MBP) as well as metabolites of di-2-ethylhexyl phthalate (DEHP) was associated with a lower hCG (beta [95% CI] for sum of DEHP metabolites: -0.13 [-0.19 to -0.07]). Likewise, higher exposure to several polychlorinated biphenyls (PCBs) was associated with a lower hCG. In the WQS regression, each quartile increase in the EDCs mixture was associated with -0.27 lower hCG (95% CI: -0.34 to -0.19). DISCUSSION Higher exposure to several EDCs during pregnancy was associated with a lower hCG; and despite the small effect sizes, still indicating that the exposure may negatively affect production or secretion of hCG by the placenta. Our results provide the impetus for future experimental studies to investigate the placenta as a target organ for adverse effects of EDCs.
Collapse
Affiliation(s)
- Arash Derakhshan
- Academic Center for Thyroid Diseases, Erasmus MC, Dr. Molewaterplein 15, 3051 GE Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 15, 3051 GE Rotterdam, the Netherlands
| | - Huan Shu
- Department of Public Health, Karlstad University, Sweden
| | - Maarten A C Broeren
- Laboratory of Clinical Chemistry and Haematology, Máxima Medical Centre, Veldhoven, De Run 4600, The Netherlands
| | - Andreas Kortenkamp
- Division of Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University, London, Uxbridge, UK
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Barbara Demeneix
- Laboratoire d'Evolution des Régulations Endocriniennes, CNRS/Muséum National d'Histoire Naturelle, 57 Rue Cuvier, 75005 Paris, France
| | - Robin P Peeters
- Academic Center for Thyroid Diseases, Erasmus MC, Dr. Molewaterplein 15, 3051 GE Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 15, 3051 GE Rotterdam, the Netherlands
| | - Carl-Gustaf Bornehag
- Department of Public Health, Karlstad University, Sweden; Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Tim I M Korevaar
- Academic Center for Thyroid Diseases, Erasmus MC, Dr. Molewaterplein 15, 3051 GE Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 15, 3051 GE Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Bai Y, Li FF, Zhang Y, Ding YB. Silicon dioxide nanoparticles compromise decidualization via autophagy impairment to possibly cause embryo resorption. Toxicol Lett 2023; 381:72-82. [PMID: 37169230 DOI: 10.1016/j.toxlet.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The wide application of silicon dioxide nanoparticles (SiO2NPs) has raised concerns about their harmful effects on reproduction. The purpose of this research was to investigate the toxic effects and the possible mechanisms by which SiO2NPs affect decidualization and pregnancy progression. We found that SiO2NPs could inhibit decidualization, both in mice and in human endometrial stromal cells (HESCs). Embryo resorption was also evident in mice treated with SiO2NPs. When HESCs were treated with SiO2NPs, decidualization was inhibited and there was an increase in intracellular lysosomes and autophagosomes as well as the blockage of autophagic flux. Interestingly, a reduction of autophagosome accumulation via 3-methyladenine (3MA) significantly restored the decidualization of HESCs. In summary, our results indicate that SiO2NPs can affect embryo survival by impairing decidualization through a dysfunctional autophagic process.
Collapse
Affiliation(s)
- Ying Bai
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Fang-Fang Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yi Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China.
| |
Collapse
|
8
|
Zhou YJ, Qiao QF, Wang LQ, Sheng TY, Cui MX, Chen QD, Wang CY, Zhang YX. Toxicity mechanism of peri-implantation pesticide beta-cypermethrin exposure on endometrial remodeling in early pregnant mice. Toxicology 2023; 489:153497. [PMID: 37011868 DOI: 10.1016/j.tox.2023.153497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Beta-cypermethrin (β-CYP) is a universally used pyrethroid pesticide with adverse effects on human health. β-CYP may impair endometrial remodeling in mice; however, the mechanism remains largely unknown. Endometrial remodeling plays a vital role in embryonic development and the maintenance of pregnancy. Therefore, we explored the mechanism by which peri-implantation β-CYP administration reduces uterine remodeling in pregnant mice. The C57BL/6J pregnant mice were administered a dose of 20mg/kg.bw. d β-CYP via oral gavage once daily from day 1 of gestation (GD1) to GD7. Molecular markers of endometrial remodeling, stromal cell proliferation, cell cycle regulation, and the PI3K/Akt/mTOR signaling pathway were evaluated in the decidual tissue of the uterus on GD7. An in vivo pseudopregnancy mouse model, a pregnant mouse model treated with an mTOR activator and an mTOR inhibitor and an in vitro decidualization model of mouse endometrial stromal cells were used to confirm β-CYP-induced defective endometrial remodeling and the key molecules expression of PI3K/Akt/mTOR signaling pathway. The results showed that β-CYP decreased the expression of the endometrial remodeling markers MMP9 and LIF in the uterine decidua. Peri-implantation β-CYP treatment markedly downregulated the expression of endometrial proliferation markers PCNA and Ki67 and decreased decidua thickness. Correspondingly, peri-implantation β-CYP exposure upregulated the expression of FOXO1, P57 and p-4E-BP1 in the decidua. Further experiments showed β-CYP significantly inhibited key molecules in the PI3K/Akt/mTOR pathway: PI3K, p-Akt/Akt, p-mTOR, and p-P70S6K in the uterine decidua. Additional experiments showed that aberrant endometrial remodeling induced by β-CYP was aggravated by rapamycin (an mTOR inhibitor) and partially reversed by MHY1485 (an mTOR agonist). In summary, our results indicated that a reduction in the PI3K/Akt/mTOR pathway may enhance defective endometrial remodeling by downregulating the proliferation and differentiation of endometrial stromal cells in early pregnant mice exposed to β-CYP. Our study elucidates the mechanism of defective endometrial remodeling induced by peri-implantation β-CYP exposure.
Collapse
Affiliation(s)
- Yong-Jiang Zhou
- Heinz Mehlhorn Academician Workstation, Maternal, Child and Adolescent Health, International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China; School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Qian-Feng Qiao
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| | - Li-Qing Wang
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| | - Tao-Yu Sheng
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| | - Man-Xue Cui
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| | - Qi-Duo Chen
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| | - Can-Yang Wang
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| | - Yun-Xiao Zhang
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| |
Collapse
|
9
|
Gao W, Feng F, Ma X, Zhang R, Li L, Yue F, Lv M, Liu L. Progress of oxidative stress in endometrium decidualization. J OBSTET GYNAECOL 2022; 42:3429-3434. [PMID: 36373471 DOI: 10.1080/01443615.2022.2144171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The difficulty in maintaining the balance between oxides and antioxidants causes a phenomenon named oxidative stress. Oxidative stress often leads to tissue damage and participates in the pathogenesis of a series of diseases. Decidua provides the 'soil' for embryo implantation, and the normal decidualization shows the characteristics of strong antioxidation. Once the mechanism of antioxidant stress goes awry, it will lead to a series of pregnancy-related diseases. In recent years, more and more studies have shown that oxidative stress is involved in pregnancy-related diseases caused by abnormal decidualization of the endometrium. In order to have a more comprehensive understanding of the role of oxidative stress in decidual defect diseases, this paper reviews the common decidual defect diseases in conjunction with relevant regulatory molecules, in order to arouse thinking about the importance of oxidative stress, and to provide more theoretical basis for the aetiology of decidual defects.
Collapse
Affiliation(s)
- Wenxin Gao
- The first Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Fei Feng
- Ultrasound Department, The first Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoling Ma
- Reproductive Medicine Center, The first Hospital of Lanzhou University, Lanzhou, China
- Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Rui Zhang
- Reproductive Medicine Center, The first Hospital of Lanzhou University, Lanzhou, China
- Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Lifei Li
- Reproductive Medicine Center, The first Hospital of Lanzhou University, Lanzhou, China
- Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Feng Yue
- Reproductive Medicine Center, The first Hospital of Lanzhou University, Lanzhou, China
- Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Meng Lv
- Reproductive Medicine Center, The first Hospital of Lanzhou University, Lanzhou, China
- Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Lin Liu
- Reproductive Medicine Center, The first Hospital of Lanzhou University, Lanzhou, China
- Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| |
Collapse
|
10
|
Zhao Y, Pasanen M, Rysä J. Placental ion channels: potential target of chemical exposure. Biol Reprod 2022; 108:41-51. [PMID: 36173899 PMCID: PMC9843680 DOI: 10.1093/biolre/ioac186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 01/21/2023] Open
Abstract
The placenta is an important organ for the exchange of substances between the fetus and the mother, hormone secretion, and fetoplacental immunological defense. Placenta has an organ-specific distribution of ion channels and trophoblasts, and placental vessels express a large number of ion channels. Several placental housekeeping activities and pregnancy complications are at least partly controlled by ion channels, which are playing an important role in regulating hormone secretion, trophoblastic homeostasis, ion transport, and vasomotor activity. The function of several placental ion channels (Na, Ca, and Cl ion channels, cation channel, nicotinic acetylcholine receptors, and aquaporin-1) is known to be influenced by chemical exposure, i.e., their responses to different chemicals have been tested and confirmed in experimental models. Here, we review the possibility that placental ion channels are targets of toxicological concern in terms of placental function, fetal growth, and development.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Markku Pasanen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jaana Rysä
- Correspondence: School of Pharmacy, University of Eastern Finland, POB 1627, Kuopio 70211, Finland. Tel: +358403552412; E-mail:
| |
Collapse
|
11
|
Charitos IA, Topi S, Gagliano-Candela R, De Nitto E, Polimeno L, Montagnani M, Santacroce L. The toxic effects of endocrine disrupting chemicals (EDCs) on gut microbiota: Bisphenol A (BPA). A review. Endocr Metab Immune Disord Drug Targets 2022; 22:716-727. [PMID: 35339192 DOI: 10.2174/1871530322666220325114045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bisphenol A (BPA), an important industrial material widely applied in daily products, is considered an endocrine-disrupting chemical that may adversely affect humans. Growing evidence have shown that intestinal bacterial alterations caused by BPA exposure play an important role in several local and systemic diseases. AIM OF THE STUDY finding evidence that BPA-induced alterations in gut microbiota composition and activity may perturb its role on human health. RESULTS evidence from several experimental settings show that both low and high doses of BPA, interfere with the hormonal, homeostatic and reproductive systems in both animals and human systems. Moreover, it has recently been classified as an environmental obesogenic, with metabolic-disrupting effects on lipid metabolism and pancreatic b-cell functions. Several evidence characterize PBA as an environmental contributor to type II diabetes, metabolic syndrome, and obesity. However, the highest estimates of the exposure derived from foods alone or in combination with other sources are 3 to 5 times below the new tolerable daily intake (TDI) value, today reduced by the European Food Safety Authority (EFSA) experts from 50 micrograms per kilogramme of bodyweight per day (µg/kg bw/day) to 4 µg/kg bw/day. CONCLUSIONS Considering estimates for the total amount of BPA that can be ingested daily over a lifetime, many International Health Authorities conclude that dietary exposure of adult humans to BPA does not represent a risk to consumers' health, declaring its safety due to very-low established levels in food and water and declare any appreciable health risk.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- National Poison Center, OO. RR. University Hospital of Foggia, Foggia, Italy
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
| | - Skender Topi
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
| | - Roberto Gagliano-Candela
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari, Bari, Italy
| | - Emanuele De Nitto
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, Section of Biochemistry, School of Medicine, University of Bari, Bari, Italy
| | - Lorenzo Polimeno
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
- Polypheno Academic Spin Off, University of Bari, Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, School of Medicine, University of Bari, Bari, Italy
| | - Luigi Santacroce
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari, Bari, Italy
- Polypheno Academic Spin Off, University of Bari, Bari, Italy
| |
Collapse
|
12
|
Adu-Gyamfi EA, Rosenfeld CS, Tuteja G. The impact of bisphenol a (BPA) on the placenta. Biol Reprod 2022; 106:826-834. [PMID: 35020819 DOI: 10.1093/biolre/ioac001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that is used in a wide-variety of plastic and common house-hold items. Therefore, there is potential continual exposure to this compound. BPA exposure has been linked to certain placenta-associated obstetric complications such as preeclampsia, fetal growth restriction, miscarriage, and preterm birth. However, how BPA exposure results in these disorders remains uncertain. Hence, we have herein summarized the reported impact of BPA on the morphology and metabolic state of the placenta and have proposed mechanisms by which BPA affects placentation, potentially leading to obstetric complications. Current findings suggest that BPA induces pathological changes in the placenta and disrupts its metabolic activities. Based on exposure concentrations, BPA can elicit apoptotic or anti-apoptotic signals in the trophoblasts; and can exaggerate trophoblast fusion while inhibiting trophoblast migration and invasion to affect pregnancy. Accordingly, the usage of BPA products by pregnant women should be minimized and less harmful alternative chemicals should be explored and employed where possible.
Collapse
Affiliation(s)
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Data Science and Informatics Institute, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
13
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
14
|
Zhao F, Liu H, Li Z, Lin P, Wang A, Jin Y, Yi Y. Low-dose bisphenol A impairs the function of mouse decidual stromal cells by activating LUMAN-mediated unfolded protein response. Food Chem Toxicol 2021; 153:112242. [PMID: 33930482 DOI: 10.1016/j.fct.2021.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/30/2021] [Accepted: 04/22/2021] [Indexed: 11/15/2022]
Abstract
The nonsteroidal estrogenic compound bisphenol A (BPA) is widely present in several industrial and medical products including plastic food containers and sealants in dentistry. There are growing concerns on the toxic effects of this compounds since BPA is known to have reproductive toxicity. This study evaluated the effects of low-dose BPA exposure on decidual stromal cells (DSCs) of mice. The results showed that although 10 nM of BPA have no significant effect on the cell viability, it alters the expression of decidualization-related genes including Prl8a2, Prl3c1, Ptgs2, and Mmp2. Moreover, we found that low-dose BPA exposure induces UPR response in DSCs. However, the expression of the three major UPR receptors (Perk, Ire 1, and Xbp1) did not change significantly. Interestingly, the expression of Luman, a novel receptor of UPR, was significantly upregulated in a dose-dependent manner. Lentivirus containing shLuman sequence was used to generate stable Luman silencing DSCs. It's showed that Luman knockdown could affect the expression of decidualization-related genes in decidual cells after BPA treatment. In summary, these results suggest that Luman plays a key role in low dose BPA-induced decidual toxicity of DSCs in mouse.
Collapse
Affiliation(s)
- Fan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Huan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhanghuan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|