Soellradl M, Strasser J, Lesch A, Stollberger R, Ropele S, Langkammer C. Adaptive slice-specific z-shimming for 2D spoiled gradient-echo sequences.
Magn Reson Med 2020;
85:818-830. [PMID:
32909334 PMCID:
PMC7693070 DOI:
10.1002/mrm.28468]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
Purpose
To reduce the misbalance between compensation gradients and macroscopic field gradients, we introduce an adaptive slice‐specific z‐shimming approach for 2D spoiled multi‐echo gradient‐echoe sequences in combination with modeling of the signal decay.
Methods
Macroscopic field gradients were estimated for each slice from a fast prescan (15 seconds) and then used to calculate slice‐specific compensation moments along the echo train. The coverage of the compensated field gradients was increased by applying three positive and three negative moments. With a forward model, which considered the effect of the slice profile, the z‐shim moment, and the field gradient, R2∗ maps were estimated. The method was evaluated in phantom and in vivo measurements at 3 T and compared with a spoiled multi‐echo gradient‐echo and a global z‐shimming approach without slice‐specific compensation.
Results
The proposed method yielded higher SNR in R2∗ maps due to a broader range of compensated macroscopic field gradients compared with global z‐shimming. In global white matter, the mean interquartile range, proxy for SNR, could be decreased to 3.06 s−1 with the proposed approach, compared with 3.37 s−1 for global z‐shimming and 3.52 s−1 for uncompensated multi‐echo gradient‐echo.
Conclusion
Adaptive slice‐specific compensation gradients between echoes substantially improved the SNR of R2∗ maps, and the signal could also be rephased in anatomical areas, where it has already been completely dephased.
Collapse