1
|
Dinges SS, Vandergrift LA, Wu S, Berker Y, Habbel P, Taupitz M, Wu CL, Cheng LL. Metabolomic prostate cancer fields in HRMAS MRS-profiled histologically benign tissue vary with cancer status and distance from cancer. NMR IN BIOMEDICINE 2019; 32:e4038. [PMID: 30609175 PMCID: PMC7366614 DOI: 10.1002/nbm.4038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/05/2018] [Accepted: 10/13/2018] [Indexed: 05/05/2023]
Abstract
In this article, we review the state of the field of high resolution magic angle spinning MRS (HRMAS MRS)-based cancer metabolomics since its beginning in 2004; discuss the concept of cancer metabolomic fields, where metabolomic profiles measured from histologically benign tissues reflect patient cancer status; and report our HRMAS MRS metabolomic results, which characterize metabolomic fields in prostatectomy-removed cancerous prostates. Three-dimensional mapping of cancer lesions throughout each prostate enabled multiple benign tissue samples per organ to be classified based on distance from and extent of the closest cancer lesion as well as the Gleason score (GS) of the entire prostate. Cross-validated partial least squares-discriminant analysis separations were achieved between cancer and benign tissue, and between cancer tissue from prostates with high (≥4 + 3) and low (≤3 + 4) GS. Metabolomic field effects enabled histologically benign tissue adjacent to cancer to distinguish the GS and extent of the cancer lesion itself. Benign samples close to either low GS cancer or extensive cancer lesions could be distinguished from those far from cancer. Furthermore, a successfully cross-validated multivariate model for three benign tissue groups with varying distances from cancer lesions within one prostate indicates the scale of prostate cancer metabolomic fields. While these findings could, at present, be potentially useful in the prostate cancer clinic for analysis of biopsy or surgical specimens to complement current diagnostics, the confirmation of metabolomic fields should encourage further examination of cancer fields and can also enhance understanding of the metabolomic characteristics of cancer in myriad organ systems. Our results together with the success of HRMAS MRS-based cancer metabolomics presented in our literature review demonstrate the potential of cancer metabolomics to provide supplementary information for cancer diagnosis, staging, and patient prognostication.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Haematology and Oncology, CCM, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Radiology, Charité Medical University of Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lindsey A. Vandergrift
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Shulin Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Yannick Berker
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Piet Habbel
- Department of Haematology and Oncology, CCM, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Taupitz
- Department of Radiology, Charité Medical University of Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Leo L. Cheng
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Corresponding author: Leo L. Cheng, PhD, 149 13 St, CNY 6, Charlestown, MA 02129, Ph. 617-724-6593,
| |
Collapse
|
2
|
Detour J, Bund C, Behr C, Cebula H, Cicek EA, Valenti-Hirsch MP, Lannes B, Lhermitte B, Nehlig A, Kehrli P, Proust F, Hirsch E, Namer IJ. Metabolomic characterization of human hippocampus from drug-resistant epilepsy with mesial temporal seizure. Epilepsia 2018; 59:607-616. [DOI: 10.1111/epi.14000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Julien Detour
- Department of Biophysics and Nuclear Medicine; University Hospitals of Strasbourg; Strasbourg France
- Department of Pharmacy; University Hospitals of Strasbourg; Strasbourg France
| | - Caroline Bund
- Department of Biophysics and Nuclear Medicine; University Hospitals of Strasbourg; Strasbourg France
- ICube; University of Strasbourg/CNRS UMR7357; Strasbourg France
| | - Charles Behr
- University Hospital of INSERM U 964; Strasbourg France
| | - Hélène Cebula
- Department of Neurosurgery; University Hospitals of Strasbourg; Strasbourg France
| | - Ercument A. Cicek
- Department of Computer Engineering; Bilkent University; Ankara Turkey
- Computational Biology Department; Carnegie Mellon University; Pittsburgh PA USA
| | | | - Béatrice Lannes
- Department of Pathology; University Hospitals of Strasbourg; Strasbourg France
| | - Benoît Lhermitte
- Department of Pathology; University Hospitals of Strasbourg; Strasbourg France
| | - Astrid Nehlig
- INSERM U1129; Paris France
- Paris Descartes University-Sorbonne Paris Cité; Paris France
- CEA; Gif sur Yvette France
| | - Pierre Kehrli
- Department of Neurosurgery; University Hospitals of Strasbourg; Strasbourg France
| | - François Proust
- Department of Neurosurgery; University Hospitals of Strasbourg; Strasbourg France
| | | | - Izzie-Jacques Namer
- Department of Biophysics and Nuclear Medicine; University Hospitals of Strasbourg; Strasbourg France
- ICube; University of Strasbourg/CNRS UMR7357; Strasbourg France
- Federation of Translational Medicine of Strasbourg (FMTS); Faculty of Medicine; University of Strasbourg; Strasbourg France
| |
Collapse
|
3
|
Dietz C, Ehret F, Palmas F, Vandergrift LA, Jiang Y, Schmitt V, Dufner V, Habbel P, Nowak J, Cheng LL. Applications of high-resolution magic angle spinning MRS in biomedical studies II-Human diseases. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3784. [PMID: 28915318 PMCID: PMC5690552 DOI: 10.1002/nbm.3784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 05/06/2023]
Abstract
High-resolution magic angle spinning (HRMAS) MRS is a powerful method for gaining insight into the physiological and pathological processes of cellular metabolism. Given its ability to obtain high-resolution spectra of non-liquid biological samples, while preserving tissue architecture for subsequent histopathological analysis, the technique has become invaluable for biochemical and biomedical studies. Using HRMAS MRS, alterations in measured metabolites, metabolic ratios, and metabolomic profiles present the possibility to improve identification and prognostication of various diseases and decipher the metabolomic impact of drug therapies. In this review, we evaluate HRMAS MRS results on human tissue specimens from malignancies and non-localized diseases reported in the literature since the inception of the technique in 1996. We present the diverse applications of the technique in understanding pathological processes of different anatomical origins, correlations with in vivo imaging, effectiveness of therapies, and progress in the HRMAS methodology.
Collapse
Affiliation(s)
- Christopher Dietz
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Felix Ehret
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Francesco Palmas
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Sardinia, 09042 Italy
| | - Lindsey A. Vandergrift
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| | - Yanni Jiang
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029 China
| | - Vanessa Schmitt
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Vera Dufner
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Johannes Nowak
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
4
|
Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS). Metabolites 2016; 6:metabo6010011. [PMID: 27011205 PMCID: PMC4812340 DOI: 10.3390/metabo6010011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022] Open
Abstract
According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics.
Collapse
|
5
|
|
6
|
Data analysis and tissue type assignment for glioblastoma multiforme. BIOMED RESEARCH INTERNATIONAL 2014; 2014:762126. [PMID: 24724098 PMCID: PMC3958772 DOI: 10.1155/2014/762126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/13/2014] [Accepted: 01/23/2014] [Indexed: 11/18/2022]
Abstract
Glioblastoma multiforme (GBM) is characterized by high infiltration. The interpretation of MRSI data, especially for GBMs, is still challenging. Unsupervised methods based on NMF by Li et al. (2013, NMR in Biomedicine) and Li et al. (2013, IEEE Transactions on Biomedical Engineering) have been proposed for glioma recognition, but the tissue types is still not well interpreted. As an extension of the previous work, a tissue type assignment method is proposed for GBMs based on the analysis of MRSI data and tissue distribution information. The tissue type assignment method uses the values from the distribution maps of all three tissue types to interpret all the information in one new map and color encodes each voxel to indicate the tissue type. Experiments carried out on in vivo MRSI data show the feasibility of the proposed method. This method provides an efficient way for GBM tissue type assignment and helps to display information of MRSI data in a way that is easy to interpret.
Collapse
|
7
|
Metabolic Fingerprinting of In Vitro Cancer Cell Samples. CORRELATION-BASED NETWORK ANALYSIS OF CANCER METABOLISM 2014. [DOI: 10.1007/978-1-4939-0615-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Armitage EG, Barbas C. Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal 2013; 87:1-11. [PMID: 24091079 DOI: 10.1016/j.jpba.2013.08.041] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 12/19/2022]
Abstract
Cancer is one of the most devastating human diseases that causes a vast number of mortalities worldwide each year. Cancer research is one of the largest fields in the life sciences and despite many astounding breakthroughs and contributions over the past few decades, there is still a considerable amount to unveil on the function of cancer. It is well known that cancer metabolism differs from that of normal tissue and an important hypothesis published in the 1950s by Otto Warburg proposed that cancer cells rely on anaerobic metabolism as the source for energy, even under physiological oxygen levels. Following this, cancer central carbon metabolism has been researched extensively and beyond respiration, cancer has been found to involve a wide range of metabolic processes, and many more are still to be unveiled. Studying cancer through metabolomics could reveal new biomarkers for cancer that could be useful for its future prognosis, diagnosis and therapy. Metabolomics is becoming an increasingly popular tool in the life sciences since it is a relatively fast and accurate technique that can be applied with either a particular focus or in a global manner to reveal new knowledge about biological systems. There have been many examples of its application to reveal potential biomarkers in different cancers that have employed a range of different analytical platforms. In this review, approaches in metabolomics that have been employed in cancer biomarker discovery are discussed and some of the most noteworthy research in the field is highlighted.
Collapse
Affiliation(s)
- Emily G Armitage
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, Campus Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain
| | | |
Collapse
|
9
|
Quantification in magnetic resonance spectroscopy based on semi-parametric approaches. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 27:113-30. [DOI: 10.1007/s10334-013-0393-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
10
|
Li Y, Sima DM, Cauter SV, Croitor Sava AR, Himmelreich U, Pi Y, Van Huffel S. Hierarchical non-negative matrix factorization (hNMF): a tissue pattern differentiation method for glioblastoma multiforme diagnosis using MRSI. NMR IN BIOMEDICINE 2013; 26:307-319. [PMID: 22972709 DOI: 10.1002/nbm.2850] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 08/04/2012] [Accepted: 08/06/2012] [Indexed: 06/01/2023]
Abstract
MRSI has shown potential in the diagnosis and prognosis of glioblastoma multiforme (GBM) brain tumors, but its use is limited by difficult data interpretation. When the analyzed MRSI data present more than two tissue patterns, conventional non-negative matrix factorization (NMF) implementation may lead to a non-robust estimation. The aim of this article is to introduce an effective approach for the differentiation of GBM tissue patterns using MRSI data. A hierarchical non-negative matrix factorization (hNMF) method that can blindly separate the most important spectral sources in short-TE ¹H MRSI data is proposed. This algorithm consists of several levels of NMF, where only two tissue patterns are computed at each level. The method is demonstrated on both simulated and in vivo short-TE ¹H MRSI data in patients with GBM. For the in vivo study, the accuracy of the recovered spectral sources was validated using expert knowledge. Results show that hNMF is able to accurately estimate the three tissue patterns present in the tumoral and peritumoral area of a GBM, i.e. normal, tumor and necrosis, thus providing additional useful information that can help in the diagnosis of GBM. Moreover, the hNMF results can be displayed as easily interpretable maps showing the contribution of each tissue pattern to each voxel.
Collapse
Affiliation(s)
- Yuqian Li
- School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
In Vivo Magnetic Resonance Spectroscopic Imaging and Ex Vivo Quantitative Neuropathology by High Resolution Magic Angle Spinning Proton Magnetic Resonance Spectroscopy. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/7657_2011_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
12
|
Constantin A, Elkhaled A, Jalbert L, Srinivasan R, Cha S, Chang SM, Bajcsy R, Nelson SJ. Identifying malignant transformations in recurrent low grade gliomas using high resolution magic angle spinning spectroscopy. Artif Intell Med 2012; 55:61-70. [PMID: 22387185 DOI: 10.1016/j.artmed.2012.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 12/12/2011] [Accepted: 01/17/2012] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The objective of this study was to determine whether metabolic parameters derived from ex vivo analysis of tissue samples are predictive of biologic characteristics of recurrent low grade gliomas (LGGs). This was achieved by exploring the use of multivariate pattern recognition methods to generate statistical models of the metabolic characteristics of recurrent LGGs that correlate with aggressive biology and poor clinical outcome. METHODS Statistical models were constructed to distinguish between patients with recurrent gliomas that had undergone malignant transformation to a higher grade and those that remained grade 2. The pattern recognition methods explored in this paper include three filter-based feature selection methods (chi-square, gain ratio, and two-way conditional probability), a genetic search wrapper-based feature subset selection algorithm, and five classification algorithms (linear discriminant analysis, logistic regression, functional trees, support vector machines, and decision stump logit boost). The accuracy of each pattern recognition framework was evaluated using leave-one-out cross-validation and bootstrapping. MATERIALS The population studied included fifty-three patients with recurrent grade 2 gliomas. Among these patients, seven had tumors that transformed to grade 4, twenty-four had tumors that transformed to grade 3, and twenty-two had tumors that remained grade 2. Image-guided tissue samples were obtained from these patients using surgical navigation software. Part of each tissue sample was examined by a pathologist for histological features and for consistency with the tumor grade diagnosis. The other part of the tissue sample was analyzed with ex vivo nuclear magnetic resonance (NMR) spectroscopy. RESULTS Distinguishing between recurrent low grade gliomas that transformed to a higher grade and those that remained grade 2 was achieved with 96% accuracy, using areas of the ex vivo NMR spectrum corresponding to myoinositol, 2-hydroxyglutarate, hypo-taurine, choline, glycerophosphocholine, phosphocholine, glutathione, and lipid. Logistic regression and decision stump boosting models were able to distinguish between recurrent gliomas that transformed to a higher grade and those that did not with 100% training accuracy (95% confidence interval [93-100%]), 96% leave-one-out cross-validation accuracy (95% confidence interval [87-100%]), and 96% bootstrapping accuracy (95% confidence interval [95-97%]). Linear discriminant analysis, functional trees, and support vector machines were able to achieve leave-one-out cross-validation accuracy above 90% and bootstrapping accuracy above 85%. The three feature ranking methods were comparable in performance. CONCLUSIONS This study demonstrates the feasibility of using quantitative pattern recognition methods for the analysis of metabolic data from brain tissue obtained during the surgical resection of gliomas. All pattern recognition techniques provided good diagnostic accuracies, though logistic regression and decision stump boosting slightly outperform the other classifiers. These methods identified biomarkers that can be used to detect malignant transformations in individual low grade gliomas, and can lead to a timely change in treatment for each patient.
Collapse
Affiliation(s)
- Alexandra Constantin
- Electrical Engineering and Computer Science, Sutardja Dai Hall, University of California, Berkeley, Berkeley, CA 94709, USA.
| | | | | | | | | | | | | | | |
Collapse
|