1
|
Braunstorfer L, Romanowicz J, Powell AJ, Pattee J, Browne LP, van der Geest RJ, Moghari MH. Non-contrast free-breathing whole-heart 3D cine cardiovascular magnetic resonance with a novel 3D radial leaf trajectory. Magn Reson Imaging 2022; 94:64-72. [PMID: 36122675 DOI: 10.1016/j.mri.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/18/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop and validate a non-contrast free-breathing whole-heart 3D cine steady-state free precession (SSFP) sequence with a novel 3D radial leaf trajectory. METHODS We used a respiratory navigator to trigger acquisition of 3D cine data at end-expiration to minimize respiratory motion in our 3D cine SSFP sequence. We developed a novel 3D radial leaf trajectory to reduce gradient jumps and associated eddy-current artifacts. We then reconstructed the 3D cine images with a resolution of 2.0mm3 using an iterative nonlinear optimization algorithm. Prospective validation was performed by comparing ventricular volumetric measurements from a conventional breath-hold 2D cine ventricular short-axis stack against the non-contrast free-breathing whole-heart 3D cine dataset in each patient (n = 13). RESULTS All 3D cine SSFP acquisitions were successful and mean scan time was 07:09 ± 01:31 min. End-diastolic ventricular volumes for left ventricle (LV) and right ventricle (RV) measured from the 3D datasets were smaller than those from 2D (LV: 159.99 ± 42.99 vs. 173.16 ± 47.42; RV: 180.35 ± 46.08 vs. 193.13 ± 49.38; p-value≤0.044; bias<8%), whereas ventricular end-systolic volumes were more comparable (LV: 79.12 ± 26.78 vs. 78.46 ± 25.35; RV: 97.18 ± 32.35 vs. 102.42 ± 32.53; p-value≥0.190, bias<6%). The 3D cine data had a lower subjective image quality score. CONCLUSION Our non-contrast free-breathing whole-heart 3D cine sequence with novel leaf trajectory was robust and yielded smaller ventricular end-diastolic volumes compared to 2D cine imaging. It has the potential to make examinations easier and more comfortable for patients.
Collapse
Affiliation(s)
- Lukas Braunstorfer
- Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Informatics, Technical University of Munich, Munich, BY, Germany.
| | - Jennifer Romanowicz
- Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, School of Medicine, The University of Colorado, CO, USA
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jack Pattee
- Department of Biostatistics and Informatics, Colorado School of Public Health, CO, USA
| | - Lorna P Browne
- Department of Radiology, Children's Hospital Colorado, and School of Medicine, The University of Colorado, CO, USA
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mehdi H Moghari
- Department of Radiology, Children's Hospital Colorado, and School of Medicine, The University of Colorado, CO, USA
| |
Collapse
|
2
|
Hennig J, Kiviniemi V, Riemenschneider B, Barghoorn A, Akin B, Wang F, LeVan P. 15 Years MR-encephalography. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:85-108. [PMID: 33079327 PMCID: PMC7910380 DOI: 10.1007/s10334-020-00891-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Objective This review article gives an account of the development of the MR-encephalography (MREG) method, which started as a mere ‘Gedankenexperiment’ in 2005 and gradually developed into a method for ultrafast measurement of physiological activities in the brain. After going through different approaches covering k-space with radial, rosette, and concentric shell trajectories we have settled on a stack-of-spiral trajectory, which allows full brain coverage with (nominal) 3 mm isotropic resolution in 100 ms. The very high acceleration factor is facilitated by the near-isotropic k-space coverage, which allows high acceleration in all three spatial dimensions. Methods The methodological section covers the basic sequence design as well as recent advances in image reconstruction including the targeted reconstruction, which allows real-time feedback applications, and—most recently—the time-domain principal component reconstruction (tPCR), which applies a principal component analysis of the acquired time domain data as a sparsifying transformation to improve reconstruction speed as well as quality. Applications Although the BOLD-response is rather slow, the high speed acquisition of MREG allows separation of BOLD-effects from cardiac and breathing related pulsatility. The increased sensitivity enables direct detection of the dynamic variability of resting state networks as well as localization of single interictal events in epilepsy patients. A separate and highly intriguing application is aimed at the investigation of the glymphatic system by assessment of the spatiotemporal patterns of cardiac and breathing related pulsatility. Discussion MREG has been developed to push the speed limits of fMRI. Compared to multiband-EPI this allows considerably faster acquisition at the cost of reduced image quality and spatial resolution.
Collapse
Affiliation(s)
- Juergen Hennig
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Bruno Riemenschneider
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA
| | - Antonia Barghoorn
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Burak Akin
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fei Wang
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pierre LeVan
- Departments of Radiology and Paediatrics, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Tao S, Shu Y, Trzasko JD, Huston J, Bernstein MA. Partial fourier shells trajectory for non-cartesian MRI. Phys Med Biol 2019; 64:04NT01. [PMID: 30625455 DOI: 10.1088/1361-6560/aafcc5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Non-Cartesian MRI acquisition has demonstrated various advantages in many clinical applications. The shells trajectory is a 3D non-Cartesian MRI acquisition technique that samples the k-space using a series of concentric shells to achieve efficient 3D isotropic acquisition. Partial Fourier acquisition is an acceleration technique that is widely used in Cartesian MRI. It exploits the conjugate symmetry of k-space measurement to reduce the number of k-space samples compared to full-k-space acquisition, without loss of spatial resolution. For a Cartesian MRI acquisition, the direction of partial Fourier acceleration is aligned either with the phase encoded or frequency encoded direction. In those cases, the underlying image matrix can be reconstructed from the undersampled k-space data using a non-iterative, homodyne reconstruction framework. However, designing a non-Cartesian acquisition trajectory that is compatible with non-iterative homodyne reconstruction is not nearly as straightforward as in the Cartesian case. One reason is the non-iterative homodyne reconstruction requires (slightly over) half of the k-space to be fully sampled. Since the direction of partial Fourier acceleration varies throughout the acquisition in the non-Cartesian trajectory, directly applying the same partial Fourier acquisition pattern (as in Cartesian acquisitions) to a non-Cartesian trajectory does not necessarily yield a continuous, physically-achievable trajectory. In this work, we develop an asymmetric shells trajectory with fully-automated trajectory and gradient waveform design to achieve partial Fourier acquisition for the shells trajectory. We then demonstrate a non-iterative image reconstruction framework for the proposed trajectory. Phantom and in vivo brain scans based on spoiled gradient echo (SPGR) shells and magnetization-prepared shells (MP-shells) were performed to test the proposed trajectory design and reconstruction method. Our phantom and in vivo results demonstrate that the proposed partial Fourier shells trajectory maintains the desirable image contrast and high sampling efficiency from the fully sampled shells, while further reducing data acquisition time.
Collapse
Affiliation(s)
- Shengzhen Tao
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | | | | | | | | |
Collapse
|
4
|
Shu Y, Tao S, Trzasko JD, Huston J, Weavers PT, Bernstein MA. Magnetization-prepared shells trajectory with automated gradient waveform design. Magn Reson Med 2017; 79:2024-2035. [PMID: 28833440 DOI: 10.1002/mrm.26863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/14/2017] [Accepted: 07/16/2017] [Indexed: 01/19/2023]
Abstract
PURPOSE To develop a fully automated trajectory and gradient waveform design for the non-Cartesian shells acquisition, and to develop a magnetization-prepared (MP) shells acquisition to achieve an efficient three-dimensional acquisition with improved gray-to-white brain matter contrast. METHODS After reviewing the shells k-space trajectory, a novel, fully automated trajectory design is developed that allows for gradient waveforms to be automatically generated for specified acquisition parameters. Designs for two types of shells are introduced, including fully sampled and undersampled/accelerated shells. Using those designs, an MP-Shells acquisition is developed by adjusting the acquisition order of shells interleaves to synchronize the center of k-space sampling with the peak of desired gray-to-white matter contrast. The feasibility of the proposed design and MP-Shells is demonstrated using simulation, phantom, and volunteer subject experiments, and the performance of MP-Shells is compared with a clinical Cartesian magnetization-prepared rapid gradient echo acquisition. RESULTS Initial experiments show that MP-Shells produces excellent image quality with higher data acquisition efficiency and improved gray-to-white matter contrast-to-noise ratio (by 36%) compared with the conventional Cartesian magnetization-prepared rapid gradient echo acquisition. CONCLUSION We demonstrated the feasibility of a three-dimensional MP-Shells acquisition and an automated trajectory design to achieve an efficient acquisition with improved gray-to-white matter contrast. Magn Reson Med 79:2024-2035, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul T Weavers
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
5
|
Wang J, Wright AJ, Hu D, Hesketh R, Brindle KM. Single shot three-dimensional pulse sequence for hyperpolarized 13 C MRI. Magn Reson Med 2017; 77:740-752. [PMID: 26916384 PMCID: PMC5297976 DOI: 10.1002/mrm.26168] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/24/2015] [Accepted: 01/25/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE Metabolic imaging with hyperpolarized 13 C-labeled cell substrates is a promising technique for imaging tissue metabolism in vivo. However, the transient nature of the hyperpolarization, and its depletion following excitation, limits the imaging time and the number of excitation pulses that can be used. We describe here a single-shot three-dimensional (3D) imaging sequence and demonstrate its capability to generate 13 C MR images in tumor-bearing mice injected with hyperpolarized [1-13 C]pyruvate. METHODS The pulse sequence acquires a stack-of-spirals at two spin echoes after a single excitation pulse and encodes the kz-dimension in an interleaved manner to enhance robustness to B0 inhomogeneity. Spectral-spatial pulses are used to acquire dynamic 3D images from selected hyperpolarized 13 C-labeled metabolites. RESULTS A nominal spatial/temporal resolution of 1.25 × 1.25 × 2.5 mm3 × 2 s was achieved in tumor images of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate acquired in vivo. Higher resolution in the z-direction, with a different k-space trajectory, was demonstrated in measurements on a thermally polarized [1-13 C]lactate phantom. CONCLUSION The pulse sequence is capable of imaging hyperpolarized 13 C-labeled substrates at relatively high spatial and temporal resolutions and is robust to moderate system imperfections. Magn Reson Med 77:740-752, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Jiazheng Wang
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUnited Kingdom
| | - Alan J. Wright
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUnited Kingdom
| | - De‐en Hu
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUnited Kingdom
| | - Richard Hesketh
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUnited Kingdom
| | - Kevin M. Brindle
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUnited Kingdom
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeUnited Kingdom.
| |
Collapse
|
6
|
Chauffert N, Weiss P, Kahn J, Ciuciu P. A Projection Algorithm for Gradient Waveforms Design in Magnetic Resonance Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:2026-2039. [PMID: 27019479 DOI: 10.1109/tmi.2016.2544251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Collecting the maximal amount of information in a given scanning time is a major concern in magnetic resonance imaging (MRI) to speed up image acquisition. The hardware constraints (gradient magnitude, slew rate, etc.), physical distortions (e.g., off-resonance effects) and sampling theorems (Shannon, compressed sensing) must be taken into account simultaneously, which makes this problem extremely challenging. To date, the main approach to design gradient waveform has consisted of selecting an initial shape (e.g., spiral, radial lines, etc.) and then traversing it as fast as possible using optimal control. In this paper, we propose an alternative solution which first consists of defining a desired parameterization of the trajectory and then of optimizing for minimal deviation of the sampling points within gradient constraints. This method has various advantages. First, it better preserves the density of the input curve which is critical in sampling theory. Second, it allows to smooth high curvature areas making the acquisition time shorter in some cases. Third, it can be used both in the Shannon and CS sampling theories. Last, the optimized trajectory is computed as the solution of an efficient iterative algorithm based on convex programming. For piecewise linear trajectories, as compared to optimal control reparameterization, our approach generates a gain in scanning time of 10% in echo planar imaging while improving image quality in terms of signal-to-noise ratio (SNR) by more than 6 dB. We also investigate original trajectories relying on traveling salesman problem solutions. In this context, the sampling patterns obtained using the proposed projection algorithm are shown to provide significantly better reconstructions (more than 6 dB) while lasting the same scanning time.
Collapse
|
7
|
Kwon KT, Wu HH, Shin T, Cukur T, Lustig M, Nishimura DG. Three-dimensional magnetization-prepared imaging using a concentric cylinders trajectory. Magn Reson Med 2013; 71:1700-10. [PMID: 23818212 DOI: 10.1002/mrm.24823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/15/2013] [Accepted: 04/30/2013] [Indexed: 11/11/2022]
Abstract
PURPOSE To develop new magnetization-prepared imaging schemes based on a three-dimensional (3D) concentric cylinders trajectory. METHODS The 3D concentric cylinders trajectory, which is robust to off-resonance effects and timing delays while requiring fewer excitations than a comparable 3D Cartesian (3DFT) sequence, is used as the readout for magnetization-prepared sequences exploiting its inherently centric-ordered structure. Two applications: (i) T1 -weighted brain imaging with an inversion-recovery-prepared radiofrequency-spoiled gradient-echo (IR-SPGR) sequence, (ii) non-contrast-enhanced (NCE) peripheral angiography with a magnetization-prepared balanced steady-state free precession (bSSFP) sequence are presented to demonstrate the effectiveness of the proposed method. For peripheral angiography, the scan efficiency is further improved by interleaving different preparations at different rates and by carefully designing the sampling geometry for an efficient parallel imaging method. RESULTS In vivo brain scans with an IR-SPGR sequence and lower extremity scans with a magnetization-prepared bSSFP sequence for NCE peripheral angiography both demonstrate that the proposed sequences with concentric cylinders effectively capture the transient magnetization-prepared contrast with faster scan times than a corresponding 3DFT sequence. The application of peripheral angiography also shows the feasibility of the proposed interleaving schemes and parallel imaging method. CONCLUSION The 3D concentric cylinders trajectory is a robust and efficient readout that is well-suited for magnetization-prepared imaging.
Collapse
Affiliation(s)
- Kie Tae Kwon
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
8
|
Zahneisen B, Hugger T, Lee KJ, LeVan P, Reisert M, Lee HL, Assländer J, Zaitsev M, Hennig J. Single shot concentric shells trajectories for ultra fast fMRI. Magn Reson Med 2011; 68:484-94. [PMID: 22131236 DOI: 10.1002/mrm.23256] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 11/11/2022]
Abstract
MR-encephalography is a technique that allows real-time observation of functional changes in the brain with a time-resolution of 100 ms. The high sampling rate is enabled by the use of undersampled image acquisition with regularized reconstruction. The article describes a novel imaging method for fast three-dimensional-MR-encephalography whole brain coverage based on undersampled, single-shot concentric shells trajectories and the use of multiple small receiver coils. The technique allows the observation of changes in blood oxygenation level dependent signal as a measure of brain physiology at very high temporal resolution.
Collapse
Affiliation(s)
- Benjamin Zahneisen
- Department of Radiology, Medical Physics, University Hospital Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO. Spiral phyllotaxis: the natural way to construct a 3D radial trajectory in MRI. Magn Reson Med 2011; 66:1049-56. [PMID: 21469185 DOI: 10.1002/mrm.22898] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/30/2011] [Accepted: 02/07/2011] [Indexed: 11/09/2022]
Abstract
While radial 3D acquisition has been discussed in cardiac MRI for its excellent results with radial undersampling, the self-navigating properties of the trajectory need yet to be exploited. Hence, the radial trajectory has to be interleaved such that the first readout of every interleave starts at the top of the sphere, which represents the shell covering all readouts. If this is done sub-optimally, the image quality might be degraded by eddy current effects, and advanced density compensation is needed. In this work, an innovative 3D radial trajectory based on a natural spiral phyllotaxis pattern is introduced, which features optimized interleaving properties: (1) overall uniform readout distribution is preserved, which facilitates simple density compensation, and (2) if the number of interleaves is a Fibonacci number, the interleaves self-arrange such that eddy current effects are significantly reduced. These features were theoretically assessed in comparison with two variants of an interleaved Archimedean spiral pattern. Furthermore, the novel pattern was compared with one of the Archimedean spiral patterns, with identical density compensation, in phantom experiments. Navigator-gated whole-heart coronary imaging was performed in six healthy volunteers. High reduction of eddy current artifacts and overall improvement in image quality were achieved with the novel trajectory.
Collapse
Affiliation(s)
- Davide Piccini
- Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | |
Collapse
|
10
|
Wu HH, Nishimura DG. 3D magnetization-prepared imaging using a stack-of-rings trajectory. Magn Reson Med 2010; 63:1210-8. [PMID: 20432292 DOI: 10.1002/mrm.22288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Efficient acquisition strategies for magnetization-prepared imaging based on the three-dimensional (3D) stack-of-rings k-space trajectory are presented in this work. The 3D stack-of-rings can be acquired with centric ordering in all three dimensions for greater efficiency in capturing the desired contrast. In addition, the 3D stack-of-rings naturally supports spherical coverage in k-space for shorter scan times while achieving isotropic spatial resolution. While non-Cartesian trajectories generally suffer from greater sensitivity to system imperfections, the 3D stack-of-rings can enhance magnetization-prepared imaging with a high degree of robustness to timing delays and off-resonance effects. As demonstrated with phantom scans, timing errors and gradient delays only cause a bulk rotation of the 3D stack-of-rings reconstruction. Furthermore, each ring can be acquired with a time-efficient retracing design to resolve field inhomogeneities and enable fat/water separation. To demonstrate its effectiveness, the 3D stack-of-rings are considered for the case of inversion-recovery-prepared structural brain imaging. Experimental results show that the 3D stack-of-rings can achieve higher signal-to-noise ratio and higher contrast-to-noise ratio within a shorter scan time when compared to the standard inversion-recovery-prepared sequence based on 3D Cartesian encoding. The design principles used for this specific case of inversion-recovery-prepared brain imaging can be applied to other magnetization-prepared imaging applications.
Collapse
Affiliation(s)
- Holden H Wu
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA.
| | | |
Collapse
|
11
|
Shu Y, Bernstein MA, Huston J, Rettmann D. Contrast-enhanced intracranial magnetic resonance angiography with a spherical shells trajectory and online gridding reconstruction. J Magn Reson Imaging 2009; 30:1101-9. [PMID: 19856444 DOI: 10.1002/jmri.21938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To evaluate the feasibility of applying the shells trajectory to single-phase contrast-enhanced magnetic resonance angiography. MATERIALS AND METHOD Several methods were developed to overcome the challenges of the clinical implementation of shells including off-resonance blurring (eg, from lipid signal), aliasing artifacts, and long reconstruction times. These methods included: 1) variable TR with variable readout length to reduce fat signal and off-resonance blurring; 2) variable sampling density to suppress aliasing artifacts while minimizing acquisition time penalty; and 3) an online 3D gridding algorithm that reconstructed an 8-channel, 240(3) image volume set. Both phantom and human studies were performed to establish the initial feasibility of the methods. RESULTS Phantom and human study results demonstrated the effectiveness of the proposed methods. Shells with variable TR and readout length further suppressed the fat signal compared to the fixed-TR shells acquisition. Reduced image aliasing was achieved with minimal scan time penalty when a variable sampling density technique was used. The fast online reconstruction algorithm completed in 2 minutes at the scanner console, providing a timely image display in a clinical setting. CONCLUSION It was demonstrated that the use of the shells trajectory is feasible in a clinical setting to acquire intracranial angiograms with high spatial resolution. Preliminary results demonstrate effective venous suppression in the cavernous sinuses and jugular vein region.
Collapse
Affiliation(s)
- Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
12
|
Kijima H, Minagawa H, Yamamoto N, Tomioka T, Abe H, Kikuchi K, Shimada Y, Okada K, Abe H, Itoi E. Three-dimensional ultrasonography of shoulders with rotator cuff tears. J Orthop Sci 2008; 13:510-3. [PMID: 19089538 DOI: 10.1007/s00776-008-1268-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 07/10/2008] [Indexed: 11/28/2022]
Abstract
BACKGROUND It is possible to evaluate the size of rotator cuff tears by ultrasonography (US) or magnetic resonance imaging. However, there are only a few reports on the imaging assessment of the configuration of cuff tears, which could provide important preoperative information that assists performing an optimal anatomical repair. The purpose of this study was to determine quantitatively the reproducibility of three-dimensional US in the assessment of rotator cuff tear configuration. METHODS Ten embalmed cadaveric shoulders with rotator cuff tears were examined. After resecting the proximal humerus with the rotator cuff, we put it in water and scanned it using high-resolution US with a three-dimensional linear probe. Actual tear lengths and widths were compared with sonographic measurements (Pearson correlation coefficient). By superimposing the real photographic image on the reconstructed three-dimensional image, we calculated the concordance rate (ratio of the concordance area to the tear area). RESULTS The actual tear length (16.6 +/- 7.1 mm; mean +/- SD) and width (8.4 +/- 4.4 mm) were correlated with the tear length (16.4 +/- 7.5 mm) and width (8.2 +/- 4.4 mm) measured from reconstructed three-dimensional ultrasonograms (r = 0.998 and 0.994, respectively). The mean concordance rate was 91.4%, indicating that almost exactly the same configuration was reconstructed by US. CONCLUSIONS Three-dimensional US is useful for evaluating the configuration of rotator cuff tears. This is the first report to quantify the similarity between the configuration evaluated by US and the actual configuration. Using this method, we can visualize the configuration of rotator cuff tears preoperatively, facilitating optimal repair design.
Collapse
Affiliation(s)
- Hiroaki Kijima
- Division of Orthopedic Surgery, Department of Neuro and Locomotor Science, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The concentric rings two-dimensional (2D) k-space trajectory provides an alternative way to sample polar data. By collecting 2D k-space data in a series of rings, many unique properties are observed. The concentric rings are inherently centric-ordered, provide a smooth weighting in k-space, and enable shorter total scan times. Due to these properties, the concentric rings are well-suited as a readout trajectory for magnetization-prepared studies. When non-Cartesian trajectories are used for MRI, off-resonance effects can cause blurring and degrade the image quality. For the concentric rings, off-resonance blur can be corrected by retracing rings near the center of k-space to obtain a field map with no extra excitations, and then employing multifrequency reconstruction. Simulations show that the concentric rings exhibit minimal effects due to T(2) (*) modulation, enable shorter scan times for a Nyquist-sampled dataset than projection-reconstruction imaging or Cartesian 2D Fourier transform (2DFT) imaging, and have more spatially distributed flow and motion properties than Cartesian sampling. Experimental results show that off-resonance blurring can be successfully corrected to obtain high-resolution images. Results also show that concentric rings effectively capture the intended contrast in a magnetization-prepared sequence.
Collapse
Affiliation(s)
- Hochong H Wu
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA.
| | | | | |
Collapse
|
14
|
Koay CG, Sarlls JE, Ozarslan E. Three-dimensional analytical magnetic resonance imaging phantom in the Fourier domain. Magn Reson Med 2007; 58:430-6. [PMID: 17616967 DOI: 10.1002/mrm.21292] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work presents a basic framework for constructing a 3D analytical MRI phantom in the Fourier domain. In the image domain the phantom is modeled after the work of Kak and Roberts on a 3D version of the famous Shepp-Logan head phantom. This phantom consists of several ellipsoids of different sizes, orientations, locations, and signal intensities (or gray levels). It will be shown that the k-space signal derived from the phantom can be analytically expressed. As a consequence, it enables one to bypass the need for interpolation in the Fourier domain when testing image-reconstruction algorithms. More importantly, the proposed framework can serve as a benchmark for contrasting and comparing different image-reconstruction techniques in 3D MRI with a non-Cartesian k-space trajectory. The proposed framework can also be adapted for 3D MRI simulation studies in which the MRI parameters of interest may be introduced to the signal intensity from the ellipsoid.
Collapse
Affiliation(s)
- Cheng Guan Koay
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|