1
|
Peters JP, Brahms A, Janicaud V, Anikeeva M, Peschke E, Ellermann F, Ferrari A, Hellmold D, Held-Feindt J, Kim NM, Meiser J, Aden K, Herges R, Hövener JB, Pravdivtsev AN. Nitrogen-15 dynamic nuclear polarization of nicotinamide derivatives in biocompatible solutions. SCIENCE ADVANCES 2023; 9:eadd3643. [PMID: 37611105 PMCID: PMC10446501 DOI: 10.1126/sciadv.add3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Dissolution dynamic nuclear polarization (dDNP) increases the sensitivity of magnetic resonance imaging by more than 10,000 times, enabling in vivo metabolic imaging to be performed noninvasively in real time. Here, we are developing a group of dDNP polarized tracers based on nicotinamide (NAM). We synthesized 1-15N-NAM and 1-15N nicotinic acid and hyperpolarized them with dDNP, reaching (13.0 ± 1.9)% 15N polarization. We found that the lifetime of hyperpolarized 1-15N-NAM is strongly field- and pH-dependent, with T1 being as long as 41 s at a pH of 12 and 1 T while as short as a few seconds at neutral pH and fields below 1 T. The remarkably short 1-15N lifetime at low magnetic fields and neutral pH drove us to establish a unique pH neutralization procedure. Using 15N dDNP and an inexpensive rodent imaging probe designed in-house, we acquired a 15N MRI of 1-15N-NAM (previously hyperpolarized for more than an hour) in less than 1 s.
Collapse
Affiliation(s)
- Josh P. Peters
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Vivian Janicaud
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Maria Anikeeva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Arianna Ferrari
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Na-mi Kim
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, 1210 Luxembourg, Luxembourg
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
- Department of Internal Medicine I, University Medical Center Kiel, Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| |
Collapse
|
2
|
Pravdivtsev AN, Sönnichsen FD, Hövener JB. In vitro singlet state and zero-quantum encoded magnetic resonance spectroscopy: Illustration with N-acetyl-aspartate. PLoS One 2020; 15:e0239982. [PMID: 33002045 PMCID: PMC7529218 DOI: 10.1371/journal.pone.0239982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) allows the analysis of biochemical processes non-invasively and in vivo. Still, its application in clinical diagnostics is rare. Routine MRS is limited to spatial, chemical and temporal resolutions of cubic centimetres, mM and minutes. In fact, the signal of many metabolites is strong enough for detection, but the resonances significantly overlap, exacerbating identification and quantification. Besides, the signals of water and lipids are much stronger and dominate the entire spectrum. To suppress the background and isolate selected signals, usually, relaxation times, J-coupling and chemical shifts are used. Here, we propose methods to isolate the signals of selected molecular groups within endogenous metabolites by using long-lived spin states (LLS). We exemplify the method by preparing the LLSs of coupled protons in the endogenous molecules N-acetyl-L-aspartic acid (NAA). First, we store polarization in long-lived, double spin states, followed by saturation pulses before the spin order is converted back to observable magnetization or double quantum filters to suppress background signals. We show that LLS and zero-quantum coherences can be used to selectively prepare and measure the signals of chosen metabolites or drugs in the presence of water, inhomogeneous field and highly concentrated fatty solutions. The strong suppression of unwanted signals achieved allowed us to measure pH as a function of chemical shift difference.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Kiel, Germany
| | - Frank D Sönnichsen
- Otto Diels Institute for Organic Chemistry, Kiel University, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Kiel, Germany
| |
Collapse
|
3
|
Barnes CA, Shen Y, Ying J, Bax A. Modulating the Stiffness of the Myosin VI Single α-Helical Domain. Biophys J 2020; 118:1119-1128. [PMID: 32049057 DOI: 10.1016/j.bpj.2020.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 11/28/2022] Open
Abstract
Highly charged, single α-helical (SAH) domains contain a high percentage of Arg, Lys, and Glu residues. Their dynamic salt bridge pairing creates the exceptional stiffness of these helical rods, with a persistence length of more than 200 Å for the myosin VI SAH domain. With the aim of modulating the stiffness of the helical structure, we investigated the effect, using NMR spectroscopy, of substituting key charged Arg, Lys, Glu, and Asp residues by Gly or His. Results indicate that such mutations result in the transient breaking of the helix at the site of mutation but with noticeable impact on amide hydrogen exchange rates extending as far as ±2 helical turns, pointing to a substantial degree of cooperativity in SAH stability. Whereas a single Gly substitution caused transient breaks ∼20% of the time, two consecutive Gly substitutions break the helix ∼65% of the time. NMR relaxation measurements indicate that the exchange rate between an intact and a broken helix is fast (>300,000 s-1) and that for the wild-type sequence, the finite persistence length is dominated by thermal fluctuations of backbone torsion angles and H-bond lengths, not by transient helix breaking. The double mutation D27H/E28H causes a pH-dependent fraction of helix disruption, in which the helix breakage increases from 26% at pH 7.5 to 53% at pH 5.5. The ability to modulate helical integrity by pH may enable incorporation of externally tunable dynamic components in the design of molecular machines.
Collapse
Affiliation(s)
- C Ashley Barnes
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Yang Shen
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Jinfa Ying
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Ad Bax
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
4
|
Phosphite binding by the HtxB periplasmic binding protein depends on the protonation state of the ligand. Sci Rep 2019; 9:10231. [PMID: 31308436 PMCID: PMC6629693 DOI: 10.1038/s41598-019-46557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 02/08/2023] Open
Abstract
Phosphorus acquisition is critical for life. In low phosphate conditions, some species of bacteria have evolved mechanisms to import reduced phosphorus compounds, such as phosphite and hypophosphite, as alternative phosphorus sources. Uptake is facilitated by high-affinity periplasmic binding proteins (PBPs) that bind cargo in the periplasm and shuttle it to an ATP-binding cassette (ABC)-transporter in the bacterial inner membrane. PtxB and HtxB are the PBPs responsible for binding phosphite and hypophosphite, respectively. They recognize the P-H bond of phosphite/hypophosphite via a conserved P-H...π interaction, which confers nanomolar dissociation constants for their respective ligands. PtxB also has a low-level binding affinity for phosphate and hypophosphite, whilst HtxB can facilitate phosphite uptake in vivo. However, HtxB does not bind phosphate, thus the HtxBCDE transporter has recently been successfully exploited for biocontainment of genetically modified organisms by phosphite-dependent growth. Here we use a combination of X-ray crystallography, NMR and Microscale Thermophoresis to show that phosphite binding to HtxB depends on the protonation state of the ligand, suggesting that pH may effect the efficiency of phosphite uptake by HtxB in biotechnology applications.
Collapse
|
5
|
Kuchel PW, Kirk K, Shishmarev D. The NMR 'split peak effect' in cell suspensions: Historical perspective, explanation and applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 104:1-11. [PMID: 29405979 DOI: 10.1016/j.pnmrs.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
The physicochemical environment inside cells is distinctly different from that immediately outside. The selective exchange of ions, water and other molecules across the cell membrane, mediated by integral, membrane-embedded proteins is a hallmark of living systems. There are various methodologies available to measure the selectivity and rates (kinetics) of such exchange processes, including several that take advantage of the non-invasive nature of NMR spectroscopy. A number of solutes, including particular inorganic ions, show distinctive NMR behaviour, in which separate resonances arise from the intra- and extracellular solute populations, without the addition of shift reagents, differences in pH, or selective binding partners. This 'split peak effect/phenomenon', discovered in 1984, has become a valuable tool, used in many NMR studies of cellular behaviour and function. The explanation for the phenomenon, based on the differential hydrogen bonding of the reporter solutes to water, and the various ways in which this phenomenon has been used to investigate aspects of cellular biochemistry and physiology, are the topics of this review.
Collapse
Affiliation(s)
- Philip W Kuchel
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia.
| | - Kiaran Kirk
- Australian National University, Research School of Biology, College of Science, Canberra, ACT 2601, Australia
| | - Dmitry Shishmarev
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia; Australian National University, John Curtin School of Medical Research, College of Health and Medicine, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Koskela H, Anđelković B. NMR chemical shift and J coupling parameterization and quantum mechanical reference spectrum simulation for selected nerve agent degradation products in aqueous conditions. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:917-927. [PMID: 28455880 DOI: 10.1002/mrc.4604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
The spectral parameters of selected nerve agent degradation products relevant to the Chemical Weapons Convention, namely, ethyl methylphosphonate, isopropyl methylphosphonate, pinacolyl methylphosphonate and methylphosphonic acid, were studied in wide range of pH conditions and selected temperatures. The pH and temperature dependence of chemical shifts and J couplings was parameterized using Henderson-Hasselbalch-based functions. The obtained parameters allowed calculation of precise chemical shifts and J coupling constants in arbitrary pH conditions and typical measurement temperatures, thus facilitating quantum mechanical simulation of reference spectra in the chosen magnetic field strength for chemical verification. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Harri Koskela
- VERIFIN, Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Helsinki, Finland
| | - Boban Anđelković
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158, Belgrade, Serbia
| |
Collapse
|
7
|
Thétiot-Laurent S, Gosset G, Clément JL, Cassien M, Mercier A, Siri D, Gaudel-Siri A, Rockenbauer A, Culcasi M, Pietri S. New Amino-Acid-Based β-Phosphorylated Nitroxides for Probing Acidic pH in Biological Systems by EPR Spectroscopy. Chembiochem 2016; 18:300-315. [DOI: 10.1002/cbic.201600550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Sophie Thétiot-Laurent
- Aix Marseille Univ; CNRS; ICR; UMR 7273; Avenue Escadrile Normandie Niemen 13397 Marseille France
| | - Gaëlle Gosset
- Aix Marseille Univ; CNRS; ICR; UMR 7273; Avenue Escadrile Normandie Niemen 13397 Marseille France
| | - Jean-Louis Clément
- Aix Marseille Univ; CNRS; ICR; UMR 7273; Avenue Escadrile Normandie Niemen 13397 Marseille France
| | - Mathieu Cassien
- Aix Marseille Univ; CNRS; ICR; UMR 7273; Avenue Escadrile Normandie Niemen 13397 Marseille France
| | - Anne Mercier
- Aix Marseille Univ; CNRS; ICR; UMR 7273; Avenue Escadrile Normandie Niemen 13397 Marseille France
| | - Didier Siri
- Aix Marseille Univ; CNRS; ICR; UMR 7273; Avenue Escadrile Normandie Niemen 13397 Marseille France
| | - Anouk Gaudel-Siri
- Aix Marseille Univ; CNRS; ICR; UMR 7273; Avenue Escadrile Normandie Niemen 13397 Marseille France
| | - Antal Rockenbauer
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences; Institute of Materials and Environmental Chemistry; Budapest University of Technology and Economics; 1117 Budapest Hungary
| | - Marcel Culcasi
- Aix Marseille Univ; CNRS; ICR; UMR 7273; Avenue Escadrile Normandie Niemen 13397 Marseille France
| | - Sylvia Pietri
- Aix Marseille Univ; CNRS; ICR; UMR 7273; Avenue Escadrile Normandie Niemen 13397 Marseille France
| |
Collapse
|
8
|
Zhang W, Hu X, Carmichael I, Serianni AS. Methyl [13C]Glucopyranosiduronic Acids: Effect of COOH Ionization and Exocyclic Structure on NMR Spin-Couplings. J Org Chem 2012; 77:9521-34. [DOI: 10.1021/jo3011182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenhui Zhang
- Department of Chemistry and Biochemistry and §The Radiation Laboratory, University of Notre Dame, Notre Dame,
Indiana 46556-5670, United States
| | - Xiaosong Hu
- Department of Chemistry and Biochemistry and §The Radiation Laboratory, University of Notre Dame, Notre Dame,
Indiana 46556-5670, United States
| | - Ian Carmichael
- Department of Chemistry and Biochemistry and §The Radiation Laboratory, University of Notre Dame, Notre Dame,
Indiana 46556-5670, United States
| | - Anthony S. Serianni
- Department of Chemistry and Biochemistry and §The Radiation Laboratory, University of Notre Dame, Notre Dame,
Indiana 46556-5670, United States
| |
Collapse
|