1
|
Gu Y, Wu K, Niu B, Wang Z, Jie Y, Fan Z, Li J, Sun C, Hou ZC, Shao LW. Hyperthermia suppresses the biological characteristics and migration of chicken primordial germ cells. Front Genome Ed 2025; 6:1512108. [PMID: 39845894 PMCID: PMC11751037 DOI: 10.3389/fgeed.2024.1512108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Primordial germ cells (PGCs) play a crucial role in transmitting genetic information to the next-generation. In chickens, genetically edited PGCs can be propagated in vitro and subsequently transplanted into recipient embryos to produce offspring with desired genetic traits. However, during early embryogenesis, the effects of external conditions on PGC migration through the vascular system to the gonads have yet to be explored, which may affect the efficiency of preparing gene-edited chickens. In this study, we investigated the effects of hyperthermia on the biological characteristics and migration of chicken PGCs. A gonad-derived PGC line of White Leghorn (WLH) chicken was established and verified through PAS staining and immunofluorescence of PGC-specific proteins. To visually observe PGC migration in vivo, GFP-positive PGCs were prepared and locations of chimeras were validated. Cell viability, glycogen granule contents, and mRNA expression levels of pluripotency markers (NANOG and POUV), germ cell-specific markers (DAZL and CVH), and telomerase reverse transcriptase (TERT) were reduced in PGCs cultured under high temperatures (43°C for 12, 24, and 48 h). After the heat treatment of donor PGCs (43°C) or recipient embryos (39.5°C), GFP-positive PGCs in gonads were rarely observed. Taken together, our results underscore the negative effects of hyperthermia on the biological characteristics and migration of chicken PGCs, which provides valuable insights for the implementation of PGC-based gene editing techniques in chickens.
Collapse
Affiliation(s)
- Yuzhou Gu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Kexin Wu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Bowen Niu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Zhiting Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Yuchen Jie
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Zixuan Fan
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Zhuo-Cheng Hou
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Li-Wa Shao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Ren H, Zhang Y, Bi Y, Wang H, Fang G, Zhao P. Target silencing of porcine SPAG6 and PPP1CC by shRNA attenuated sperm motility. Theriogenology 2024; 219:138-146. [PMID: 38430798 DOI: 10.1016/j.theriogenology.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The quality of sperm significantly influences the reproductive efficiency of pig herds. High-quality sperm is necessary for efficient fertilization and to maximize the litter numbers in commercial pig farming. However, the understanding of genes regulating porcine sperm motility and viability is limited. In this study, we validated porcine sperm/Sertoli-specific promoters through the luciferase reporter system and identified vital genes for sperm quality via loss-of-function means. Further, the shRNAs driven by the ACE and SP-10 promoters were used to knockdown the SPAG6 and PPP1CC genes which were provisionally important for sperm quality. We assessed the effects of SPAG6 and PPP1CC knockdown on sperm motility by using the sperm quality analyzer and flow cytometry. The results showed that the ACE promoter is active in both porcine Sertoli cells and sperms, whereas the SP-10 promoter is operating exclusively in sperm cells. Targeted interference with SPAG6 and PPP1CC expression in sperm cells decreases the motility and increases apoptosis rates in porcine sperms. These findings not only offer new genetic tools for targeting male germ cells but also highlight the crucial roles of SPAG6 and PPP1CC in porcine sperm function.
Collapse
Affiliation(s)
- Hongyan Ren
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, PR China
| | - Yandi Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, PR China
| | - Yanzhen Bi
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, PR China
| | - Heng Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - Guijie Fang
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan, Hubei Province, PR China.
| | - Pengxiang Zhao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China.
| |
Collapse
|
3
|
Wang Y, Zhang YQ, Wu ZW, Fang T, Wang F, Zhao H, Du ZQ, Yang CX. Selection of reference genes for RT-qPCR analysis in developing chicken embryonic ovary. Mol Biol Rep 2023; 50:3379-3387. [PMID: 36729208 DOI: 10.1007/s11033-023-08280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Normalization of the expression profiling of target genes, in a tissue-specific manner and under different experimental conditions, requires stably expressed gene(s) to be used as internal reference(s). However, to study the molecular regulation of oocyte meiosis initiation during ovary development in chicken embryos, stable reference gene(s) still need to be compared and confirmed. METHODS AND RESULTS Six candidate genes previously used as internal references for the chicken embryo (Actb, Cvh, Dazl, Eef1a, Gapdh and Rpl15) were chosen, and their expression profiles in left ovaries dissected at five chicken embryonic days (E12.5, E15.5, E17.5, E18.5 and E20.5) were evaluated, respectively. Separately, GeNorm, NormFinder, BestKeeper and Comparative ΔCt methods were used to assess the stability of candidate reference genes, and all results were combined to give the final rank by RefFinder. All methods identified that Eef1a and Rpl15 were the two most stable internal reference genes, whereas Cvh is the most unstable one. Moreover, expression levels of three marker genes for chicken oocyte meiosis entry (Stra8, Scp3 and Dmc1) were normalized, based on Eef1a, Rpl15, or their combinations, respectively. CONCLUSION Our findings provide the most suitable internal reference genes (Eef1a and Rpl15), to investigate further molecular regulation of ovary development and oocyte meiosis initiation in chicken embryos.
Collapse
Affiliation(s)
- Yi Wang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Yu-Qing Zhang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Zi-Wei Wu
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Ting Fang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Fang Wang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Han Zhao
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China.
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China.
| |
Collapse
|
4
|
Ma Y, Wu W, Zhang Y, Wang X, Wei J, Guo X, Xue M, Zhu G. The Synchronized Progression from Mitosis to Meiosis in Female Primordial Germ Cells between Layers and Broilers. Genes (Basel) 2023; 14:781. [PMID: 37107539 PMCID: PMC10137798 DOI: 10.3390/genes14040781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Layer and broiler hens show a dramatic difference in the volume and frequency of egg production. However, it is unclear whether the intrinsic competency of oocyte generation is also different between the two types of chicken. All oocytes were derived from the primordial germ cells (PGC) in the developing embryo, and female PGC proliferation (mitosis) and the subsequent differentiation (meiosis) determine the ultimate ovarian pool of germ cells available for future ovulation. In this study, we systematically compared the cellular phenotype and gene expression patterns during PGC mitosis (embryonic day 10, E10) and meiosis (E14) between female layers and broilers to determine whether the early germ cell development is also subjected to the selective breeding of egg production traits. We found that PGCs from E10 showed much higher activity in cell propagation and were enriched in cell proliferation signaling pathways than PGCs from E14 in both types of chicken. A common set of genes, namely insulin-like growth factor 2 (IGF2) and E2F transcription factor 4 (E2F4), were identified as the major regulators of cell proliferation in E10 PGCs of both strains. In addition, we found that E14 PGCs from both strains showed an equal ability to initiate meiosis, which was associated with the upregulation of key genes for meiotic initiation. The intrinsic cellular dynamics during the transition from proliferation to differentiation of female germ cells were conserved between layers and broilers. Hence, we surmise that other non-cell autonomous mechanisms involved in germ-somatic cell interactions would contribute to the divergence of egg production performance between layers and broilers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guiyu Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271000, China; (Y.M.)
| |
Collapse
|
5
|
Ichikawa K, Horiuchi H. Fate Decisions of Chicken Primordial Germ Cells (PGCs): Development, Integrity, Sex Determination, and Self-Renewal Mechanisms. Genes (Basel) 2023; 14:genes14030612. [PMID: 36980885 PMCID: PMC10048776 DOI: 10.3390/genes14030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Primordial germ cells (PGCs) are precursor cells of sperm and eggs. The fate decisions of chicken PGCs in terms of their development, integrity, and sex determination have unique features, thereby providing insights into evolutionary developmental biology. Additionally, fate decisions in the context of a self-renewal mechanism have been applied to establish culture protocols for chicken PGCs, enabling the production of genome-edited chickens and the conservation of genetic resources. Thus, studies on the fate decisions of chicken PGCs have significantly contributed to both academic and industrial development. Furthermore, studies on fate decisions have rapidly advanced owing to the recent development of essential research technologies, such as genome editing and RNA sequencing. Here, we reviewed the status of fate decisions of chicken PGCs and provided insight into other important research issues that require attention.
Collapse
Affiliation(s)
- Kennosuke Ichikawa
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- Correspondence:
| | - Hiroyuki Horiuchi
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Hiroshima, Japan
| |
Collapse
|
6
|
Meng L, Zhang Y, Hua Y, Ma Y, Wang H, Li X, Jiang Y, Zhu G. Identification of oogonial stem cells in chicken ovary. Cell Prolif 2022; 56:e13371. [PMID: 36526415 PMCID: PMC9977656 DOI: 10.1111/cpr.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/30/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Oogonial stem cells (OSCs) are germ cells that can sustain neo-oogenesis to replenish the pool of primary follicles in adult ovaries. In lower vertebrates, fresh oocytes are produced by numerous OSCs through mitosis and meiosis during each reproduction cycle, but the OSCs in adult mammals are rare. The birds have retained many conserved features and developed unique features of ovarian physiology during evolution, and the presence of OSCs within avian species remain unknown. MATERIALS AND METHODS In this study, we investigated the existence and function of OSCs in adult chickens. The chicken OSCs were isolated and expanded in culture. We then used cell transplantation system to evaluate their potential for migration and differentiation in vivo. RESULTS DDX4/SSEA1-positive OSCs were identified in both the cortex and medulla of the adult chicken ovary. These putative OSCs undergo meiosis in the reproductively active ovary. Furthermore, the isolated OSCs were expanded in vitro for months and found to express germline markers similar to those of primordial germ cells. When transplanted into the bloodstream of recipient embryos, these OSCs efficiently migrated into developing gonads, initiated meiosis, and then derived oocytes in postnatal ovaries. CONCLUSIONS This study has confirmed the presence of functional OSCs in birds for the first time. The identification of chicken OSCs has great potential for improving egg laying and preserving endangered species.
Collapse
Affiliation(s)
- Lu Meng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina,College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yun Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Yao Hua
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina,College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yuxiao Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Heng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Xianyao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Guiyu Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary MedicineShandong Agricultural UniversityTaianChina,College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|