1
|
Abstract
Mounting evidence shows the great promise of nanoparticle drug delivery systems (nano-DDSs) to improve delivery efficiency and reduce off-target adverse effects. By tracking drug delivery and distribution, monitoring nanoparticle degradation and drug release, aiding and optimizing treatment planning, and directing the design of more robust nano-DDSs, image guidance has become a vital component of nanomedicine. Recently, chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as an attempting imaging method for achieving image-guided drug delivery. One of the unbeatable advantages of CEST MRI is its ability to detect diamagnetic compounds that cannot be detected using conventional MRI methods, making a broad spectrum of bioorganic agents, natural compounds, even nano-carriers directly MRI detectable in a high-spatial-resolution manner. To date, CEST MRI has become a versatile and powerful imaging technology for non-invasive in vivo tracking of nanoparticles and their loaded drugs. In this review, we will provide a concise overview of different forms of recently developed, CEST MRI trackable nano-DDSs, including liposomes, polymeric nanoparticles, self-assembled drug-based nanoparticles, and carbon dots. The potential applications and future perspectives will also be discussed.
Collapse
Affiliation(s)
- Zheng Han
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | | |
Collapse
|
2
|
Zu Z, Lin EC, Louie EA, Xu J, Li H, Xie J, Lankford CL, Chekmenev EY, Swanson SD, Does MD, Gore JC, Gochberg DF. Relayed nuclear Overhauser enhancement sensitivity to membrane Cho phospholipids. Magn Reson Med 2020; 84:1961-1976. [PMID: 32243662 PMCID: PMC8238412 DOI: 10.1002/mrm.28258] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Phospholipids are key constituents of cell membranes and serve vital functions in the regulation of cellular processes; thus, a method for in vivo detection and characterization could be valuable for detecting changes in cell membranes that are consequences of either normal or pathological processes. Here, we describe a new method to map the distribution of partially restricted phospholipids in tissues. METHODS The phospholipids were measured by signal changes caused by relayed nuclear Overhauser enhancement-mediated CEST between the phospholipid Cho headgroup methyl protons and water at around -1.6 ppm from the water resonance. The biophysical basis of this effect was examined by controlled manipulation of head group, chain length, temperature, degree of saturation, and presence of cholesterol. Additional experiments were performed on animal tumor models to evaluate potential applications of this novel signal while correcting for confounding contributions. RESULTS Negative relayed nuclear Overhauser dips in Z-spectra were measured from reconstituted Cho phospholipids with cholesterol but not for other Cho-containing metabolites or proteins. Significant contrast was found between tumor and contralateral normal tissue signals in animals when comparing both the measured saturation transfer signal and a more specific imaging metric. CONCLUSION We demonstrated specific relayed nuclear Overhauser effects in partially restricted phospholipid phantoms and similar effects in solid brain tumors after correcting for confounding signal contributions, suggesting possible translational applications of this novel molecular imaging method, which we name restricted phospholipid transfer.
Collapse
Affiliation(s)
- Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eugene C. Lin
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth A. Louie
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Deparment of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Hua Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
- Deparment of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Jingping Xie
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| | - Christopher L. Lankford
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Scott D. Swanson
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Mark D. Does
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Deparment of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Daniel F. Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Deparment of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
3
|
Tang X, Dai Z, Xiao G, Yan G, Shen Z, Zhang T, Zhang G, Zhuang Z, Shen Y, Zhang Z, Hu W, Wu R. Nuclear Overhauser Enhancement-Mediated Magnetization Transfer Imaging in Glioma with Different Progression at 7 T. ACS Chem Neurosci 2017; 8:60-66. [PMID: 27792315 DOI: 10.1021/acschemneuro.6b00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glioma is a malignant neoplasm affecting the central nervous system. The conventional approaches to diagnosis, such as T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and contrast-enhanced T1WI, give an oversimplified representation of anatomic structures. Nuclear Overhauser enhancement (NOE) imaging is a special form of magnetization transfer (MT) that provides a new way to detect small solute pools through indirect measurement of attenuated water signals, and makes it possible to probe semisolid macromolecular protons. In this study, we investigated the correlation between the effect of NOE-mediated imaging and progression of glioma in a rat tumor model. We found that the NOE signal decreased in tumor region, and signal of tumor center and peritumoral normal tissue markedly decreased with growth of the glioma. At the same time, NOE signal in contralateral normal tissue dropped relatively late (at about day 16-20 after implanting the glioma cells). NOE imaging is a new contrast method that may provide helpful insights into the pathophysiology of glioma with regard to mobile proteins, lipids, and other metabolites. Further, NOE images differentiate normal brain tissue from glioma tissue at a molecular level. Our study indicates that NOE-mediated imaging is a new and promising approach for estimation of tumor progression.
Collapse
Affiliation(s)
- Xiangyong Tang
- Department of Medical Imaging, second Affiliated Hospital, Shantou University Medical College , Shantou 515041, China
| | - Zhuozhi Dai
- Department of Medical Imaging, second Affiliated Hospital, Shantou University Medical College , Shantou 515041, China
- Department of Biomedical Engineering, Faculty of Medicine, University of Alberta , Edmonton T6G 2 V2, Canada
| | - Gang Xiao
- Department of Mathematics and Statistics, Hanshan Normal University , Chaozhou 521041, China
| | - Gen Yan
- Department of Medical Imaging, second Affiliated Hospital, Shantou University Medical College , Shantou 515041, China
| | - Zhiwei Shen
- Department of Medical Imaging, second Affiliated Hospital, Shantou University Medical College , Shantou 515041, China
| | - Tao Zhang
- The First Hospital of Changsha , Changsha, Hunan 430100, China
| | - Guishan Zhang
- Department of Medical Imaging, second Affiliated Hospital, Shantou University Medical College , Shantou 515041, China
| | - Zerui Zhuang
- Department of Medical Imaging, second Affiliated Hospital, Shantou University Medical College , Shantou 515041, China
| | - Yuanyu Shen
- Department of Medical Imaging, second Affiliated Hospital, Shantou University Medical College , Shantou 515041, China
| | - Zhiyan Zhang
- Department of Medical Imaging, second Affiliated Hospital, Shantou University Medical College , Shantou 515041, China
| | - Wei Hu
- Department of Medical Imaging, second Affiliated Hospital, Shantou University Medical College , Shantou 515041, China
| | - Renhua Wu
- Department of Medical Imaging, second Affiliated Hospital, Shantou University Medical College , Shantou 515041, China
- Provincial Key Laboratory of Medical Molecular Imaging , Shantou, Guangdong 515041, China
| |
Collapse
|
4
|
Zhang XY, Wang F, Jin T, Xu J, Xie J, Gochberg DF, Gore JC, Zu Z. MR imaging of a novel NOE-mediated magnetization transfer with water in rat brain at 9.4 T. Magn Reson Med 2016; 78:588-597. [PMID: 27604612 DOI: 10.1002/mrm.26396] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/05/2016] [Accepted: 08/07/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE To detect, map, and quantify a novel nuclear Overhauser enhancement (NOE)-mediated magnetization transfer (MT) with water at approximately -1.6 ppm [NOE(-1.6)] in rat brain using MRI. METHODS Continuous wave MT sequences with a variety of radiofrequency irradiation powers were optimized to achieve the maximum contrast of this NOE(-1.6) effect at 9.4 T. The distribution of effect magnitudes, resonance frequency offsets, and line widths in healthy rat brains and the differences of the effect between tumors and contralateral normal brains were imaged and quantified using a multi-Lorentzian fitting method. MR measurements on reconstituted model phospholipids as well as two cell lines (HEK293 and 9L) were also performed to investigate the possible molecular origin of this NOE. RESULTS Our results suggest that the NOE(-1.6) effect can be detected reliably in rat brain. Pixel-wise fittings demonstrated the regional variations of the effect. Measurements in a rodent tumor model showed that the amplitude of NOE(-1.6) in brain tumor was significantly diminished compared with that in normal brain tissue. Measurements of reconstituted phospholipids suggest that this effect may originate from choline phospholipids. CONCLUSION NOE(-1.6) could be used as a new biomarker for the detection of brain tumor. Magn Reson Med 78:588-597, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Xiao-Yong Zhang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Vanderbilt University, Nashville, Tennessee, USA
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Deparment of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jingping Xie
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Deparment of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology, University of Pittsburgh, Vanderbilt University, Nashville, Tennessee, USA.,Deparment of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Zu Z, Xu J, Li H, Chekmenev EY, Quarles CC, Does MD, Gore JC, Gochberg DF. Imaging amide proton transfer and nuclear overhauser enhancement using chemical exchange rotation transfer (CERT). Magn Reson Med 2013; 72:471-6. [PMID: 24302497 DOI: 10.1002/mrm.24953] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/14/2013] [Accepted: 08/21/2013] [Indexed: 12/27/2022]
Abstract
PURPOSE This study investigates amide proton transfer (APT) and nuclear overhauser enhancement (NOE) in phantoms and 9L tumors in rat brains at 9.4 Tesla, using a recently developed method that can isolate different contributions to exchange. METHODS Chemical exchange rotation transfer (CERT) was used to quantify APT and NOEs through subtraction of signals acquired at two irradiation flip angles, but with the same average irradiation power. RESULTS CERT separates and quantifies specific APT and NOE signals without contamination from other proton pools, and thus overcomes a key shortcoming of conventional CEST asymmetry approaches. CERT thus has increased specificity, though at the cost of decreased signal strength. In vivo experiments show that the APT effect acquired with CERT in 9L rat tumors (3.1%) is relatively greater than that in normal tissue (2.5%), which is consistent with previous CEST asymmetry analysis. The NOE effect centered at -1.6 ppm shows substantial image contrast within the tumor and between the tumor and the surrounding tissue, while the NOE effect centered at -3.5 ppm shows little contrast. CONCLUSION CERT provides an image contrast that is more specific to chemical exchange than conventional APT by means of asymmetric CEST Z-spectra analysis.
Collapse
Affiliation(s)
- Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Liu G, Song X, Chan KWY, McMahon MT. Nuts and bolts of chemical exchange saturation transfer MRI. NMR IN BIOMEDICINE 2013; 26:810-28. [PMID: 23303716 PMCID: PMC4144273 DOI: 10.1002/nbm.2899] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/23/2012] [Accepted: 11/01/2012] [Indexed: 05/03/2023]
Abstract
Chemical exchange saturation transfer (CEST) has emerged as a novel MRI contrast mechanism that is well suited for molecular imaging studies. This new mechanism can be used to detect small amounts of contrast agent through the saturation of rapidly exchanging protons on these agents, allowing a wide range of applications. CEST technology has a number of indispensable features, such as the possibility of simultaneous detection of multiple 'colors' of agents and of changes in their environment (e.g. pH, metabolites, etc.) through MR contrast. Currently, a large number of new imaging schemes and techniques are being developed to improve the temporal resolution and specificity and to correct for the influence of B0 and B1 inhomogeneities. In this review, the techniques developed over the last decade are summarized with the different imaging strategies and post-processing methods discussed from a practical point of view, including the description of their relative merits for the detection of CEST agents. The goal of the present work is to provide the reader with a fundamental understanding of the techniques developed, and to provide guidance to help refine future applications of this technology. This review is organized into three main sections ('Basics of CEST contrast', 'Implementation' and 'Post-processing'), and also includes a brief Introduction and Summary. The 'Basics of CEST contrast' section contains a description of the relevant background theory for saturation transfer and frequency-labeled transfer, and a brief discussion of methods to determine exchange rates. The 'Implementation' section contains a description of the practical considerations in conducting CEST MRI studies, including the choice of magnetic field, pulse sequence, saturation pulse, imaging scheme, and strategies to separate magnetization transfer and CEST. The 'Post-processing' section contains a description of the typical image processing employed for B0 /B1 correction, Z-spectral interpolation, frequency-selective detection and improvement of CEST contrast maps.
Collapse
Affiliation(s)
- Guanshu Liu
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|