1
|
Antonouli S, Di Nisio V, Messini C, Samara M, Salumets A, Daponte A, Anifandis G. Sperm plasma membrane ion transporters and male fertility potential: A perspective under the prism of cryopreservation. Cryobiology 2024; 114:104845. [PMID: 38184269 DOI: 10.1016/j.cryobiol.2023.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Intracellular calcium homeostasis plays a crucial role in spermatozoa by regulating physiological functions associated with sperm quality and male fertility potential. Intracellular calcium fine balance in the sperm cytoplasm is strictly dependent on sperm surface channels including the CatSper channel. CatSpers' role is to ensure the influx of extracellular calcium, while intracellular pH alkalinization serves as a stimulus for the activation of several channels, including CatSper. Overall, the generation of intracellular calcium spikes through CatSper is essential for fertilization-related processes, such as sperm hyperactivation, acrosome reaction, egg chemotaxis, and zona pellucida penetration. Multiple lines of evidence suggest that disruption in the close interaction among ions, pH, and CatSper could impair male fertility potential. In contemporary times, the growing reliance on Medically Assisted Reproduction procedures underscores the impact of cryopreservation on gametes. In fact, a large body of literature raises concerns about the cryo-damages provoked by the freeze-thawing processes, that can affect the plasma membrane integrity, thus the structure of pivotal ion channels, and the fine regulation of both intracellular calcium and pH. This review aims to provide an overview of the importance of the CatSper channel in sperm quality and further fertilization potential. Additionally, it addresses the emerging issue of cryopreservation's impact on the functionality of this sperm channel.
Collapse
Affiliation(s)
- Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden.
| | - Christina Messini
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - Andres Salumets
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Competence Centre on Health Technologies, Tartu, Estonia.
| | - Alexandros Daponte
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| |
Collapse
|
2
|
Dalal J, Kumar P, Chandolia RK, Pawaria S, Bala R, Kumar D, Yadav PS. A new role of H89: Reduces capacitation-like changes through inhibition of cholesterol efflux, calcium influx, and proteins tyrosine phosphorylation during sperm cryopreservation in buffalo. Theriogenology 2023; 204:31-39. [PMID: 37040685 DOI: 10.1016/j.theriogenology.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 04/13/2023]
Abstract
It is a known fact that cryopreservation initiates premature capacitation in spermatozoa during the cryopreservation process. Protein tyrosine phosphorylation is a landmark of cascade reaction accountable for capacitation or capacitation-like changes in spermatozoa. Therefore, our hypothesis was to test an inhibitor (H89) that reversibly inhibits the cascade reaction responsible for capacitation during the cryopreservation process but does not hamper normal capacitation and fertilizing ability of sperm. For this, sixteen ejaculates were collected from Murrah buffalo bulls (n = 4). Each ejaculate was divided into four equal aliquots and diluted in an egg yolk-based semen dilutor supplemented with 0, 2, 10, and 30 μM concentrations of H89 and cryopreserved. Interestingly, H89 reduces cholesterol efflux from spermatozoa and protects spermatozoa from membrane damage during the cryopreservation process. H89 did not prevent lipid peroxidation of the sperm membrane. H89 reduced intracellular calcium concentration in spermatozoa in a dose-dependent manner, but tyrosine phosphorylation reduction was observed in the 2 and 10 μM H89 groups. The CTC assay revealed that the percentage of uncapacitated spermatozoa in different treatment groups increases in a dose-dependent manner. In the in vitro capacitation medium, the effect of H89 is abolished and spermatozoa underwent normal capacitation, but H89-treated spermatozoa attached to zona pellucida in large numbers compared to untreated spermatozoa. In conclusion, H89 does not only inhibit tyrosine phosphorylation of spermatozoa but it reduces cholesterol efflux and calcium influx, and ultimately reduces capacitation-like changes during the cryopreservation process.
Collapse
Affiliation(s)
- Jasmer Dalal
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India; Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125001, Haryana, India
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India.
| | - R K Chandolia
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125001, Haryana, India
| | - Shikha Pawaria
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Renu Bala
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - P S Yadav
- Animal Physiology and Reproduction Division, ICAR- Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| |
Collapse
|
3
|
Gu L, Liu Y, Zhang W, Li J, Chang C, Su Y, Yang Y. Novel extraction technologies and potential applications of egg yolk proteins. Food Sci Biotechnol 2022; 32:121-133. [PMID: 36590017 PMCID: PMC9795146 DOI: 10.1007/s10068-022-01209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
The high nutritional value and diverse functional properties of egg yolk proteins have led to its widespread use in the fields of food, medicine, and cosmetics. Various extraction methods have been reported to obtain the proteins from egg yolk, however, their utilization is limited due to the relatively low extraction efficiency and/or toxic solvents involved. Several simpler and greener technologies, especially physical fields (ultrasound), have been successfully developed to improve the extraction efficiency. The egg yolk proteins may exert multiple biological activities, enabling them to be a promising tool in improve human health and wellbeing, such as anti-obesity, anti-atherosclerosis, anti-osteoporosis, diagnosis and therapy for SARS-CoV-2 infections. This article summarizes the novel extraction technologies and latest applications of the egg yolk proteins in the recent 5 years, which should stimulate their utilization as health-promoting functional ingredients in foods and other commercial products.
Collapse
Affiliation(s)
- Luping Gu
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| | - Yufang Liu
- College of Food Engineering and Nutritional Science, Shanxi Normal University, Xi’an, China
| | - Wanqiu Zhang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Junhua Li
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Cuihua Chang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Yujie Su
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| | - Yanjun Yang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| |
Collapse
|
4
|
Arjun V, Kumar P, Dutt R, Kumar A, Bala R, Verma N, Jerome A, Virmani M, Patil CS, Bhardwaj S, Kumar D, Yadav PS. Effect of mitochondria-targeted antioxidant on the regulation of the mitochondrial function of sperm during cryopreservation. Andrologia 2022; 54:e14431. [PMID: 35451101 DOI: 10.1111/and.14431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
Sperm mitochondrion is one of the major susceptible organelles that get damaged during cryopreservation. The study aimed to minimize mitochondrial dysfunction and oxidative stress during sperm cryopreservation using mitochondria-specific antioxidants. For this, semen was collected from five buffalo bulls (3 ejaculates/bull). The ejaculates were diluted in an low-density lipoprotein-based extender and divided into four equal aliquots. Mitochondria-targeted antioxidant (MitoQ) was added at a final concentration of 0 (control), 0.02, 0.2 and 2 μM separately in each aliquotes and cryopreserved. The addition of MitoQ at a concentration of 0.02 μM improved post-thaw sperm motility, plasma membrane integrity and able to sustain sperm motility for a longer time. To investigate MitoQ's effects on mitochondrial function, we measured mitochondrial membrane potential (MMP) using JC-1 dye, superoxide production using Mitosox assay, and lipid peroxidation by TBARS assay. The supplementation of 0.02 μM MitoQ in the extender prevented the significant reduction of MMP and reduced superoxide production resulting in lower lipid peroxidation of sperm plasma membrane after cryopreservation. Further, we found that a higher concentration of MitoQ decreases MMP and increases mitochondrial superoxide production. In conclusion, MitoQ @ 0.02 μM can alleviate oxidative stress by regulating mitochondrial functionality in spermatozoa during cryopreservation.
Collapse
Affiliation(s)
- Venkateshappa Arjun
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India.,Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Ravi Dutt
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Amit Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India.,Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Renu Bala
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Nisha Verma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Andonissamy Jerome
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Meenakshi Virmani
- Department of Animal Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Chandra Shekhar Patil
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Shivani Bhardwaj
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Prem Singh Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| |
Collapse
|
5
|
Mahiddine FY, Kim MJ. Overview on the Antioxidants, Egg Yolk Alternatives, and Mesenchymal Stem Cells and Derivatives Used in Canine Sperm Cryopreservation. Animals (Basel) 2021; 11:1930. [PMID: 34203537 PMCID: PMC8300182 DOI: 10.3390/ani11071930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Sperm cryopreservation is a widely used assisted reproductive technology for canine species. The long-term storage of dog sperm is effective for the breeding of dogs living far apart, scheduling the time of artificial insemination that suits the female, and preventing diseases of the reproductive tract. However, spermatozoa functions are impaired during the freeze-thaw processes, which may decrease reproductive performance. Numerous attempts have been made to restore such impairments, including the use of cryoprotectants to prevent the damage caused by ice crystal formation, and supplementation of antioxidants to reduce reactive oxygen species generation due to osmotic stress during the procedure. Egg yolk derivatives, antioxidants, and, more recently, mesenchymal stem cells (MSCs) and their derivatives have been proposed in this research field. This review article will summarize the current literature available on the topic.
Collapse
Affiliation(s)
| | - Min-Jung Kim
- Department of Research and Development, Mjbiogen Corp., Gwangnaru-ro 144, Seoul 14788, Korea;
| |
Collapse
|