1
|
Zhang S, Cai S, Ye L, Shen L, Zhu C, Huang J, Wang Z, Chen H. METTL3 mediates m6A modification of hsa_circ_0072380 to regulate the progression of gestational diabetes mellitus. Gene 2024; 931:148894. [PMID: 39191355 DOI: 10.1016/j.gene.2024.148894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND m6A modification plays a vital role in gestational diabetes mellitus (GDM) progression. However, the role of METTL3 and differential m6A-modified circRNAs in GDMremainsto be investigated. METHODS Placental tissue samples from GDM patients and normal controls (NC) were collected to measure changes in m6A modification levels. MeRIP-seq on placental tissue was performed to detect differential m6A-modified circRNAs.High glucose (HG)-treated JEG3 cells were used to establish the GDM cell model. Differentially expressed circRNAs levels in GDM and NC groups were measured by qRT-PCR. We knocked down METTL3 to study its function. Additionally, we conducted functional recovery experiments. Dot blot assay was utilized to assess changes in m6A levels. MeRIP-qPCR was performed to evaluate the effect of knocking down METTL3 on m6A modification of hsa_circ_0072380 in JEG3 cells. RESULTS Compared with the NC group, the GDM group exhibited increased levels of m6A modification and METTL3 expression. Differences in m6A modification of circRNAs exist between the GDM and NC groups. Hsa_circ_0000994, hsa_circ_0058733, and hsa_circ_0072380 were significantly down-regulated in the GDM group while hsa_circ_0036376, hsa_circ_0000471, and hsa_circ_0001173 showed no significant differences between two groups. HG treatment promoted METTL3 expression and m6A level of JEG3 cells, and inhibited cell proliferation, migration, and invasion abilities. Knocking down METTL3 reversed these effects. After HG treatment, hsa_circ_0072380 was significantly down-regulated. Knocking down METTL3 led to up-regulation of hsa_circ_0072380, while knocking down hsa_circ_0072380 restored the function of SiMETTL3. Additionally, knocking down METTL3 significantly reduced the m6A modification of hsa_circ_0072380. CONCLUSION METTL3 mediated m6A modification of hsa_circ_0072380 to regulate GDM progression.
Collapse
Affiliation(s)
- Shaofeng Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Shiqin Cai
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou 510010, China
| | - Lisha Ye
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518100, China
| | - Lixia Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Caixia Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Jingwan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China.
| | - Haitian Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China.
| |
Collapse
|
2
|
Dłuski DF, Cieśla M, Darmochwał-Kolarz D. Circular RNA hsa_circ_0002268 ( PHACTR1) Is Specific to Gestational Diabetes Mellitus in a Polish Pregnant Population. Int J Mol Sci 2024; 25:7040. [PMID: 39000149 PMCID: PMC11241481 DOI: 10.3390/ijms25137040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is an intolerance of carbohydrate of any degree, which appears for the first time or is diagnosed during pregnancy. The objective of this study is to assess the differences in circular RNA (circRNA) in a Polish pregnant population with and without GDM. A total of 62 pregnant women, 34 with GDM and 28 controls, were enrolled in the study. Total RNAs were extracted from plasma and reverse transcription to complementary DNA (cDNA) was performed. A panel covering 271 amplicons, targeting both linear and circular as well as negative control gene transcripts, was used. Next-generation sequencing was used to evaluate the circRNA quantity. Data analysis was performed using the Coverage Analysis plugin in the Torrent Suite Software (Torrent Suite 5.12.3). A two-step normalization was performed by dividing each transcript read count by the total number of reads generated for the sample, followed by dividing the quantity of each transcript by β-actin gene expression. Both circular and linear forms of RNAs were independently evaluated. A total of 57 transcripts were dysregulated between pregnant women with GDM and controls. Most of the targets (n = 25) were downregulated (cut-off ratio below 0.5), and one target showed a trend toward strong upregulation (ratio 1.45). A total of 39 targets were positively correlated with fasting plasma glucose (FPG), but none of the tested targets were correlated with insulin, CRP or HOMA-IR levels. Among the pregnant women with gestational diabetes, the relative quantity of hsa_circ_0002268 (PHACTR1) was approximately 120% higher than among healthy pregnant women: 0.046 [0.022-0.096] vs. 0.021 [0.007-0.047], respectively, (p = 0.0029). Elevated levels of hsa_circ_0002268 (PHACTR1) might be specific to the Polish population of pregnant women with GDM, making it useful as a potential molecular biomarker in the management of GDM in Poland.
Collapse
Affiliation(s)
| | - Marek Cieśla
- Institute of Medical Science, College of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Dorota Darmochwał-Kolarz
- Department of Obstetrics and Gynecology, College of Medical Science, University of Rzeszow, 35-301 Rzeszow, Poland
| |
Collapse
|
3
|
Gao D, Ren L, Hao YD, Schaduangrat N, Liu XW, Yuan SS, Yang YH, Wang Y, Shoombuatong W, Ding H. The role of ncRNA regulatory mechanisms in diseases-case on gestational diabetes. Brief Bioinform 2023; 25:bbad489. [PMID: 38189542 PMCID: PMC10772982 DOI: 10.1093/bib/bbad489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not have the potential to encode proteins. Meanwhile, they can occupy a significant portion of the human genome and participate in gene expression regulation through various mechanisms. Gestational diabetes mellitus (GDM) is a pathologic condition of carbohydrate intolerance that begins or is first detected during pregnancy, making it one of the most common pregnancy complications. Although the exact pathogenesis of GDM remains unclear, several recent studies have shown that ncRNAs play a crucial regulatory role in GDM. Herein, we present a comprehensive review on the multiple mechanisms of ncRNAs in GDM along with their potential role as biomarkers. In addition, we investigate the contribution of deep learning-based models in discovering disease-specific ncRNA biomarkers and elucidate the underlying mechanisms of ncRNA. This might assist community-wide efforts to obtain insights into the regulatory mechanisms of ncRNAs in disease and guide a novel approach for early diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Dong Gao
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| | - Yu-Duo Hao
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Xiao-Wei Liu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shi-Shi Yuan
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yu-He Yang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yan Wang
- Department of Cardiovascular Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Hui Ding
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
4
|
Ji ZH, Gao F, Xie WY, Wu HY, Ren WZ, Yuan B. Mammary Epithelial Cell-Derived Exosomal miR-221-3p Regulates Macrophage Polarization by Targeting Igf2 bp2 during Mastitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14742-14757. [PMID: 37757458 DOI: 10.1021/acs.jafc.3c03350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Mastitis affects the milk quality and yield and is the most expensive disease in dairy cows. Elucidation of the pathogenesis of mastitis is of great importance for disease control. As a medium of intercellular communication, exosomes play key roles in various inflammatory diseases by regulating macrophage polarization. However, the molecular factors in exosomes that mediate the intercellular communication between mammary epithelial cells and macrophages during mastitis remain to be further explored. In this study, we isolated and identified mammary epithelial cell-derived exosomes from a lipopolysaccharide (LPS)/lipoteichoic acid (LTA)-induced mastitis cell model, and we demonstrated that exosomes from LPS/LTA-stimulated mammary epithelial cells promote M1-type macrophage polarization in vivo and in vitro. Based on the results of high-throughput sequencing, we constructed a differential miRNA (microRNA) expression profile of exosomes and demonstrated that miR-221-3p was highly expressed. Furthermore, in vivo and in vitro experiments, combined with coculture experiments and fluorescence tracing, showed that high miR-221-3p expression promoted M1-type macrophage polarization, demonstrating the transcellular role of miR-221-3p. Mechanistically, dual luciferase reporter gene assays and rescue assays showed that miR-221-3p regulated macrophage polarization by targeting Igf2bp2. The results of this study will deepen our understanding of the pathogenesis of mastitis, and the molecular regulatory axis that was established in this study is expected to be a target for mastitis treatment.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
- Jilin Academy of Agricultural Sciences, Jilin 132101, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| |
Collapse
|