1
|
Kogan F, Levine E, Chaudhari AS, Monu UD, Epperson K, Oei EHG, Gold GE, Hargreaves BA. Simultaneous bilateral-knee MR imaging. Magn Reson Med 2017; 80:529-537. [PMID: 29250856 DOI: 10.1002/mrm.27045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE To demonstrate and evaluate the scan time and quantitative accuracy of simultaneous bilateral-knee imaging compared with single-knee acquisitions. METHODS Hardware modifications and safety testing was performed to enable MR imaging with two 16-channel flexible coil arrays. Noise covariance and sensitivity-encoding g-factor maps for the dual-coil-array configuration were computed to evaluate coil cross-talk and noise amplification. Ten healthy volunteers were imaged on a 3T MRI scanner with both dual-coil-array bilateral-knee and single-coil-array single-knee configurations. Two experienced musculoskeletal radiologists compared the relative image quality between blinded image pairs acquired with each configuration. Differences in T2 relaxation time measurements between dual-coil-array and single-coil-array acquisitions were compared with the standard repeatability of single-coil-array measurements using a Bland-Altman analysis. RESULTS The mean g-factors for the dual-coil-array configuration were low for accelerations up to 6 in the right-left direction, and minimal cross-talk was observed between the two coil arrays. Image quality ratings of various joint tissues showed no difference in 89% (95% confidence interval: 85-93%) of rated image pairs, with only small differences ("slightly better" or "slightly worse") in image quality observed. The T2 relaxation time measurements between the dual-coil-array configuration and the single-coil configuration showed similar limits of agreement and concordance correlation coefficients (limits of agreement: -0.93 to 1.99 ms; CCC: 0.97 (95% confidence interval: 0.96-0.98)), to the repeatability of single-coil-array measurements (limits of agreement: -2.07 to 1.96 ms; CCC: 0.97 (95% confidence interval: 0.95-0.98)). CONCLUSION A bilateral coil-array setup can image both knees simultaneously in similar scan times as conventional unilateral knee scans, with comparable image quality and quantitative accuracy. This has the potential to improve the value of MRI knee evaluations. Magn Reson Med 80:529-537, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Feliks Kogan
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Evan Levine
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Akshay S Chaudhari
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Uchechukwuka D Monu
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Kevin Epperson
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Orthopedic Surgery, Stanford University, Stanford, California, USA
| | - Brian A Hargreaves
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Robson PM, Madhuranthakam AJ, Smith MP, Sun MRM, Dai W, Rofsky NM, Pedrosa I, Alsop DC. Volumetric Arterial Spin-labeled Perfusion Imaging of the Kidneys with a Three-dimensional Fast Spin Echo Acquisition. Acad Radiol 2016; 23:144-54. [PMID: 26521186 DOI: 10.1016/j.acra.2015.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/06/2015] [Accepted: 09/27/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE AND OBJECTIVES Renal perfusion measurements using noninvasive arterial spin-labeled (ASL) magnetic resonance imaging techniques are gaining interest. Currently, focus has been on perfusion in the context of renal transplant. Our objectives were to explore the use of ASL in patients with renal cancer, and to evaluate three-dimensional (3D) fast spin echo (FSE) acquisition, a robust volumetric imaging method for abdominal applications. We evaluate 3D ASL perfusion magnetic resonance imaging in the kidneys compared to two-dimensional (2D) ASL in patients and healthy subjects. MATERIALS AND METHODS Isotropic resolution (2.6 × 2.6 × 2.8 mm(3)) 3D ASL using segmented FSE was compared to 2D single-shot FSE. ASL used pseudo-continuous labeling, suppression of background signal, and synchronized breathing. Quantitative perfusion values and signal-to-noise ratio (SNR) were compared between 3D and 2D ASL in four healthy volunteers and semiquantitative assessments were made by four radiologists in four patients with known renal masses (primary renal cell carcinoma). RESULTS Renal cortex perfusion in healthy subjects was 284 ± 21 mL/100 g/min, with test-retest repeatability of 8.8%. No significant differences were found between the quantitative perfusion value and SNR in volunteers between 3D ASL and 2D ASL, or in 3D ASL with synchronized or free breathing. In patients, semiquantitative assessment by radiologists showed no significant difference in image quality between 2D ASL and 3D ASL. In one case, 2D ASL missed a high perfusion focus in a mass that was seen by 3D ASL. CONCLUSIONS 3D ASL renal perfusion imaging provides isotropic-resolution images, with comparable quantitative perfusion values and image SNR in similar imaging time to single-slice 2D ASL.
Collapse
Affiliation(s)
- Philip M Robson
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215.
| | | | - Martin P Smith
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215
| | - Maryellen R M Sun
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215
| | - Weiying Dai
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215
| | - Neil M Rofsky
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan Pedrosa
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - David C Alsop
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215
| |
Collapse
|
3
|
Han M, Cunningham CH, Pauly JM, Daniel BL, Hargreaves BA. Homogenous fat suppression for bilateral breast imaging using independent shims. Magn Reson Med 2013; 71:1511-7. [PMID: 23821305 DOI: 10.1002/mrm.24803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/25/2013] [Accepted: 04/17/2013] [Indexed: 12/24/2022]
Abstract
PURPOSE To demonstrate the capability of incorporating independent shims into a dual-band spectral-spatial excitation and to compare fat suppression between standard global shims and independent shims for in vivo bilateral breast imaging at 1.5T. METHODS A dual-band spectral-spatial excitation pulse was designed by interleaving two flyback spectral-spatial pulses, playing one during positive gradient lobes and the other during negative gradient lobes. Each slab was enabled to have an independent spatial offset, spectral offset, and slab-phase modulation by modulating radiofrequency phase, and independent linear shims were incorporated by playing extra shim gradients. Phantom experiments were performed to demonstrate the functionality of the pulse, and in vivo experiments were performed for 10 healthy volunteers to compare fat suppression between standard shims and independent shims. RESULTS The phantom experiments confirmed that the dual-band pulse can provide independent spectral and spatial offsets and linear shims to the two slabs. Independent shims provided qualitatively more homogeneous fat suppression than standard shims in seven out of 10 subjects, with equivalent fat suppression in two of the other three subjects. CONCLUSION Incorporating independent shims into the dual-band spectral-spatial excitation can provide homogeneous fat suppression in bilateral breast imaging.
Collapse
Affiliation(s)
- Misung Han
- Department of Radiology, Stanford University, Stanford, California, USA; Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | | | | | | | |
Collapse
|
4
|
Abstract
Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the undersampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed.
Collapse
Affiliation(s)
- Anagha Deshmane
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
5
|
Chan RW, Ramsay EA, Cheung EY, Plewes DB. The influence of radial undersampling schemes on compressed sensing reconstruction in breast MRI. Magn Reson Med 2011; 67:363-77. [DOI: 10.1002/mrm.23008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/31/2011] [Accepted: 04/28/2011] [Indexed: 12/24/2022]
|
6
|
Weinstein S, Rosen M. Breast MR imaging: current indications and advanced imaging techniques. Radiol Clin North Am 2010; 48:1013-42. [PMID: 20868898 DOI: 10.1016/j.rcl.2010.06.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common solid tumor diagnosed in women. In the past decades, great strides have been made in breast cancer screening. While multiple screening trials have shown the benefits of screening mammography, there are limitations to x-ray mammography. Given these inherent limitations, efforts have been made to develop adjunctive imaging techniques, including screening ultrasonography, gamma-specific breast imaging, breast tomosynthesis, dedicated breast computed tomography, and breast magnetic resonance (MR) imaging. This article addresses the current indications and advanced imaging applications of breast MR imaging.
Collapse
Affiliation(s)
- Susan Weinstein
- Division of Breast Imaging, Department of Radiology, University of Pennsylvania School of Medicine, 1 Silverstein Building, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|