1
|
Feugang JM, Gad A, Menjivar NG, Ishak GM, Gebremedhn S, Gastal MO, Dlamini NH, Prochazka R, Gastal EL, Tesfaye D. Seasonal influence on miRNA expression dynamics of extracellular vesicles in equine follicular fluid. J Anim Sci Biotechnol 2024; 15:137. [PMID: 39380110 PMCID: PMC11462823 DOI: 10.1186/s40104-024-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Ovarian follicular fluid (FF) is a dynamic environment that changes with the seasons, affecting follicle development, ovulation, and oocyte quality. Cells in the follicles release tiny particles called extracellular vesicles (EVs) containing vital regulatory molecules, such as microRNAs (miRNAs). These miRNAs are pivotal in facilitating communication within the follicles through diverse signaling and information transfer forms. EV-coupled miRNA signaling is implicated to be associated with ovarian function, follicle and oocyte growth and response to various environmental insults. Herein, we investigated how seasonal variations directly influence the ovulatory and anovulatory states of ovarian follicles and how are they associated with follicular fluid EV-coupled miRNA dynamics in horses. RESULTS Ultrasonographic monitoring and follicular fluid aspiration of preovulatory follicles in horses during the anovulatory (spring: non-breeding) and ovulatory (spring, summer, and fall: breeding) seasons and subsequent EV isolation and miRNA profiling identified significant variation in EV-miRNA cargo content. We identified 97 miRNAs with differential expression among the groups and specific clusters of miRNAs involved in the spring transition (miR-149, -200b, -206, -221, -328, and -615) and peak breeding period (including miR-143, -192, -451, -302b, -100, and let-7c). Bioinformatic analyses showed enrichments in various biological functions, e.g., transcription factor activity, transcription and transcription regulation, nucleic acid binding, sequence-specific DNA binding, p53 signaling, and post-translational modifications. Cluster analyses revealed distinct sets of significantly up- and down-regulated miRNAs associated with spring anovulatory (Cluster 1) and summer ovulation-the peak breeding season (Clusters 4 and 6). CONCLUSIONS The findings from the current study shed light on the dynamics of FF-EV-coupled miRNAs in relation to equine ovulatory and anovulatory seasons, and their roles in understanding the mechanisms involved in seasonal shifts and ovulation during the breeding season warrant further investigation.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ghassan M Ishak
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, 10011, Iraq
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | | | - Melba O Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Notsile H Dlamini
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Radek Prochazka
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, 27721, Czech Republic
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
2
|
SHEN J, YIN Y, LI H, LU G, ZHU Y, QIN Y, JIN X, CHENG J, SHEN M. Effect of moxibustion on expression profile of miRNAs in Tripterygium glycoside-induced decreased ovarian reserve. J TRADIT CHIN MED 2024; 44:745-752. [PMID: 39066535 PMCID: PMC11337260 DOI: 10.19852/j.cnki.jtcm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To explore the possible regulatory mechanism of microRNA (miRNA) in moxibustion treatment for decreased ovarian reserve (DOR). METHODS The DOR model was constructed by intragastrical Tripterygium glycoside suspension administration, and moxibustion therapy was simultaneously given. The morphological ovarian changes were observed by hematoxylin and eosin staining. The miRNA expression profile was detected by RNA sequencing, and bioinformatics analysis was performed. Cytoscape software 3.6.1 was used to establish a regulatory network and differentially expressed miRNAs were verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS Decreased number of mature follicles, increased atresia follicles, and abnormal granulosa cell morphology were observed in the model group compared with the control group. The moxibustion group demonstrated increased mature follicles, decreased atretic follicles, and significantly decreased abnormal morphology of granulosa cells compared with the model group. Additionally, RNA sequencing results manifested significantly up-regulated miRNA expressions (miR-92b-3p, miR-26-5p_R + 1_1ss10TC, miR-206-3p, miR-9993b-3p_1ss6GA, miR-7857-3p_R-1, miR-219a-2-3p_1ss10GC, miR-3968-p5_1ss10AT, and PC-5p-6478_1795) and down-regulated miR-664-2-5p_R + 1 in the model group, compared with the control group, and the moxibustion group reversed abnormal disorder levels of these miRNAs. Moreover, these differentially expressed miRNAs were mainly involved in the phosphatidylinositol-3-kinase / protein kinase B signaling pathway and nuclear factor erythropoietin-2-related factor 2 / heme oxygenase 1 signaling pathway. Finally, network and RT-qPCR verification revealed miR-9993b-3p_1ss6GA as the most critical miRNA. CONCLUSION This experiment proved the effectiveness of moxibustion in improving the ovarian reserve of rats by regulating miRNA expression, especially miR-9993b-3p_1ss6GA.
Collapse
Affiliation(s)
- Jie SHEN
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yaoli YIN
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongxiao LI
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ge LU
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yaoyao ZHU
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yantong QIN
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xun JIN
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie CHENG
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meihong SHEN
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Ma Q, Shen M, Wu J, Ye C, Tan Y. Mechanism Research of DHEA Treatment Improving Diminished Ovarian Reserve by Attenuating the AMPK-SIRT1 Signaling and Mitophagy. Reprod Sci 2024; 31:2059-2072. [PMID: 38453773 DOI: 10.1007/s43032-024-01473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
This study aims to investigate the effect and mechanism of dehydroepiandrosterone (DHEA) on diminished ovarian reserve (DOR) by modulating the AMPK-SIRT1 signaling and mitophagy in rats. Three-month-old female Sprague-Dawley (SD) rats were randomized and injected intraperitoneally with sesame oil as the control or deoxyvinylcyclohexene (VCD) to induce DOR. The VCD-injected rats were randomized and injected subcutaneously with vehicle as the model group or with DHEA for 21 days as the DHEA group. After being identified in proestrus, rat blood samples were collected to prepare serum samples, and their ovarian tissues were dissected. Compared with the controls, significantly lower serum estradiol (E2), anti-Müllerian hormone (AMH), and inhibin B (IHNB) and higher follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were detected in the model group (DOR rats). The model group of rats displayed an increase in follicular atresia and a decrease in ovarian volume and the number of growing follicles and corpus luteum, accompanied by increased frequency of oocyte apoptosis and reduced levels of mitochondrial function. Furthermore, significantly higher levels of the AMPK-SIRT1 signaling and mitophagy were observed in the ovaries of rats in the model group. In contrast, treatment with DHEA significantly ameliorated the hormone disorder and morphological changes in the ovaries, reduced the frequency of apoptotic oocytes, and improved mitochondrial function in the ovaries of DOR rats. Mechanistically, DHEA treatment significantly attenuated the AMPK-SIRT1 signaling and mitophagy in the ovaries of DOR rats. DHEA treatment reduced the severity of DOR and enhanced ovarian reserve function by attenuating the AMPK-SIRT1 signaling and mitophagy in the ovaries of rats.
Collapse
Affiliation(s)
- Qianwen Ma
- TCM Department, Hangzhou Ninth People's Hospital, Number 98, Yilong Road, Yipeng Street, Qiantang District, Hangzhou, 311225, Zhejiang, China.
| | - Mingxia Shen
- TCM Department, Hangzhou Ninth People's Hospital, Number 98, Yilong Road, Yipeng Street, Qiantang District, Hangzhou, 311225, Zhejiang, China
| | - Jianfei Wu
- TCM Department, Hangzhou Ninth People's Hospital, Number 98, Yilong Road, Yipeng Street, Qiantang District, Hangzhou, 311225, Zhejiang, China
| | - Chenshu Ye
- TCM Department, Hangzhou Ninth People's Hospital, Number 98, Yilong Road, Yipeng Street, Qiantang District, Hangzhou, 311225, Zhejiang, China
| | - Yong Tan
- Reproductive Medicine Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Zhu Q, Ma H, Wang J, Liang X. Understanding the Mechanisms of Diminished Ovarian Reserve: Insights from Genetic Variants and Regulatory Factors. Reprod Sci 2024; 31:1521-1532. [PMID: 38347379 DOI: 10.1007/s43032-024-01467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 05/24/2024]
Abstract
Delaying childbearing age has become a trend in modern times, but it has also led to a common challenge in clinical reproductive medicine-diminished ovarian reserve (DOR). Since the mechanism behind DOR is unknown and its clinical features are complex, physicians find it difficult to provide targeted treatment. Many factors affect ovarian reserve function, and existing studies have shown that genetic variants, upstream regulatory genes, and changes in protein expression levels are present in populations with reduced ovarian reserve function. However, existing therapeutic regimens often do not target the genetic profile for more individualized treatment. In this paper, we review the types of genetic variants, mutations, altered expression levels of microRNAs, and other related factors and their effects on the regulation of follicular development, as well as altered DNA methylation. We hope this review will have significant implications for the future treatment of individuals with reduced ovarian reserve.
Collapse
Affiliation(s)
- Qinying Zhu
- The First Clinical Medical College of, Lanzhou University, Lanzhou, China
| | - Hao Ma
- The First Clinical Medical College of, Lanzhou University, Lanzhou, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, No.1, Donggangxi Rd, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Gandhi D, Bhandari S, Mishra S, Rudrashetti AP, Vetrivel U, Thimmulappa RK, Rajasekaran S. Forced expression of microRNA-221-3p exerts protective effects against manganese-induced cytotoxicity in human lung epithelial cells. Toxicol Appl Pharmacol 2024; 485:116904. [PMID: 38503349 DOI: 10.1016/j.taap.2024.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Manganese (Mn)-induced pulmonary toxicity and the underlying molecular mechanisms remain largely enigmatic. Further, in recent years, microRNAs (miRNAs) have emerged as regulators of several pollutants-mediated toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in manganese (II) chloride (MnCl2) (Mn2+)-induced cytotoxicity in lung epithelial cells. Growth inhibition of Mn2+ towards normal human bronchial epithelial (BEAS-2B) and adenocarcinomic human alveolar basal epithelial (A549) cells was analyzed by MTT assay following 24 or 48 h treatment. Reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), cell cycle arrest, and apoptosis were evaluated by flow cytometry. RT-qPCR and Western blot were performed to analyze the expression of cyclins, anti-oxidant genes, and miRNAs. We used small RNA sequencing to investigate Mn2+-induced changes in miRNA expression patterns. In both cell lines, Mn2+ treatment inhibited growth in a dose-dependent manner. Further, compared with vehicle-treated cells, Mn2+ (250 μM) treatment induced ROS generation, cell cycle arrest, apoptosis, and decreased ΔΨm as well as altered the expression of cyclins and anti-oxidant genes. Sequencing data revealed that totally 296 miRNAs were differentially expressed in Mn2+-treated cells. Among them, miR-221-3p was one of the topmost down-regulated miRNAs in Mn2+-treated cells. We further confirmed this association in A549 cells. In addition, transient transfection was performed to study gain-of-function experiments. Forced expression of miR-221-3p significantly improved cell viability and reduced Mn2+-induced cell cycle arrest and apoptosis in BEAS-2B cells. In conclusion, miR-221-3p may be the most likely target that accounts for the cytotoxicity of Mn2+-exposed lung epithelial cells.
Collapse
Affiliation(s)
- Deepa Gandhi
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sneha Bhandari
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sehal Mishra
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Umashankar Vetrivel
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Rajesh K Thimmulappa
- Centre for Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education, Mysuru, India
| | - Subbiah Rajasekaran
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
6
|
Liu J, Wei B, Ma Q, Shi D, Pan X, Liu Z, Li J, Zhao P. Network pharmacology and experimental validation on yangjing zhongyu decoction against diminished ovarian reserve. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117023. [PMID: 37567422 DOI: 10.1016/j.jep.2023.117023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diminished ovarian reserve (DOR) was considered a refractory reproductive endocrine condition that negatively affected female reproductivity. Yangjing Zhongyu Decoction (YJZYD) had effects on treating infertility. However, there were few studies on the mechanisms of YJZYD preserving ovarian reserve. AIM OF THE STUDY To explore the possible mechanisms of YJZYD against DOR by UPLC-ESI-MS/MS, network pharmacology, and experimental validation. METHODS The chemicals of YJZYD were measured by UPLC-ESI-MS/MS. The correlating targets of YJZYD and DOR were identified by the ETCM database, GeneCards database, and PubMed database. The common targets were employed with the DAVID database and visualized with the PPI network. GO and KEGG enrichment analyses were carried out to explore biological progression and pathways. In vivo experiments, energy production was assessed by ATP, and apoptosis rate was analyzed by TUNEL. The serum FSH, AMH, and E2 levels were evaluated by ELISA. Western blotting and immunohistochemistry were used to measure the expression of SIRT1, PGC1α, NRF1, COX IV, FSHR, CYP19A1, PI3K, p-Akt, Akt, Bcl-2, and Bax. RESULTS 132 components in YJZYD were identified by UPLC-ESI-MS/MS. 149 overlapped targets were extracted from YJZYD and DOR, and the top 20 common targets included AKT1 and CYP19A1. ATP binding was involved in GO analysis. In the KEGG enrichment analysis, the metabolic pathway was the top, and the PI3K-Akt signaling pathway was included. In vivo experiments, YJZYD improved ovarian index and histomorphology. After YJZYD treatment, serum FSH, E2, and AMH were well-modulated, and the content of ATP was up-regulated. Besides, the expression of Bax was suppressed in ovarian tissue, while the expressions of SIRT1, PGC1α, NRF1, COX IV, FSHR, CYP19A1, PI3K, Bcl-2, and p-Akt/Akt were enhanced. CONCLUSION YJZYD could attenuate reproductive endocrine disturbance and ovarian lesions in vivo by mediating steroidogenesis, energy metabolism, and cell apoptosis. This study uncovered the mechanisms of YJZYD against DOR, providing a theoretical basis for further study.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bowen Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Rheumatology and Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Qihong Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Danning Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Pan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Piwen Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
7
|
Fan H, Zhou D, Zhang X, Jiang M, Kong X, Xue T, Gao L, Lu D, Tao C, Wang L. hsa_circRNA_BECN1 acts as a ceRNA to promote polycystic ovary syndrome progression by sponging the miR-619-5p/Rab5b axis. Mol Hum Reprod 2023; 29:gaad036. [PMID: 37882757 DOI: 10.1093/molehr/gaad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease that affects women of reproductive age. It is also a significant cause of infertility. Circular RNAs have been found to have a crucial role in the development and progression of reproductive system diseases. In this study, we focused on circ_BECN1 and aimed to investigate its role and mechanism in PCOS, providing a foundation for early diagnosis and treatment of this condition. Our findings revealed an upregulation of circ_BECN1 expression in the ovarian granulosa cells (GCs) of PCOS patients. Additionally, the silencing of circ_BECN1 resulted in inhibited proliferation and enhanced apoptosis of the human ovarian granulosa-like tumor cell line (KGN), therefore implicating circ_BECN1 in the cell cycle process. Through a dual-luciferase reporting assay, we determined that circ_BECN1 acts as a sponge for miR-619-5p and that Rab5b is the target gene of miR-619-5p. Moreover, the expression of Rab5b was found to be upregulated in the ovarian tissue of PCOS patients. Knocking down circ_BECN1 resulted in decreased Rab5b expression, which was then restored by using a miR-619-5p inhibitor. Additionally, rescue experiments demonstrated that overexpressing Rab5b reversed the effects of circ_BECN1 knockdown on cell proliferation and apoptosis in KGN cells. In summary, our findings indicate that circ_BECN1 is upregulated in PCOS GCs and promotes cell growth and cell cycle progression, and reduces cell apoptosis by modulating the miR-619-5p/Rab5b axis. Therefore, circ_BECN1 may serve as a potential therapeutic target for PCOS treatment.
Collapse
Affiliation(s)
- Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dongjie Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaomei Zhang
- California Excellent Fertility (CEF), Anaheim, CA, USA
| | - Min Jiang
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Xiang Kong
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Tongmin Xue
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Chenyue Tao
- School of Nursing School of Public Health, Yangzhou University, Yangzhou, China
| | - Liping Wang
- Department of Biobank, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Liang Y, Wang H, Chen J, Chen L, Chen X. Rehmannioside D mitigates disease progression in rats with experimental-induced diminished ovarian reserve via Forkhead Box O1/KLOTHO axis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:167-176. [PMID: 36815256 PMCID: PMC9968945 DOI: 10.4196/kjpp.2023.27.2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 09/19/2022] [Indexed: 02/24/2023]
Abstract
This study aims to explore the impact of Rehmannioside D (RD) on ovarian functions of rats with diminished ovarian reserve (DOR) and its underlying mechanisms of action. A single injection of cyclophosphamide was performed to establish a DOR rat model, and fourteen days after the injection, the rats were intragastrically administrated with RD for two weeks. Rat estrus cycles were tested using vaginal smears. Ovarian tissues were histologically evaluated, the number of primordial, mature, and atretic follicles was calculated, and the apoptotic rate of granulosa cells. Follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels were determined by ELISA assays. Protein levels of Forkhead Box O1 (FOXO1), KLOTHO, Bcl-2, and Bax were investigated in ovarian tissues of DOR rats. The binding between FOXO1 and KLOTHO was verified by ChIP assay. High-dose administration of RD into DOR rats improved their estrus cycles, increased ovarian index, enhanced the number of primordial and mature follicles, reduced the number of atretic follicle number, and ovarian granulosa cell apoptosis in addition to inhibiting FSH and LH levels and upregulating E2 expression. FOXO1 and KLOTHO were significantly suppressed in DOR rats. FOXO1 knockdown partially suppressed the protective effects of RD on DOR rats, and KLOTHO overexpression could restore RD-induced blockade of DOR development despite knocking down FOXO1. FOXO1 antibody enriched KLOTHO promoter, and the binding between them was reduced in DOR group compared to that in sham group. RD improved ovarian functions in DOR rats and diminished granulosa cell apoptosis via the FOXO1/KLOTHO axis.
Collapse
Affiliation(s)
- Yan Liang
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Huimin Wang
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Jin Chen
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Lingyan Chen
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Xiaoyong Chen
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China,Correspondence Xiaoyong Chen, E-mail:
| |
Collapse
|
9
|
Lei Z, Ali I, Yang M, Yang C, Li Y, Li L. Non-Esterified Fatty Acid-Induced Apoptosis in Bovine Granulosa Cells via ROS-Activated PI3K/AKT/FoxO1 Pathway. Antioxidants (Basel) 2023; 12:antiox12020434. [PMID: 36829992 PMCID: PMC9952034 DOI: 10.3390/antiox12020434] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Non-esterified fatty acid (NEFA), one of negative energy balance (NEB)'s most well-known products, has a significant impact on cows' reproductive potential. Our study used an in vitro model to investigate the deleterious effects of NEFA on bovine granulosa cells (BGCs) and its underlying molecular mechanism. The results showed that high levels of NEFA led to the accumulation of reactive oxygen species (ROS), increased the expression of apoptosis-related factors such as Bcl2-Associated X/B-cell lymphoma-2 (Bax/Bcl-2) and Caspase-3, and down-regulated steroid synthesis-related genes such as sterol regulatory element binding protein 1 (SREBP-1), cytochrome P450c17 (CYP17), and cytochrome P450 aromatase (CYP19), to promote oxidative stress, cell apoptosis, and steroid hormone synthesis disorders in BGCs. In addition, NEFA significantly inhibited phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (p-AKT) activity and increased forkhead box O1 (FoxO1) expression. To further explore the role of the PI3K/AKT/FoxO1 signaling pathway in NEFA, we found that pretreatment with AKT-specific activator SC79 (5 mg/mL) for 2 h or transfection with FoxO1 knockdown siRNA in BGCs could alleviate the negative effects of NEFA treatment by decreasing Bax/Bcl-2 ratio and Caspase-3 expression, and upregulating SREBP-1, CYP17, and CYP19 expression. Meanwhile, SC79 significantly inhibited NEFA-induced dephosphorylation and massive nuclear translocation of FoxO1. Taken together, the NEFA induced oxidative stress, apoptosis, and steroid hormone synthesis disorders in BGCs by inhibiting the PI3K/AKT pathway that regulates FoxO1 phosphorylation and nuclear translocation. Our findings help to clarify the molecular mechanisms underlying the negative effects of high levels of NEFA on BGCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Lian Li
- Correspondence: ; Tel.: +86-25-84395314
| |
Collapse
|
10
|
Lu G, Zhu YY, Li HX, Yin YL, Shen J, Shen MH. Effects of acupuncture treatment on microRNAs expression in ovarian tissues from Tripterygium glycoside-induced diminished ovarian reserve rats. Front Genet 2022; 13:968711. [PMID: 36212128 PMCID: PMC9532950 DOI: 10.3389/fgene.2022.968711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Acupuncture is widely used to improve ovarian function. Previously, we demonstrated that acupuncture can improve oxidative stress in rats with tripterygium glycoside tablet suspension (TG)-induced diminished ovarian reserve (DOR). Herein, we aimed to explore the antioxidation mechanism of acupuncture for ameliorating the ovarian reserve in DOR rats. We performed microRNA sequencing and bioinformatics analysis to screen differentially expressed miRNAs (DE miRNAs) in ovarian tissues. In total, 1,172 miRNAs were identified by miRNA sequencing, of which 28 DE miRNAs were detected (including 14 upregulated and 14 downregulated) in ovarian tissues from the acupuncture group when compared with the DOR model rats. Based on functional enrichment analysis, the target genes of DE miRNAs were significantly enriched in GO-biological process (BP) terms associated with biological processes, positive regulation of transcription by RNA polymerase II, signal transduction, regulation of transcription, DNA-templated processes, and oxidation–reduction processes. In the Kyoto Encyclopedia of Genes and Genomes analysis, the main pathways were the MAPK signaling pathway, hepatitis B, proteoglycans in cancer, human cytomegalovirus infection, and the Ras signaling pathway. Finally, reverse transcription-quantitative PCR results confirmed that rno-miR-92b-3p, mdo-miR-26b-5p_R+1_1ss10TC, and bta-miR-7857-3p_R-1 were downregulated in the acupuncture group. The results revealed the impact of acupuncture on miRNA profiling of ovarian tissues from DOR rats, suggesting that rno-miR-92b-3p, mdo-miR-26b-5p_R+1_1ss10TC, and bta-miR-7857-3p_R-1 might provide relevant cues to relieve DOR-mediated oxidative stress.
Collapse
Affiliation(s)
- Ge Lu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao-yao Zhu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-xiao Li
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao-li Yin
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Shen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Jie Shen, ; Mei-hong Shen,
| | - Mei-hong Shen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Jie Shen, ; Mei-hong Shen,
| |
Collapse
|
11
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
12
|
Bulgurcuoglu Kuran S, Altun A, Karamustafaoglu Balci B, Keskin I, Hocaoglu M. Expression of pro-apoptotic and anti-apoptotic proteins in granulosa cells of women with diminished ovarian reserve. J Assist Reprod Genet 2022; 39:765-775. [PMID: 35142968 PMCID: PMC8995233 DOI: 10.1007/s10815-022-02422-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/31/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To evaluate the expressions of caspase-3 and cytochrome c and heat shock protein 70 (Hsp70) in granulosa cells (GCs) from women with normal ovarian reserve (NOR) and diminished ovarian reserve (DOR) undergoing intracytoplasmic sperm injection (ICSI). METHODS GCs were collected from 117 infertile women during oocyte retrieval. Patients were classified into four groups as follows: DOR-COC score of 0, DOR-COC score of I, NOR-COC score of 0, and NOR-COC score of I. The caspase-3, cytochrome c, and Hsp70 analyses were performed immunohistochemically in GCs. The ICSI outcomes were evaluated prospectively. RESULTS The clinical pregnancy and live birth rates were higher in DOR-COC score of I (15, 30.6%; 14, 38.9%) and NOR-COC score of I (19, 38.77%; 19, 52.7%) groups, compared with DOR-COC score of 0 (12, 24.4%; 3, 6.1%) and NOR-COC score of 0 (3, 6.1%; 0%) groups (p = 0.0001; 0.00002), respectively. Caspase-3 and cytochrome c expression levels were higher in DOR-COC score of 0 (23, 65.7%; 25, 71.4%) and NOR-COC score of 0 groups (19, 61.3%; 20, 64.5%), compared with DOR-COC score of I (8, 32%; 9, 36%) and NOR-COC score of I groups (7, 26.9%; 8, 30.8%) (p = 0.00297; p = 0.002), respectively. Lower expression levels of Hsp70 were found in DOR-COC score of 0 (11, 31.4%) and NOR-COC score of 0 groups (10, 32.3%), compared with DOR-COC score of I (16, 64%) and NOR-COC score of I groups (20, 76.9%) (p = 0.001), respectively. Hsp70 expression levels were positively correlated with the number of day 3 good-quality embryo and negatively correlated with estradiol levels in the DOR group. CONCLUSION Our data suggest that COC score of 0 is associated with increased expression levels of apoptotic proteins, decreased expression levels of anti-apoptotic protein, and poor ICSI clinical outcomes in women with and without DOR.
Collapse
Affiliation(s)
- Sibel Bulgurcuoglu Kuran
- Department of Obstetrics and Gynecology School of Medicine, IVF Unit, Istanbul University, Istanbul, Turkey TR 34452
| | - Ayse Altun
- Department of Histology and Embryology, Medical Faculty, Istanbul Medipol University, Istanbul, Turkey
| | - Burcin Karamustafaoglu Balci
- Department of Obstetrics and Gynecology School of Medicine, IVF Unit, Istanbul University, Istanbul, Turkey TR 34452
| | - Ilknur Keskin
- Department of Histology and Embryology, Medical Faculty, Istanbul Medipol University, Istanbul, Turkey
| | - Meryem Hocaoglu
- Department of Obstetrics and Gynecology, Goztepe Prof. Dr. Suleyman Yalcin City Hospital Affiliated To Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
13
|
Mortoglou M, Buha Djordjevic A, Djordjevic V, Collins H, York L, Mani K, Valle E, Wallace D, Uysal-Onganer P. Role of microRNAs in response to cadmium chloride in pancreatic ductal adenocarcinoma. Arch Toxicol 2022; 96:467-485. [PMID: 34905088 PMCID: PMC8837568 DOI: 10.1007/s00204-021-03196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal and aggressive malignancies with a 5-year survival rate less than 9%. Early detection is particularly difficult due to the lack of symptoms even in advanced stages. microRNAs (miRs/miRNAs) are small (~ 18-24 nucleotides), endogenous, non-coding RNAs, which are involved in the pathogenesis of several malignancies including PDAC. Alterations of miR expressions can lead to apoptosis, angiogenesis, and metastasis. The role of environmental pollutants such as cadmium (Cd) in PDAC has been suggested but not fully understood. This study underlines the role of miRs (miR-221, miR-155, miR-126) in response to cadmium chloride (CdCl2) in vitro. Lethal concentration (LC50) values for CdCl2 resulted in a toxicity series of AsPC-1 > HPNE > BxPC-3 > Panc-1 = Panc-10.5. Following the treatment with CdCl2, miR-221 and miR-155 were significantly overexpressed, whereas miR-126 was downregulated. An increase in epithelial-mesenchymal transition (EMT) via the dysregulation of mesenchymal markers such as Wnt-11, E-cadherin, Snail, and Zeb1 was also observed. Hence, this study has provided evidence to suggest that the environmental pollutant Cd can have a significant role in the development of PDAC, suggesting a significant correlation between miRs and Cd exposure during PDAC progression. Further studies are needed to investigate the precise role of miRs in PDAC progression as well as the role of Cd and other environmental pollutants.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| | | | | | - Hunter Collins
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Lauren York
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Katherine Mani
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Elizabeth Valle
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - David Wallace
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| |
Collapse
|
14
|
Wei C, Xiang S, Yu Y, Song J, Zheng M, Lian F. miR-221-3p regulates apoptosis of ovarian granulosa cells via targeting FOXO1 in older women with diminished ovarian reserve (DOR). Mol Reprod Dev 2021; 88:251-260. [PMID: 33694202 PMCID: PMC8251591 DOI: 10.1002/mrd.23457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022]
Abstract
In our earlier study, we showed that the expression of microRNA‐221‐3p (miR‐221‐3p) was significantly lower in women of advanced age with diminished ovarian reserve (DOR) compared with young women with normal ovarian reserve (NOR). Therefore, in this study, we aimed to explore how miR‐221‐3p regulates apoptosis of granulosa cells and the pathogenesis of DOR. Bioinformatics prediction and dual‐luciferase reporter assay were conducted to identify the target gene of miR‐221‐3p. miR‐221‐3p expression was manipulated by transfecting KGN cells with miR‐221‐3p mimics, inhibitor, and negative control. Following transfection, apoptosis of granulosa cells was determined by flow cytometry, and the expression of the target gene was measured by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot analysis (WB). In addition, the expression of the target gene in granulosa cells of DOR patients and NOR patients was measured. miR‐221‐3p were found to directly bind the 3ʹ untranslated region of Forkhead box O1 (FOXO1). Transfection with miR‐221‐3p mimics significantly decreased the apoptosis rate of KGN cells compared with transfection with miR‐221‐3p inhibitors. The expression level of miR‐221‐3p was negatively correlated with the messenger RNA and protein levels of the FOXO1 gene. Besides, FOXO1 expression was upregulated in DOR patients. In conclusion, these results provide evidence that downregulation of miR‐221‐3p expression promotes apoptosis of granulosa cells by upregulating FOXO1 expression, thus serving an important role in DOR pathogenesis.
Collapse
Affiliation(s)
- Chaofeng Wei
- Master of Gynecology in Traditional Chinese Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shan Xiang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Yu
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jingyan Song
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mingming Zheng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fang Lian
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|