1
|
Sathe D, Yoon S, Wang Z, Chen H, Wang J. Deconstruction of Polymers through Olefin Metathesis. Chem Rev 2024; 124:7007-7044. [PMID: 38787934 DOI: 10.1021/acs.chemrev.3c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The consumption of synthetic polymers has ballooned; so has the amount of post-consumer waste generated. The current polymer economy, however, is largely linear with most of the post-consumer waste being either landfilled or incinerated. The lack of recycling, together with the sizable carbon footprint of the polymer industry, has led to major negative environmental impacts. Over the past few years, chemical recycling technologies have gained significant traction as a possible technological route to tackle these challenges. In this regard, olefin metathesis, with its versatility and ease of operation, has emerged as an attractive tool. Here, we discuss the developments in olefin-metathesis-based chemical recycling technologies, including the development of new materials and the application of olefin metathesis to the recycling of commercial materials. We delve into structure-reactivity relationships in the context of polymerization-depolymerization behavior, how experimental conditions influence deconstruction outcomes, and the reaction pathways underlying these approaches. We also look at the current hurdles in adopting these technologies and relevant future directions for the field.
Collapse
Affiliation(s)
- Devavrat Sathe
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Seiyoung Yoon
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Zeyu Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Hanlin Chen
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
2
|
Liu J, Lyu J, Shen M, Zhao F. Using olefin metathesis reaction to modify solution polymerized styrene-butadiene rubber (SSBR) by for a more stable “green tire”. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
3
|
Burelo M, Gutiérrez S, Treviño-Quintanilla CD, Cruz-Morales JA, Martínez A, López-Morales S. Synthesis of Biobased Hydroxyl-Terminated Oligomers by Metathesis Degradation of Industrial Rubbers SBS and PB: Tailor-Made Unsaturated Diols and Polyols. Polymers (Basel) 2022; 14:polym14224973. [PMID: 36433100 PMCID: PMC9692933 DOI: 10.3390/polym14224973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Biobased hydroxyl-terminated polybutadiene (HTPB) was successfully synthesized in a one-pot reaction via metathesis degradation of industrial rubbers. Thus, polybutadiene (PB) and poly(styrene-butadiene-styrene) (SBS) were degraded via metathesis with high yields (>94%), using the fatty alcohol 10-undecen-1-ol as a chain transfer agent (CTA) and the second-generation Grubbs−Hoveyda catalyst. The identification of the hydroxyl groups (-OH) and the formation of biobased HTPB were verified by FT-IR and NMR. Likewise, the molecular weight and properties of the HTPB were controlled by changing the molar ratio of rubber to CTA ([C=C]/CTA) from 1:1 to 100:1, considering a constant molar ratio of the catalyst ([C=C]/Ru = 500:1). The number average molecular weight (Mn) ranged between 583 and 6580 g/mol and the decomposition temperatures between 134 and 220 °C. Moreover, the catalyst optimization study showed that at catalyst loadings as low as [C=C]/Ru = 5000:1, the theoretical molecular weight is in good agreement with the experimental molecular weight and the expected diols and polyols are formed. At higher ratios than those, the difference between theoretical and experimental molecular weight is wide, and there is no control over HTPB. Therefore, the rubber/CTA molar ratio and the amount of catalyst play an important role in PB degradation and HTPB synthesis. Biobased HTPB can be used to synthesize engineering design polymers, intermediates, fine chemicals, and in the polyurethane industry, and contribute to the development of environmentally friendly raw materials.
Collapse
Affiliation(s)
- Manuel Burelo
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Queretaro 76146, Mexico
- Correspondence: (M.B.); (S.G.); (C.D.T.-Q.)
| | - Selena Gutiérrez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
- Correspondence: (M.B.); (S.G.); (C.D.T.-Q.)
| | - Cecilia D. Treviño-Quintanilla
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Queretaro 76146, Mexico
- Correspondence: (M.B.); (S.G.); (C.D.T.-Q.)
| | - Jorge A. Cruz-Morales
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Araceli Martínez
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex. Hacienda de San José de la Huerta, Morelia 58190, Michoacán, Mexico
| | - Salvador López-Morales
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
4
|
Martínez A, Zárate-Saldaña D, Vargas J, Santiago AA. Unsaturated Copolyesters from Macrolactone/Norbornene: Toward Reaction Kinetics of Metathesis Copolymerization Using Ruthenium Carbene Catalysts. Int J Mol Sci 2022; 23:ijms23094521. [PMID: 35562910 PMCID: PMC9102099 DOI: 10.3390/ijms23094521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Unsaturated copolyesters are of great interest in polymer science due to their broad potential applications and sustainability. Copolyesters were synthesized from the ring-opening metathesis copolymerization of ω-6-hexadecenlactone (HDL) and norbornene (NB) using ruthenium-alkylidene [Ru(Cl2)(=CHPh)(1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)(PCy3)] (Ru1), [Ru(Cl)2(=CHPh)(PCy3)2] (Ru2), and ruthenium-vinylidene [RuCl2(=C=CH(p-C6H4CF3))(PCy3)2] (Ru3) catalysts, respectively, yielding HDL-NB copolymers with different ratios of the monomer HDL in the feed. The activity of N-heterocyclic-carbene (NHC) (Ru1) and phosphine (Ru2 and Ru3) ligands containing ruthenium-carbene catalysts were evaluated in the synthesis of copolymer HDL-NB. The catalysts Ru1 with an NHC ligand showed superior activity and stability over catalysts Ru2 and Ru3 bearing PCy3 ligands. The incorporation of the monomers in the copolymers determined by 1H-NMR spectroscopy was similar to that of the HDL-NB values in the feed. Experiments, at distinct monomer molar ratios, were carried out using the catalysts Ru1–Ru3 to determine the copolymerization reactivity constants by applying the Mayo–Lewis and Fineman–Ross methods. The copolymer distribution under equilibrium conditions was studied by the 13C NMR spectra, indicating that the copolymer HDL-NB is a gradient copolymer. The main factor determining the decrease in melting temperature is the inclusion of norbornene units, indicating that the PNB units permeate trough the HDL chains. The copolymers with different molar ratios [HDL]/[NB] have good thermal stability up to 411 °C in comparison with the homopolymer PHDL (384 °C). Further, the stress–strain measurements in tension for these copolymers depicted the appreciable increment in stress values as the NB content increases.
Collapse
Affiliation(s)
- Araceli Martínez
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex. Hacienda de San José de la Huerta, Morelia C.P. 58190, Michoacán, Mexico; (D.Z.-S.); (A.A.S.)
- Correspondence: ; Tel.: +52-5559042697
| | - Daniel Zárate-Saldaña
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex. Hacienda de San José de la Huerta, Morelia C.P. 58190, Michoacán, Mexico; (D.Z.-S.); (A.A.S.)
| | - Joel Vargas
- Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex. Hacienda de San José de la Huerta, Morelia C.P. 58190, Michoacán, Mexico;
| | - Arlette A. Santiago
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex. Hacienda de San José de la Huerta, Morelia C.P. 58190, Michoacán, Mexico; (D.Z.-S.); (A.A.S.)
| |
Collapse
|
5
|
Fluorinated nitrile-butadiene rubber (F-NBR) via metathesis degradation: Closed system or open system? Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
|
7
|
Hu G, Lin S, Zhao B, Pan Q. Synthesis and characterization of natural rubber‐based telechelic oligomers via olefin metathesis. J Appl Polym Sci 2021. [DOI: 10.1002/app.49899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guangwei Hu
- College of Chemistry, Chemical Engineering and Material Science Soochow University Suzhou China
| | - Shaohui Lin
- College of Chemistry, Chemical Engineering and Material Science Soochow University Suzhou China
| | - Boxin Zhao
- Department of Chemical Engineering University of Waterloo Waterloo Ontario Canada
| | - Qinmin Pan
- College of Chemistry, Chemical Engineering and Material Science Soochow University Suzhou China
| |
Collapse
|
8
|
Jones BH, Staiger C, Powers J, Herman JA, Román-Kustas J. Selectively Depolymerizable Polyurethanes from Unsaturated Polyols Cleavable by Olefin Metathesis. Macromol Rapid Commun 2020; 42:e2000571. [PMID: 33300207 DOI: 10.1002/marc.202000571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Indexed: 12/14/2022]
Abstract
This communication describes a novel series of linear and crosslinked polyurethanes (PUs) and their selective depolymerization under mild conditions. Two unique polyols are synthesized bearing unsaturated units in a configuration designed to favor ring-closing metathesis (RCM) to five- and six-membered cycloalkenes. These polyols are co-polymerized with toluene diisocyanate to generate linear PUs and trifunctional hexamethylene- and diphenylmethane-based isocyanates to generate crosslinked PUs. The polyol design is such that the RCM reaction cleaves the backbone of the polymer chain. Upon exposure to dilute solutions of Grubbs' catalyst under ambient conditions, the PUs are rapidly depolymerized to low molecular weight, soluble products bearing vinyl and cycloalkene functionalities. These functionalities enable further re-polymerization by traditional strategies for polymerization of double bonds. It is anticipated that this general approach can be expanded to develop a range of chemically recyclable condensation polymers that are readily depolymerized by orthogonal metathesis chemistry.
Collapse
Affiliation(s)
- Brad H Jones
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Chad Staiger
- Department of Photovoltaics and Materials Technology, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Jackson Powers
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Jeremy A Herman
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Jessica Román-Kustas
- Department of Materials Reliability, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| |
Collapse
|
9
|
Liu J, Sun J, Zhang Z, Yang H, Nie X. One-step Synthesis of End-Functionalized Hydrogenated Nitrile-Butadiene Rubber by Combining the Functional Metathesis with Hydrogenation. ChemistryOpen 2020; 9:374-380. [PMID: 32211282 PMCID: PMC7087459 DOI: 10.1002/open.201900369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/24/2020] [Indexed: 11/24/2022] Open
Abstract
End-functionalized hydrogenated polymers obtained from nitrile-butadiene rubber (NBR) yield new materials with suitable properties for a number of applications as sealing material and adhesives. We investigated the one-step synthesis of ester end-functionalized hydrogenated nitrile-butadiene rubber (EF-HNBR) by combining the functional metathesis with the hydrogenation of NBR in the presence of the 2nd generation Grubbs catalyst and a functionalized olefin as a chain transfer agent (CTA). We established the operating conditions for the effective production of saturated functional polymers with a high degree of hydrogenation, high chemo-selectivity and moderate molecular weight. The structures of the products were confirmed by FT-IR and 1H-NMR spectroscopy, rubber molecular weight, and distribution determined by using gel permeation chromatography (GPC); their thermal properties were determined by thermo-gravimetric analysis (TGA) and different scanning calorimetry (DSC).
Collapse
Affiliation(s)
- Juan Liu
- School of science North University of China Jiancaoping District of Taiyuan City Shanxi Province China
| | - Jingyu Sun
- Jinjiao high-tech (Shanghai) co. LTD Jianchuan Road Cangyuan Technology Park Shanghai China
| | - Zhengguo Zhang
- School of science North University of China Jiancaoping District of Taiyuan City Shanxi Province China
| | - Hui Yang
- Beijing Advanced Innovation Center for Soft Matter science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaojuan Nie
- School of science North University of China Jiancaoping District of Taiyuan City Shanxi Province China
| |
Collapse
|
10
|
Cp2ZrHCl induced catalytic chain scission of diene-based polymers under mild conditions: Influence of chemical environment around C=C bonds. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Affiliation(s)
- Peng Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chunjin Ai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Lanzhou Petrochemical Research Center, Petrochina, Lanzhou, 730060, China
| |
Collapse
|
12
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Zhu S. Polymer Reaction Engineering in China. MACROMOL REACT ENG 2015. [DOI: 10.1002/mren.201500052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shiping Zhu
- Canada Research Chair in Polymer Reaction Engineering; Department of Chemical Engineering; McMaster University; Hamilton Ontario L8S 4L8 Canada
| |
Collapse
|