1
|
Qiao Y, Zou C, Cheng C, Tie C, Wan Q, Peng H, Liang D, Liu X, Zheng H. Simultaneous acoustic radiation force imaging and MR thermometry based on a coherent echo-shifted sequence. Quant Imaging Med Surg 2020; 10:1823-1836. [PMID: 32879860 DOI: 10.21037/qims-20-274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Simultaneous magnetic resonance (MR) acoustic radiation force imaging (ARFI) and MR thermometry (MRT) (STARFI) based on coherent echo-shifted (cES) sequence was proposed and comprehensively compared to radiofrequency (RF)-spoiled gradient echo (spGRE) STARFI. Methods Through use of delicately designed gradients, a collection of echoes was delayed by one repetition time (TR) cycle. The crusher gradient after readout (RO) was used as the displacement encoding gradient (DEG). The sequence was intrinsically sensitive to temperature. High-intensity focused ultrasound (HIFU) pulses were interleaved ON/OFF in successive TRs to separate the phase changes induced by displacement due to acoustic radiation force (ARF) impulses and temperature. Bloch simulation was performed to study the phase sensitivity to displacement of the proposed cES STARFI and spGRE STARFI. The proposed cES sequence was evaluated and compared to spGRE STARFI in ex vivo porcine muscle and ex vivo porcine brain. Results The minimally achievable TR of cES STARFI was shorter than that of spGRE STARFI, indicating that the cES sequence was more time efficient. It was verified through Bloch simulation and ex vivo experiments that the phase sensitivity to displacement of cES STARFI was higher than that of spGRE STARFI. The optimal trigger delays of cES STARFI and spGRE STARFI in ex vivo porcine muscle were toffset =-2 and -1 ms, respectively. The displacement-induced phase change to acoustic pressure slopes of cES STARFI were 0.079, 0.079, and 0.047 rad/Mpa across the three muscle samples, while the slopes of spGRE STARFI were only 0.047, 0.052, and 0.027 rad/Mpa. The maximum temperature difference between cES STARFI and spGRE STARFI was 1.1 °C. In ex vivo porcine brain, both the displacement-induced phase-to-noise ratio (PNRd) and the temperature uncertainty of cES STARFI were better than those of spGRE STARFI (P<0.05). The temperature and displacement-induced phase change maps of cES STARFI and spGRE STARFI during HIFU treatment were in good accordance in time and spatial location. Conclusions The cES STARFI sequence can provide simultaneous MR-ARFI and temperature measurements during pulsed HIFU applications. Though the exact displacement cannot be quantified directly, the sequence showed increased phase sensitivity compared with the spGRE sequence and provided efficient visualization of the focal spot. cES STARFI could therefore be a desirable alternative to spGRE STARFI in practical applications.
Collapse
Affiliation(s)
- Yangzi Qiao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen, China.,These authors contributed equally to this work
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen, China.,These authors contributed equally to this work
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changjun Tie
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Institute of Biomedical and Health Engineering, Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Hao Peng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Key Laboratory of Imaging Processing and Intelligence Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen, China
| |
Collapse
|
2
|
Abstract
MRI is a unique tool for minimally invasive thermal ablation in that it can provide both targeting, monitoring and control during the procedure. Monitoring is achieved by using MRI temperature mapping. In this review the relevant physics is explained as a background to the state-of-the-art methods for computing temperature maps as well as the more cutting edge methods. The review covers both methods to monitor heating and cooling of tissue and explains temperature mapping using Proton Resonance Frequency shift, T1 mapping, diffusion mapping, R2* mapping and thermal models.
Collapse
Affiliation(s)
- Eigil Samset
- University of Oslo, Center of Mathematics for Applications, The Interventional Centre, Oslo, Norway
| |
Collapse
|
3
|
Abstract
Due to a delayed echo-formation, echo-shifted gradient echo sequences (ES-GRE) allow for an enhanced T(2)*-weighting at short repetition times. While they are in use with and without RF spoiling, analytical solutions are only known for the latter. The signal formation in the former could only be assessed in approximative form, so far. In this article an exact analytical solution is presented for TR-periodic ES-GRE sequences with RF phase cycling. Besides providing a better numerical performance, it should be useful for systematic sequence development. The relation to recent approximative solutions is discussed.
Collapse
Affiliation(s)
- Carl Ganter
- Department of Diagnostic Radiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.
| |
Collapse
|