1
|
Microelectrode arrays for monitoring neural activity in neural stem cells with modulation by glutamate in vitro. NANOTECHNOLOGY AND PRECISION ENGINEERING 2020. [DOI: 10.1016/j.npe.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Abstract
It is possible, by a variety of means, to isolate, propagate, and characterize engraftable clones of cells from the mammalian CNS that fulfill the operational definition of a "stem cell": self-maintaining, self-renewing, and extremely multipotent in vitro and in vivo. Even as debates flourish over how neural stem cells might best be defined, identified, represented, and manipulated, clonal cells with "stem-like" features have begun to provide valuable models for studying commitment, differentiation, and plasticity in the CNS. Furthermore, by learning in this way the basic biology of neural stem cells, and by then exploiting those inherent properties for therapeutic ends, novel and multifaceted strategies seem poised to emerge for redressing a variety of heretofore untreatable CNS dysfunctions. Stem-like cells have begun to show promise for neural cell re placement and molecular support therapy in various animal models of degenerative, developmental, and acquired CNS insult. NEUROSCIENTIST 4:408-425, 1998
Collapse
Affiliation(s)
- Evan Y. Snyder
- Departments of Neurology (Division of Neuroscience) and Pediatrics (Division of Newborn Medicine) Harvard Medical School Children's Hospital Boston, Massachusetts
| |
Collapse
|
3
|
Storch A, Sabolek M, Milosevic J, Schwarz SC, Schwarz J. Midbrain-derived neural stem cells: from basic science to therapeutic approaches. Cell Tissue Res 2004; 318:15-22. [PMID: 15503150 DOI: 10.1007/s00441-004-0923-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 05/18/2004] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) are a subtype of tissue-specific progenitor cells capable of extended self-renewal and the ability to generate all major cell types of nervous tissue, such as neurons, astroglia and oligodendroglial cells. Recent studies suggest that salient patterning in anterior-posterior and dorsal-ventral axes occurs early, concomitantly with neural induction and therefore stem cells and restricted precursors exhibit regionalization. Fetal mesencephalic NSCs can be isolated and expanded in vitro for many months while retaining their potential to differentiate into glia and neurons, with a subset of neurons displaying all the major properties of mature functional dopaminergic neurons. Since Parkinson's disease (PD) is characterized by the loss of a specific type of dopaminergic cells, the prospect of replacing the missing or damaged cells is very attractive in PD. Thus, mesencephalic NSCs might serve as a new and continuous source of dopaminergic neurons for regenerative strategies in this neurodegenerative disorder. This review discusses new data concerning the cell biology and therapeutic potential of NSCs derived from the midbrain region of the central nervous system.
Collapse
Affiliation(s)
- Alexander Storch
- Department of Neurology, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
4
|
Hermann A, Gerlach M, Schwarz J, Storch A. Neurorestoration in Parkinson's disease by cell replacement and endogenous regeneration. Expert Opin Biol Ther 2004; 4:131-43. [PMID: 14998773 DOI: 10.1517/14712598.4.2.131] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is characterised by a continuous and selective loss of dopaminergic neurons in the substantia nigra pars compacta with a subsequent reduction of the neurotransmitter dopamine. Thus, the prospect of replacing the missing or damaged dopaminergic cells is very attractive. Possible regenerative therapies include transplanting developing neural tissue or neural stem cells into the degenerated host brain and inducing proliferation of endogenous stem cells by pharmacological manipulations. Neural stem cells, with the capacity to self renew and produce the major cell types of the brain, exist in the developing and adult CNS. These cells can be generated and expanded in vitro while retaining the potential to differentiate into nervous tissue. However, one major problem is the control of growth and differentiation of these cells. This review discusses new data on stem cell technology in cell replacement strategies in PD as well as endogenous dopaminergic regeneration.
Collapse
Affiliation(s)
- Andreas Hermann
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | | | | | | |
Collapse
|
5
|
Park KI, Ourednik J, Ourednik V, Taylor RM, Aboody KS, Auguste KI, Lachyankar MB, Redmond DE, Snyder EY. Global gene and cell replacement strategies via stem cells. Gene Ther 2002; 9:613-24. [PMID: 12032707 DOI: 10.1038/sj.gt.3301721] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The inherent biology of neural stem cells (NSCs) endows them with capabilities that not only circumvent many of the limitations of other gene transfer vehicles, but that enable a variety of novel therapeutic strategies heretofore regarded as beyond the purview of neural transplantation. Most neurodegenerative diseases are characterized not by discrete, focal abnormalities but rather by extensive, multifocal, or even global neuropathology. Such widely disseminated lesions have not conventionally been regarded as amenable to neural transplantation. However, the ability of NSCs to engraft diffusely and become integral members of structures throughout the host CNS, while also expressing therapeutic molecules, may permit these cells to address that challenge. Intriguingly, while NSCs can be readily engineered to express specified foreign genes, other intrinsic factors appear to emanate spontaneously from NSCs and, in the context of reciprocal donor-host signaling, seem to be capable of neuroprotective and/or neuroregenerative functions. Stem cells additionally have the appealing ability to 'home in' on pathology, even over great distances. Such observations help to advance the idea that NSCs - as a prototype for stem cells from other solid organs - might aid in reconstructing the molecular and cellular milieu of maldeveloped or damaged organs.
Collapse
Affiliation(s)
- K I Park
- Department of Neurology, Harvard Medical School, Harvard Institutes of Medicine, Beth Israel-Deaconess Medical Center, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yadid G, Fitoussi N, Kinor N, Geffen R, Gispan I. Astrocyte line SVG-TH grafted in a rat model of Parkinson's disease. Prog Neurobiol 1999; 59:635-61. [PMID: 10845756 DOI: 10.1016/s0301-0082(99)00013-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present review describes gene transfer into the brain using extraneuronal cells with an ex vivo approach. The mild immunological reactions in the central nervous system to grafts provided the rationale and empirical basis for brain-transplantation, to replace dying cells, of potential clinical relevance. Fetal human astrocytes were genetically engineered to express tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines. These cells were also found to produce constitutively and secrete GDNF and interleukins. Therefore, these cells may prove as a drug-delivery system for the treatment of neurological degenerative conditions such as Parkinson's disease (PD). The field of neuronal reconstruction has reached a critical threshold and there is a need to evaluate the variables that will become critical as the field matures. One of the needs is to characterize the neurochemical alterations in the microenvironment in the context of grafted-host connectivity. This review discusses the functional effects of the pharmacologically-active construct, which consists of astrocytes producing L-DOPA and GDNF. The striatum in PD that lacks the dopaminergic projection from the substantia nigra metabolizes and releases dopamine differently from normal tissue and may react to different factors released by the grafted cells. Moreover, neurochemicals of the host tissue may effect grafted cells as well. An understanding of the way in which these neurochemicals are abnormal in PD and their role in the grafted brain is critical to the improvement of reconstructive strategies using cellular therapeutic strategies.
Collapse
Affiliation(s)
- G Yadid
- Faculty of Life Sciences, Neuropharmacology Section, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
7
|
Lynch WP, Sharpe AH, Snyder EY. Neural stem cells as engraftable packaging lines can mediate gene delivery to microglia: evidence from studying retroviral env-related neurodegeneration. J Virol 1999; 73:6841-51. [PMID: 10400782 PMCID: PMC112769 DOI: 10.1128/jvi.73.8.6841-6851.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of spongiform myeloencephalopathy by murine leukemia viruses is mediated primarily by infection of central nervous system (CNS) microglia. In this regard, we have previously shown that CasBrE-induced disease requires late, rather than early, virus replication events in microglial cells (W. P. Lynch et al., J. Virol. 70:8896-8907, 1996). Furthermore, neurodegeneration requires the presence of unique sequences within the viral env gene. Thus, the neurodegeneration-inducing events could result from microglial expression of retroviral envelope protein alone or from the interaction of envelope protein with other viral structural proteins in the virus assembly and maturation process. To distinguish between these possible mechanisms of disease induction, we engineered the engraftable neural stem cell line C17-2 into packaging/producer cells in order to deliver the neurovirulent CasBrE env gene to endogenous CNS cells. This strategy resulted in significant CasBrE env expression within CNS microglia without the appearance of replication competent virus. CasBrE envelope expression within microglia was accompanied by increased expression of activation markers F4/80 and Mac-1 (CD11b) but failed to induce spongiform neurodegenerative changes. These results suggest that envelope expression alone within microglia is not sufficient to induce neurodegeneration. Rather, microglia-mediated disease appears to require neurovirulent Env protein interaction with other viral proteins during assembly or maturation. More broadly, the results presented here prove the efficacy of a novel method by which neural stem cell biology may be harnessed for genetically manipulating the CNS, not only for studying neurodegeneration but also as a paradigm for the disseminated distribution of retroviral vector-transduced genes.
Collapse
Affiliation(s)
- W P Lynch
- Department of Microbiology/Immunology, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA
| | | | | |
Collapse
|
8
|
Vescovi AL, Snyder EY. Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathol 1999; 9:569-98. [PMID: 10416994 PMCID: PMC8098170 DOI: 10.1111/j.1750-3639.1999.tb00542.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The study of the basic physiology of the neural precursors generated during brain development is driven by two inextricably linked goals. First, such knowledge is instrumental to our understanding of how the high degree of cellular complexity of the mature central nervous system (CNS) is generated, and how to dissect the steps of proliferation, fate commitment, and differentiation that lead early pluripotent neural progenitors to give rise to mature CNS cells. Second, it is hoped that the isolation, propagation, and manipulation of brain precursors and, particularly, of multipotent neural stem cells (NSCs), will lead to therapeutic applications in neurological disorders. The debate is still open concerning the most appropriate definition of a stem cell and on how it is best identified, characterized, and manipulated. By adopting an operational definition of NSCs, we review some of the basic findings in this area and elaborate on their potential therapeutic applications. Further, we discuss recent evidence from our two groups that describe, based on that rigorous definition, the isolation and propagation of clones of NSCs from the human fetal brain and illustrate how they have begun to show promise for neural cell replacement and molecular support therapy in models of degenerative CNS diseases. The extensive propagation and engraftment potential of human CNS stem cells may, in the not-too-distant-future, be directed towards genuine clinical therapeutic ends, and may open novel and multifaceted strategies for redressing a variety of heretofore untreatable CNS dysfunctions.
Collapse
Affiliation(s)
- Angelo L. Vescovi
- Laboratory of Neuropharmacology, National Neurological Institute C. Besta, Via Celoria 11, 20133 Milan, Italy
| | - Evan Y. Snyder
- Departments of Neurology (Division of Neuroscience), Pediatrics (Division of Newborn Medicine), Neurosurgery (Division of Neuroscience Research), Harvard Medical School, Children's Hospital, Boston, MA USA
| |
Collapse
|
9
|
Abstract
The implantation of genetically engineered nonneuronal cells can provide an effective method for achieving localized delivery of discrete molecules to the CNS or for providing substrates for regrowth of neural structures. Most primary nonneuronal cells have the advantage of being easily obtainable from the prospective host for ex vivo retrovirus-mediated genetic manipulation (most will be mitotic in culture) and reimplantation as an autologous graft (circumventing the problem of immune rejection). As primary cells, they are unlikely to be tumorigenic. The most vexing problem for such systems remains the apparent loss of transgene expression from viral promoters after prolonged periods of engraftment. Much effort is currently being directed at optimizing sustained transgene expression by varying the promoters, by varying the cell types to be engineered, or by regulating expression by enhancing promoter function or substrate availability. While nonneuronal cells are excellent vehicles for achieving passive delivery of substances to the CNS, they lack the ability to incorporate into the host cytoarchitecture in a functional manner (e.g., make synaptic contacts). For this reason, not only may certain essential circuits not be re-formed, but the regulated release of certain substances through feedback loops may be missing. While apparently unimportant for some substances (e.g., ACh), for others (e.g., NGF), their unregulated, inappropriate, excessive, or ectopic release may actually be inimical to the host. Furthermore, the loss of foreign gene expression (the bane of gene therapy) may leave engineered nonneural cells incapacitated, whereas donor tissue originating from brain may intrinsically produce various CNS factors allowing correction to proceed despite inactivation of the introduced gene. In fact, CNS-derived tissue may provide as-yet-unrecognized endogenous neuralspecific substances which are equally as beneficial to the host as the gene in question. Thus, future developments in gene delivery to the brain for some conditions may emphasize using neurons or neural progenitors for ex vivo genetic manipulation (Fisher, 1997) and refining techniques for the direct injection of therapeutic genes into neurons in vivo (see Snyder and Fisher, 1996). For a wide variety of conditions, however, using nonneuronal cellular vehicles or even nonbiologic synthetic vehicles may be efficient, effective, and safe strategies for the passive delivery of therapeutic molecules to discrete regions of the CNS. In fact, this approach may come closer than any other to immediate human applications.
Collapse
Affiliation(s)
- E Y Snyder
- Department of Neurology, Harvard Medical School, Children's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
10
|
Taylor RM, Snyder EY. Widespread engraftment of neural progenitor and stem-like cells throughout the mouse brain. Transplant Proc 1997; 29:845-7. [PMID: 9123550 DOI: 10.1016/s0041-1345(96)00163-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R M Taylor
- Department of Animal Science, University of Sydney, NSW, Australia
| | | |
Collapse
|
11
|
Transplantation and Differentiation of Neural “Stem-Like” Cells: Possible Insights Into Development and Therapeutic Potential. ISOLATION, CHARACTERIZATION AND UTILIZATION OF CNS STEM CELLS 1997. [DOI: 10.1007/978-3-642-80308-6_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Lynch WP, Snyder EY, Qualtiere L, Portis JL, Sharpe AH. Late virus replication events in microglia are required for neurovirulent retrovirus-induced spongiform neurodegeneration: evidence from neural progenitor-derived chimeric mouse brains. J Virol 1996; 70:8896-907. [PMID: 8971019 PMCID: PMC190987 DOI: 10.1128/jvi.70.12.8896-8907.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
CasBrE is a neurovirulent murine retrovirus which induces a spongiform myeloencephalopathy in susceptible mice. Genetic mapping studies have indicated that sequences responsible for neurovirulence reside within the env gene. To address the question of direct envelope protein neuroxicity in the central nervous system (CNS), we have generated chimeric mice expressing the CasBrE envelope protein in cells of neuroectodermal origin. Specifically, the multipotent neural progenitor cell line C17.2 was engineered to express the CasBrE env gene as either gp70/p15E (CasE) or gp70 alone (CasES). CasE expression in these cells resulted in complete (>10(5)) interference of superinfection with Friend murine leukemia virus clone FB29, whereas CasES expression resulted in a 1.8-log-unit decrease in FB29 titer. Introduction of these envelope-expressing C17.2 cells into the brains of highly susceptible IRW mice resulted in significant engraftment as integral cytoarchitecturally correct components of the CNS. Despite high-level envelope protein expression from the engrafted cells, no evidence of spongiform neurodegeneration was observed. To examine whether early virus replication events were necessary for pathogenesis, C17.2 cells expressing whole virus were transplanted into mice in which virus replication in the host was specifically restricted by Fv-1 to preintegration events. Again, significant C17.2 cell engraftment and infectious virus expression failed to precipitate spongiform lesions. In contrast, transplantation of virus-expressing C17.2 progenitor cells in the absence of the Fv-1 restriction resulted in extensive spongiform neurodegeneration by 2 weeks postengraftment. Cytological examination indicated that infection had spread beyond the engrafted cells, and in particular to host microglia. Spongiform neuropathology in these animals was directly correlated with CasBrE env expression in microglia rather than expression from neural progenitor cells. These results suggest that the envelope protein of CasBrE is not itself neurotoxic but that virus infectious events beyond binding and fusion in microglia are necessary for the induction of CNS disease.
Collapse
Affiliation(s)
- W P Lynch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
13
|
Whittemore SR, Snyder EY. Physiological relevance and functional potential of central nervous system-derived cell lines. Mol Neurobiol 1996; 12:13-38. [PMID: 8732538 DOI: 10.1007/bf02740745] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Central nervous system (CNS)-derived neural cell lines have proven to be extremely useful for delineating mechanisms controlling such diverse phenomena as cell lineage choice and differentiation, synaptic maturation, neurotransmitter synthesis and release, and growth factor signalling. In addition, there has been hope that such lines might play pivotal roles in CNS gene therapy and repair. The ability of some neural cell lines to integrate normally into the CNS following transplantation and to express foreign, often corrective gene products in situ might offer potential therapeutic approaches to certain neurodegenerative diseases. Five general strategies have evolved to develop neural cell lines: isolation and cloning of spontaneous or mutagenically induced malignancies, targeted oncogenesis in transgenic mice, somatic cell fusion, growth factor mediated expansion of CNS progenitor or stem cells, and retroviral transduction of neuroepithelial precursors. in this article, we detail recent progress in these areas, focusing on those cell lines that have enabled novel insight into the mechanisms controlling neuronal cell lineage choice and differentiation, both in vitro and in vivo.
Collapse
Affiliation(s)
- S R Whittemore
- Department of Neurological Surgery, University of Miami, School of Medicine, FL, USA
| | | |
Collapse
|