1
|
Gast H, Horowitz A, Krupnik R, Barazany D, Lifshits S, Ben-Amitay S, Assaf Y. A Method for In-Vivo Mapping of Axonal Diameter Distributions in the Human Brain Using Diffusion-Based Axonal Spectrum Imaging (AxSI). Neuroinformatics 2023; 21:469-482. [PMID: 37036548 PMCID: PMC10406702 DOI: 10.1007/s12021-023-09630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/11/2023]
Abstract
In this paper we demonstrate a generalized and simplified pipeline called axonal spectrum imaging (AxSI) for in-vivo estimation of axonal characteristics in the human brain. Whole-brain estimation of the axon diameter, in-vivo and non-invasively, across all fiber systems will allow exploring uncharted aspects of brain structure and function relations with emphasis on connectivity and connectome analysis. While axon diameter mapping is important in and of itself, its correlation with conduction velocity will allow, for the first time, the explorations of information transfer mechanisms within the brain. We demonstrate various well-known aspects of axonal morphometry (e.g., the corpus callosum axon diameter variation) as well as other aspects that are less explored (e.g., axon diameter-based separation of the superior longitudinal fasciculus into segments). Moreover, we have created an MNI based mean axon diameter map over the entire brain for a large cohort of subjects providing the reference basis for future studies exploring relation between axon properties, its connectome representation, and other functional and behavioral aspects of the brain.
Collapse
Affiliation(s)
- Hila Gast
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Assaf Horowitz
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ronnie Krupnik
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Barazany
- The Strauss center for neuroimaging, Tel Aviv University, Tel Aviv, Israel
| | - Shlomi Lifshits
- Department of Statistics and Operations Research, Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Shani Ben-Amitay
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Strauss center for neuroimaging, Tel Aviv University, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Muke I, Sprenger A, Bobylev I, Wiemer V, Barham M, Neiss WF, Lehmann HC. Ultrastructural characterization of mitochondrial damage in experimental autoimmune neuritis. J Neuroimmunol 2020; 343:577218. [PMID: 32251941 DOI: 10.1016/j.jneuroim.2020.577218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
Data are sparse about mitochondrial damage in GBS and in its most frequently employed animal model, experimental autoimmune neuritis (EAN). We here characterized changes in mitochondrial content and morphology at different time points during EAN by use of ultrastructural imaging and immunofluorescent labelling. Histological examination revealed that demyelinated axons and their adjacent Schwann cells showed reduced mitochondrial content and remaining mitochondria appeared swollen with greater diameter in Schwann cells and unmyelinated axons. Our findings indicate that in EAN, particularly mitochondria in Schwann cells are damaged. Further studies are warranted to address whether these changes are amenable to novel, mitoprotective treatments.
Collapse
Affiliation(s)
- Ines Muke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Alina Sprenger
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Ilja Bobylev
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Valerie Wiemer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany
| | - Mohammed Barham
- Department of Anatomy I, Faculty of Medicine, University of Cologne, Germany
| | | | - Helmar Christoph Lehmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
3
|
Eliav U, Wehrli FW, Navon G. New insight into the organization of myelin water using deuterium NMR. Magn Reson Med 2020; 84:535-541. [DOI: 10.1002/mrm.28170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Uzi Eliav
- School of Chemistry Tel Aviv University Tel Aviv Israel
| | - Felix W. Wehrli
- Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Gil Navon
- School of Chemistry Tel Aviv University Tel Aviv Israel
| |
Collapse
|
4
|
Kakkar LS, Bennett OF, Siow B, Richardson S, Ianuş A, Quick T, Atkinson D, Phillips JB, Drobnjak I. Low frequency oscillating gradient spin-echo sequences improve sensitivity to axon diameter: An experimental study in viable nerve tissue. Neuroimage 2018; 182:314-328. [DOI: 10.1016/j.neuroimage.2017.07.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022] Open
|
5
|
Yoshimaru D, Takatsu Y, Suzuki Y, Miyati T, Hamada Y, Funaki A, Tabata A, Maruyama C, Shimada M, Tobari M, Nishino T. Diffusion kurtosis imaging in the assessment of liver function: Its potential as an effective predictor of liver function. Br J Radiol 2018; 92:20170608. [PMID: 30358410 DOI: 10.1259/bjr.20170608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES: We aimed to determine whether diffusion kurtosis imaging (DKI) analysis with the breath-hold technique can replace liver function results obtained from laboratory tests. METHODS: Patients (n = 79) suspected of having a hepatobiliary disease, and control group without liver diseases (n = 15) were examined with non-Gaussian diffusion-weighted imaging using a 3.0 T magnetic resonance imaging unit. Based on the findings of DKI, various blood serum parameters, including the indocyanine green (ICG) retention rate 15 min after an intravenous injection of ICG (ICG-R15) and mean kurtosis values and Child-Pugh and albumin-bilirubin (ALBI) scores, were calculated. In total, 17 patients were tested using ICG-R15. For evaluating liver function, correlations between the mean kurtosis value and the Child-Pugh score, ALBI score, and ICG-R15 value as indicators of liver function obtained from blood data were assessed using Spearman's rank correlation. In apparent diffusion coefficient as well, we assessed correlations with these indicators. RESULTS: The mean kurtosis value correlated with the Child-Pugh score (Spearman's rank-correlation coefficient, ρ = 0.3992; p < 0.0001). Moreover, the mean kurtosis value revealed a correlation with the ICG-R15 value (Spearman's rank-correlation coefficient, ρ = 0.5972; p = 0.00114). The correlation between the mean kurtosis value and the ALBI score was the poorest among these (Spearman's rank-correlation coefficient, ρ = 0.3395; p = 0.0008). CONCLUSION: Liver function correlating with the Child-Pugh score and ICG-R15 value can be quantitatively estimated using the mean kurtosis value obtained from DKI analysis. DKI analysis with the breath-hold technique can be used to determine liver function instead of performing laboratory tests. ADVANCES IN KNOWLEDGE: Previous studies have not evaluated liver function in vivo using DKI.
Collapse
Affiliation(s)
- Daisuke Yoshimaru
- 1 Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan.,2 Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kodatsuno , Kanazawa, Ishikawa , Japan
| | - Yasuo Takatsu
- 3 Department of Radiological Technology, Tokushima Bunri University , Kagawa , Japan
| | - Yuichi Suzuki
- 4 Department of Radiological Service, The University of Tokyo Hospital , Tokyo , Japan
| | - Toshiaki Miyati
- 2 Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kodatsuno , Kanazawa, Ishikawa , Japan
| | - Yuhki Hamada
- 1 Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| | - Ayumu Funaki
- 1 Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| | - Ayumi Tabata
- 1 Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| | - Chifumi Maruyama
- 1 Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| | - Masahiko Shimada
- 5 Department of gastroenterological medicine, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| | - Maki Tobari
- 5 Department of gastroenterological medicine, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| | - Takayoshi Nishino
- 5 Department of gastroenterological medicine, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| |
Collapse
|
6
|
Yoshimaru D, Miyati T, Suzuki Y, Hamada Y, Mogi N, Funaki A, Tabata A, Masunaga A, Shimada M, Tobari M, Nishino T. Diffusion kurtosis imaging with the breath-hold technique for staging hepatic fibrosis: A preliminary study. Magn Reson Imaging 2017; 47:33-38. [PMID: 29158186 DOI: 10.1016/j.mri.2017.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE To evaluate the potential of diffusion kurtosis imaging (DKI) analysis with the breath-hold technique to assess the stage or classify hepatic fibrosis. MATERIALS AND METHODS Patients (n=67) suspected of having a disease of the hepatobiliary system examined by diffusion-weighted imaging (DWI) using a 3.0-T magnetic resonance imaging unit were enrolled in this study. To evaluate hepatic fibrosis, mean kurtosis, Mean apparent diffusion (MD) and apparent diffusion coefficient (ADC) values were compared between groups with varying fibrosis; F0-F1, F2-F3, and F4. The Steel-Dwass test was used for overall comparisons. Correlations between the fibrosis stage and mean kurtosis, MD or ADC values were assessed using Spearman's rank correlation. Discriminative capacities of DKI were evaluated using receiver operating characteristic (ROC) analysis. RESULTS There were significant differences in ADC, MD and mean kurtosis values between non-cirrhosis and cirrhosis groups. Moreover, the mean kurtosis value was statistically different between the F0-F1 and F2-F3, F0-F1 and F4, and F2-F3 and F4 groups (all P<0.05). MD value was statistically different between the F0-F1 and F4 groups, and F2-F3 and F4 groups (all P<0.05). However, there was no significant difference in ADC values for all groups (all P>0.05). In addition, mean kurtosis and MD values significantly correlated with the extent of hepatic fibrosis staging (Spearman's rank correlation coefficient, ρ=0.851 and -0.672; P<0.0001). However, ADC values did not reveal a correlation with the extent of hepatic fibrosis staging (ρ=-0.227; P=0.078). According to the ROC analysis for the assessment of no fibrosis (F0), fibrosis (≥F1), and advanced fibrosis (≥F2) and liver cirrhosis, the DKI cut-off values were 0.923, 0.955, and 1.11, respectively. CONCLUSION Using the DKI method with the breath-hold technique in the liver, the stage of hepatic fibrosis can be classified into normal and early hepatic fibrosis, substantial stages, and advanced hepatic fibrosis.
Collapse
Affiliation(s)
- Daisuke Yoshimaru
- Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan; Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kodatsuno, Kanazawa, Ishikawa, Japan.
| | - Toshiaki Miyati
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kodatsuno, Kanazawa, Ishikawa, Japan
| | - Yuichi Suzuki
- Department of Radiological Service, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuhki Hamada
- Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| | - Nozomi Mogi
- Department of Medical Technology, Tokyo Women's Medical University Medical Center East, Nishiogu, Arakawa-ku, Tokyo, Japan
| | - Ayumu Funaki
- Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| | - Ayumi Tabata
- Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| | - Atsuko Masunaga
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| | - Masahiko Shimada
- Department of Gastroenterological Medicine, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| | - Maki Tobari
- Department of Gastroenterological Medicine, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| | - Takayoshi Nishino
- Department of Gastroenterological Medicine, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| |
Collapse
|
7
|
Patterns of intersecting fiber arrays revealed in whole muscle with generalized Q-space imaging. Biophys J 2016; 108:2740-9. [PMID: 26039175 DOI: 10.1016/j.bpj.2015.03.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/01/2015] [Accepted: 03/31/2015] [Indexed: 01/15/2023] Open
Abstract
The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed "generalized Q-space imaging", that considers the effect of spatially distributed diffusion-weighted magnetic field gradients and diffusion sensitivities on the morphology of Q-space. This approach results in a subvoxel scaled probability distribution function whose shape correlates with local fiber orientation. The principal fiber populations identified within these probability distribution functions can then be associated by streamline methods to create multivoxel tractlike constructs that depict the macroscale orientation of myofiber arrays. We performed a simulation of Q-space input parameters, including magnetic field gradient strength and direction, diffusion sensitivity, and diffusional sampling to determine the optimal achievable fiber angle separation in the minimum scan time. We applied this approach to resolve intravoxel crossing myofiber arrays in the setting of the human tongue, an organ with anatomic complexity based on the presence of hierarchical arrays of intersecting myocytes. Using parameters defined by simulation, we imaged at 3T the fanlike configuration of the human genioglossus and the laterally positioned merging fibers of the styloglossus, inferior longitudinalis, chondroglossus, and verticalis. Comparative scans of the excised mouse tongue at 7T demonstrated similar midline and lateral crossing fiber patterns, whereas histological analysis confirmed the presence and distribution of these myofiber arrays at the microscopic scale. Our results demonstrate a magnetic resonance method for acquiring and displaying diffusional data that defines highly ordered myofiber patterns in architecturally complex tissue. Such patterns suggest inherent multiscale fiber organization and provide a basis for structure-function analyses in vivo and in model tissues.
Collapse
|
8
|
Lam WW, Jbabdi S, Miller KL. A model for extra-axonal diffusion spectra with frequency-dependent restriction. Magn Reson Med 2014; 73:2306-20. [PMID: 25046481 PMCID: PMC4682484 DOI: 10.1002/mrm.25363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE In the brain, there is growing interest in using the temporal diffusion spectrum to characterize axonal geometry in white matter because of the potential to be more sensitive to small pores compared to conventional time-dependent diffusion. However, analytical expressions for the diffusion spectrum of particles have only been derived for simple, restricting geometries such as cylinders, which are often used as a model for intra-axonal diffusion. The extra-axonal space is more complex, but the diffusion spectrum has largely not been modeled. We propose a model for the extra-axonal space, which can be used for interpretation of experimental data. THEORY AND METHODS An empirical model describing the extra-axonal space diffusion spectrum was compared with simulated spectra. Spectra were simulated using Monte Carlo methods for idealized, regularly and randomly packed axons over a wide range of packing densities and spatial scales. The model parameters are related to the microstructural properties of tortuosity, axonal radius, and separation for regularly packed axons and pore size for randomly packed axons. RESULTS Forward model predictions closely matched simulations. The model fitted the simulated spectra well and accurately estimated microstructural properties. CONCLUSIONS This simple model provides expressions that relate the diffusion spectrum to biologically relevant microstructural properties.
Collapse
Affiliation(s)
- Wilfred W Lam
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Saâd Jbabdi
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Karla L Miller
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Anderson SW, Barry B, Soto J, Ozonoff A, O'Brien M, Jara H. Characterizing non-gaussian, high b-value diffusion in liver fibrosis: Stretched exponential and diffusional kurtosis modeling. J Magn Reson Imaging 2013; 39:827-34. [PMID: 24259401 DOI: 10.1002/jmri.24234] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/30/2013] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To employ the stretched exponential and diffusional kurtosis models to study the non-Gaussian behavior of diffusion-related signal decay of the liver in an animal model of hepatic fibrosis. MATERIALS AND METHODS High b-value diffusion imaging data (up to 3500 s/mm(2) ) of ex vivo murine liver specimens was acquired using a 9.4 T MRI scanner. A simple monoexponential model as well as the stretched exponential and diffusional kurtosis models were employed to analyze the diffusion data, the results of which were correlated with liver histopathology. RESULTS Strong correlations between histopathological assessments of hepatic fibrosis and parameters derived from the stretched exponential and diffusional kurtosis models were found. Using Akaike's Information Criterion (AIC) analyses, the kurtosis model was found to result in an improved fit of the high b-value diffusion data when compared to both the monoexponential and stretched exponential models. CONCLUSION The use of diffusional kurtosis or stretched exponential models, applied to the characterization of the non-Gaussian behavior of the molecular diffusion of liver exhibited over an extended b-factor range, affords the potential for an increased capability of magnetic resonance imaging (MRI) in the characterization of chronic liver disease.
Collapse
Affiliation(s)
- Stephan W Anderson
- Boston University Medical Center, Department of Radiology, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kafri M, Sasson E, Assaf Y, Balash Y, Aiznstein O, Hausdorff JM, Giladi N. High-level gait disorder: associations with specific white matter changes observed on advanced diffusion imaging. J Neuroimaging 2012; 23:39-46. [PMID: 22928624 DOI: 10.1111/j.1552-6569.2012.00734.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE High-level gait disorder (HLGD) is a debilitating disorder causing mobility decline in the elderly. Although its clinical characteristics are well described, its anatomical and pathophysiological underpinnings are poorly understood. This study examined the anatomical distribution of white matter (WM) changes in patients with mild to moderate HLGD of the cautious/disequilibrium type, using advanced magnetic resonance imaging (MRI) methods. METHODS Thirteen patients with HLGD, 9 elderly and 13 middle-aged healthy controls were scanned using diffusion tensor imaging, Q-space imaging, and conventional MRI. The regions of significant differences between the HLGD group and the elderly control group were defined, and the mean fractional anisotropy and displacement values of these areas were extracted. RESULTS The HLGD patients had lower fractional anisotropy and higher displacement values in regions related to the motor system, including those along the corticospinal tract and the superior cerebellar peduncles, as well as in cognitive and affective-related areas, including the anterior limbs of the internal capsule and the genu of the corpus callosum. CONCLUSIONS The anatomical distribution associated with HLGD of the cautious/disequilibrium type involves WM pathways that convey motor-related, cognitive and affective-related functions. The underlying pathological process leading to these changes most probably includes demyelination.
Collapse
Affiliation(s)
- Michal Kafri
- Functional Brain Center, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
11
|
Anderson SW, Barry B, Soto JA, Ozonoff A, O'Brien M, Jara H. Quantifying hepatic fibrosis using a biexponential model of diffusion weighted imaging in ex vivo liver specimens. Magn Reson Imaging 2012; 30:1475-82. [PMID: 22921938 DOI: 10.1016/j.mri.2012.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/04/2012] [Accepted: 05/14/2012] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to evaluate the non-Gaussian behavior of diffusion related signal decay of the ex vivo murine liver tissues from a dietary model of hepatic fibrosis. To this end, a biexponential formalism was used to model high b-value diffusion imaging (up to 3500 s/mm(2)), the findings of which were correlated with liver histopathology and compared to a simple monoexponential model. The presence of a major, fast diffusing component and a minor, slow diffusing component was demonstrated. With increasing hepatic fibrosis, the fractional contribution of the fast diffusing component decreased, as did the diffusion coefficient of the fast diffusing component. Strong correlation between the degrees of liver fibrosis and a two-predictor regression model incorporating parameters of the biexponential model was found. Using Akaike's Information Criterion analyses, the biexponential model resulted in an improved fit of the high b-value diffusion data when compared to the monoexponential model.
Collapse
Affiliation(s)
- Stephan W Anderson
- Department of Radiology, Boston University Medical Center, Boston, MA 02218, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Barazany D, Basser PJ, Assaf Y. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. ACTA ACUST UNITED AC 2009; 132:1210-20. [PMID: 19403788 DOI: 10.1093/brain/awp042] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Here, we present the first in vivo non-invasive measurement of the axon diameter distribution in the rat corpus callosum. Previously, this measurement was only possible using invasive histological methods. The axon diameter, along with other physical properties, such as the intra-axonal resistance, membrane resistance and capacitance etc. helps determine many important functional properties of nerves, such as their conduction velocity. In this work, we provide a novel magnetic resonance imaging method called AxCaliber, which can resolve the distinct signatures of trapped water molecules diffusing within axons as well as water molecules diffusing freely within the extra-axonal space. Using a series of diffusion weighted magnetic resonance imaging brain scans, we can reliably infer both the distribution of axon diameters and the volume fraction of these axons within each white matter voxel. We were able to verify the known microstructural variation along the corpus callosum of the rat from the anterior (genu) to posterior (splenium) regions. AxCaliber yields a narrow distribution centered approximately 1 microm in the genu and splenium and much broader distributions centered approximately 3 microm in the body of the corpus callosum. The axon diameter distribution found by AxCaliber is generally broader than those usually obtained by histology. One factor contributing to this difference is the significant tissue shrinkage that results from histological preparation. To that end, AxCaliber might provide a better estimate of the in vivo morphology of white matter. Being a magnetic resonance imaging based methodology, AxCaliber has the potential to be used in human scanners for morphological studies of white matter in normal and abnormal development, and white matter related diseases.
Collapse
Affiliation(s)
- Daniel Barazany
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
13
|
Ong HH, Wright AC, Wehrli SL, Souza A, Schwartz ED, Hwang SN, Wehrli FW. Indirect measurement of regional axon diameter in excised mouse spinal cord with q-space imaging: simulation and experimental studies. Neuroimage 2008; 40:1619-32. [PMID: 18342541 DOI: 10.1016/j.neuroimage.2008.01.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/30/2007] [Accepted: 01/05/2008] [Indexed: 11/17/2022] Open
Abstract
Q-space imaging (QSI), a diffusion MRI technique, can provide quantitative tissue architecture information at cellular dimensions not amenable by conventional diffusion MRI. By exploiting regularities in molecular diffusion barriers, QSI can estimate the average barrier spacing such as the mean axon diameter in white matter (WM). In this work, we performed ex vivo QSI on cervical spinal cord sections from healthy C57BL/6 mice at 400 MHz using a custom-designed uniaxial 50T/m gradient probe delivering a 0.6 microm displacement resolution capable of measuring axon diameters on the scale of 1 microm. After generating QSI-derived axon diameter maps, diameters were calculated using histology from seven WM tracts (dorsal corticospinal, gracilis, cuneatus, rubrospinal, spinothalamic, reticulospinal, and vestibulospinal tracts) each with different axon diameters. We found QSI-derived diameters from regions drawn in the seven WM tracts (1.1 to 2.1 microm) to be highly correlated (r(2)=0.95) with those calculated from histology (0.8 to 1.8 microm). The QSI-derived values overestimated those obtained by histology by approximately 20%, which is likely due to the presence of extra-cellular signal. Finally, simulations on images of synthetic circular axons and axons from histology suggest that QSI-derived diameters are informative despite diameter and axon shape variation and the presence of intra-cellular and extra-cellular signal. QSI may be able to quantify nondestructively changes in WM axon architecture due to pathology or injury at the cellular level.
Collapse
Affiliation(s)
- Henry H Ong
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Perea W, Cannella M, Yang J, Vega AJ, Polenova T, Marcolongo M. 2H double quantum filtered (DQF) NMR spectroscopy of the nucleus pulposus tissues of the intervertebral disc. Magn Reson Med 2007; 57:990-9. [PMID: 17534920 DOI: 10.1002/mrm.21231] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Deuterium (2H) double-quantum filtered (DQF) NMR spectroscopy of nucleus pulposus (NP) tissues from human intervertebral discs is reported. The DQF spectral intensities, DQ build-up rates, and DQF-detected rotating-frame spin-lattice relaxation times are sensitive to the degree of hydration of the NP tissue, and display a monotonous correlation with age between 15 and 80 years. The implications of this work are that the changes in water dynamics as detected via DQF NMR spectroscopy may be used as a probe of tissue degeneration in NP, particularly in the early stages of degeneration to which most standard NMR methods are not sensitive.
Collapse
Affiliation(s)
- William Perea
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | |
Collapse
|
15
|
Umezawa E, Yoshikawa M, Yamaguchi K, Ueoku S, Tanaka E. q-Space imaging using small magnetic field gradient. Magn Reson Med Sci 2007; 5:179-89. [PMID: 17332708 DOI: 10.2463/mrms.5.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
q-Space diffusion analysis is a method to obtain the probability density function of the translational displacement of diffusing water molecules. Several quantities can be extracted from the function that indicate a characteristic of the water diffusion in tissue, e.g., the mean displacement of the diffusion, probability for zero displacement, and kurtosis of the function. These quantities are expected to give information about the microstructure of tissues in addition to that obtained from the apparent diffusion coefficient (ADC); however, this method requires high q (i.e., high b) values, which are undesirable in practical applications of the method using clinical magnetic resonance (MR) imaging equipment. We propose a method to obtain certain quantities that indicate a characteristic of the diffusion and that uses low q-value measurements. The quantities we can obtain are the moments of translational displacement, R; the n-th order moment is defined as the average of Rn (n: integer). Kurtosis can also be calculated from the second and fourth moments. We tried to map the moments and kurtosis using clinical MR imaging equipment. We also estimated the inherent errors of the moments obtained. Our method requires precision in measuring spin echo signals and setting q values rather than using high q-value measurements. Although our results show that further error reductions are desired, our method is workable using ordinary clinical MR imaging equipment.
Collapse
Affiliation(s)
- Eizou Umezawa
- School of Health Sciences, Fujita Health University, Aichi, Japan.
| | | | | | | | | |
Collapse
|
16
|
Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage 2005; 27:48-58. [PMID: 15979342 DOI: 10.1016/j.neuroimage.2005.03.042] [Citation(s) in RCA: 584] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 01/11/2005] [Accepted: 03/29/2005] [Indexed: 11/27/2022] Open
Abstract
High b value diffusion-weighted images sampled at high angular resolution were analyzed using a composite hindered and restricted model of diffusion (CHARMED). Measurements and simulations of diffusion in white matter using CHARMED provide an unbiased estimate of fiber orientation with consistently smaller angular uncertainty than when calculated using a DTI model or with a dual tensor model for any given signal-to-noise level. Images based on the population fraction of the restricted compartment provide a new contrast mechanism that enhances white matter like DTI. Nevertheless, it is assumed that these images might be more sensitive than DTI to white matter disorders. We also provide here an experimental design and analysis framework to implement CHARMED MRI that is feasible on human clinical scanners.
Collapse
Affiliation(s)
- Yaniv Assaf
- Functional Brain Imaging Unit, The Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | | |
Collapse
|
17
|
Assaf Y, Chapman J, Ben-Bashat D, Hendler T, Segev Y, Korczyn AD, Graif M, Cohen Y. White matter changes in multiple sclerosis: correlation of q-space diffusion MRI and 1H MRS. Magn Reson Imaging 2005; 23:703-10. [PMID: 16198825 DOI: 10.1016/j.mri.2005.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 04/22/2005] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To explore the diagnostic usefulness of high b-value diffusion magnetic resonance brain imaging ("q-space" imaging) in multiple sclerosis (MS). More specifically, we aimed at evaluating the ability of this methodology to identify tissue damage in the so-called normal-appearing white matter (NAWM). DESIGN In this study we examined the correlation between q-space diffusion imaging and magnetic resonance spectroscopy (MRS)-based two-dimensional 1H chemical shift imaging. Eight MS patients with different degree of disease severity and seven healthy subjects were scanned in a 1.5-T magnetic resonance imaging (MRI) scanner. The MRI protocol included diffusion tensor imaging (DTI) (with bmax of 1000 s/mm2), high b-value diffusion-weighted imaging (with bmax of 14,000 s/mm2) and 2D chemical shift imaging. The high b-value data set was analyzed using the q-space methodology to produce apparent displacement and probability maps. RESULTS We found that the q-space diffusion displacement and probability image intensities correlated well with N-acetylaspartate levels (r=.61 and .54, respectively). Furthermore, NAWM that was abnormal on MRS was also found to be abnormal using q-space diffusion imaging. In these areas, the q-space displacement values increased from 3.8+/-0.2 to 4.6+/-0.6 microm (P<.02), the q-space probability values decreased from 7.4+/-0.3 to 6.8+/-0.3 (P<.002), while DTI revealed only a small, but still significant, reduction in fractional anisotropy values from 0.40+/-0.02 to 0.37+/-0.02 (P<.05). CONCLUSION High b-value diffusion imaging can detect tissue damage in the NAWM of MS patients. Despite the theoretical limitation of this method, in practice it provides additional information which is clinically relevant for detection of tissue damage not seen in conventional imaging techniques.
Collapse
Affiliation(s)
- Yaniv Assaf
- Functional Brain Imaging Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Assaf Y, Freidlin RZ, Rohde GK, Basser PJ. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med 2005; 52:965-78. [PMID: 15508168 DOI: 10.1002/mrm.20274] [Citation(s) in RCA: 356] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To characterize anisotropic water diffusion in brain white matter, a theoretical framework is proposed that combines hindered and restricted models of water diffusion (CHARMED) and an experimental methodology that embodies features of diffusion tensor and q-space MRI. This model contains a hindered extra-axonal compartment, whose diffusion properties are characterized by an effective diffusion tensor, and an intra-axonal compartment, whose diffusion properties are characterized by a restricted model of diffusion within cylinders. The hindered model primarily explains the Gaussian signal attenuation observed at low b values; the restricted non-Gaussian model does so at high b. Both high and low b data obtained along different directions are required to estimate various microstructural parameters of the composite model, such as the nerve fiber orientation(s), the T2-weighted extra- and intra-axonal volume fractions, and principal diffusivities. The proposed model provides a description of restricted diffusion in 3D given by a 3D probability distribution (average propagator), which is obtained by 3D Fourier transformation of the estimated signal attenuation profile. The new model is tested using synthetic phantoms and validated on excised spinal cord tissue. This framework shows promise in determining the orientations of two or more fiber compartments more precisely and accurately than with diffusion tensor imaging.
Collapse
Affiliation(s)
- Yaniv Assaf
- Functional Brain Imaging Unit, The Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Israel.
| | | | | | | |
Collapse
|
19
|
Assaf Y, Mayk A, Eliash S, Speiser Z, Cohen Y. Hypertension and neuronal degeneration in excised rat spinal cord studied by high-b value q-space diffusion magnetic resonance imaging. Exp Neurol 2003; 184:726-36. [PMID: 14769364 DOI: 10.1016/s0014-4886(03)00274-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2003] [Revised: 05/11/2003] [Accepted: 05/19/2003] [Indexed: 11/21/2022]
Abstract
Hypertension is one of the major risk factors of stroke and vascular dementia (VaD). We used stroke prone spontaneous hypertensive rats (SPSHRs) as a model for neuronal degeneration frequently occurring in humans with vascular disease. Recently, high b value q-space diffusion-weighted imaging (DWI) was shown to be very sensitive to the pathophysiological state of the white matter. We studied the spinal cords of SPSHR rats ex vivo after the appearance of motor impairments using diffusion anisotropy and q-space diffusion imaging (measured at a high b value of up to 1 x 10(5) s/mm(2)). The diffusion anisotropy images computed from low b value data set (b(max) approximately 2500 s/mm(2)) showed a small but statistically significant decrease (approximately 12%, P < 0.05) in the diffusion anisotropy in the spinal cords of the SPSHR group as compared to control rats. However, more significant changes were found in the high b value q-space diffusion images. The q-space displacement values in the white matter of the SPSHR group were found to be higher by more than 70% (P < 0.002) than that of the control group. These observations concurred with electron microscopy (EM) that showed significant demyelination in the spinal cords of the SPSHR group. These results seem to indicate that high b value q-space DWI might be a sensitive method for following demyelination and axonal loss associated with vascular insults.
Collapse
Affiliation(s)
- Yaniv Assaf
- TEVA Pharmaceutical Industries Ltd. and Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | | | |
Collapse
|
20
|
Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2003; 16:56-65. [PMID: 12619641 DOI: 10.1002/nbm.799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
21
|
Cohen Y, Assaf Y. High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues - a technical review. NMR IN BIOMEDICINE 2002; 15:516-542. [PMID: 12489099 DOI: 10.1002/nbm.778] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This review deals with high b-value q-space diffusion-weighted MRI (DW-MRI) of neuronal tissues. It is well documented that at sufficiently high b-values (and high q-values) neuronal water signal decay in diffusion experiments is not mono-exponential. This implies the existence of more than one apparent diffusing component or evidence for restriction. The assignment of the different apparent diffusing components to real physical entities is not straightforward. However, the apparent slow diffusing component that was found to be restricted to a compartment of a few microns, if originating mainly from a specific pool and if assigned correctly, may potentially be used to obtain more specific MR images with regard to specific pathologies of the CNS. This review examines the utility of analyzing high b-value diffusion MRS and MRI data using the q-space approach introduced by Callaghan and by Cory and Garroway. This approach provides displacement probability maps that emphasize, at long diffusion times, the characteristics of the apparent slow diffusing component. Examples from excised spinal cord, where the experimental conditions for which the q-space analysis of MR diffusion data was developed can be met or approached will be presented. Then examples from human MS patients, where q-space requirement for the short gradient pulse is clearly violated, are presented. In the excised spinal cord studies, this approach was used to study spinal cord maturation and trauma, and was found to be more sensitive than other conventional methods in following spinal cord degeneration in an experimental model of vascular dementia (VaD). High b-value q-space DWI was also recently used to study healthy and MS diseased human brains. This approach was found to be very sensitive to the disease load in MS, compared with other conventional MRI methods, especially in the normal appearing white matter (NAWM) of MS brains. Finally, the potential diagnostic capacity embedded in high b-value q-space analyzed diffusion MR images is discussed. The potentials and caveats of this approach are outlined and experimental data are presented that show the effect of violating the short gradient pulse (SGP) approximation on the extracted parameters from the q-space analysis.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Israel.
| | | |
Collapse
|