1
|
Tressler CM, Sonkar K, Cheng M, Ayyappan V, Cai R, Glunde K. Molecular effects of clinically relevant chemotherapeutic agents on choline phospholipid metabolism in triple negative breast cancer cells. Transl Oncol 2025; 53:102311. [PMID: 39922048 PMCID: PMC11849126 DOI: 10.1016/j.tranon.2025.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/21/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is the most lethal breast cancer subtype, leading to poor patient outcomes despite aggressive treatment with surgery, radiation, and chemotherapy. There are currently no clinical tests available which measure early on whether TNBC patients respond to the selected chemotherapy treatment regimen. The magnetic resonance spectroscopy (MRS)-detected total choline (tCho) signal was shown to be a promising biomarker for assessing the response to chemotherapy treatment early on, as breast tumor tCho decreases after the first treatment cycle in patients who respond to chemotherapy cocktails. We sought to further investigate these clinical observations at the molecular level by combining metabolic and transcriptomic studies in two human TNBC cell lines treated with six different chemotherapeutic agents. Overall, our findings show that the glycerophosphocholine-to-phosphocholine ratio (GPC/PC) was a more sensitive and more broadly applicable measure of TNBC response to various chemotherapeutic agents than tCho. Specific chemotherapeutic drugs, including 5-fluorouracil and melphalan, resulted in the most significant effects on choline phospholipid metabolism, while other drugs did not significantly alter choline phospholipid metabolism. Overall, several of the six tested chemotherapeutic drugs mainly affected the expression levels of phosphatidylcholine (PtdC)-specific phospholipases and lysophospholipases, leading to the observed GPC/PC and tCho changes following treatment with the chemotherapeutic agents that altered choline phospholipid metabolism. The presented metabolic and transcriptomic findings support that the GPC/PC ratio and PtdC-phospholipases and -lysophospholipases could be further developed for assessing the response to chemotherapy treatment in TNBC patients. Statement of Significance: We show that the glycerophosphocholine-to-phosphocholine ratio and phosphatidylcholine-specific-phospholipases and -lysophospholipases are reliable markers for assessing the response to several chemotherapeutic agents, which could help with selecting correct treatments for TNBC patients.
Collapse
Affiliation(s)
- Caitlin M Tressler
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kanchan Sonkar
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Menglin Cheng
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vinay Ayyappan
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruoqing Cai
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Emerging Role for 7T MRI and Metabolic Imaging for Pancreatic and Liver Cancer. Metabolites 2022; 12:metabo12050409. [PMID: 35629913 PMCID: PMC9145477 DOI: 10.3390/metabo12050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Advances in magnet technologies have led to next generation 7T magnetic resonance scanners which can fit in the footprint and price point of conventional hospital scanners (1.5−3T). It is therefore worth asking if there is a role for 7T magnetic resonance imaging and spectroscopy for the treatment of solid tumor cancers. Herein, we survey the medical literature to evaluate the unmet clinical needs for patients with pancreatic and hepatic cancer, and the potential of ultra-high field proton imaging and phosphorus spectroscopy to fulfil those needs. We draw on clinical literature, preclinical data, nuclear magnetic resonance spectroscopic data of human derived samples, and the efforts to date with 7T imaging and phosphorus spectroscopy. At 7T, the imaging capabilities approach histological resolution. The spectral and spatial resolution enhancements at high field for phospholipid spectroscopy have the potential to reduce the number of exploratory surgeries due to tumor boundaries undefined at conventional field strengths. Phosphorus metabolic imaging at 7T magnetic field strength, is already a mainstay in preclinical models for molecular phenotyping, energetic status evaluation, dosimetry, and assessing treatment response for both pancreatic and liver cancers. Metabolic imaging of primary tumors and lymph nodes may provide powerful metrics to aid staging and treatment response. As tumor tissues contain extreme levels of phospholipid metabolites compared to the background signal, even spectroscopic volumes containing less than 50% tumor can be detected and/or monitored. Phosphorus spectroscopy allows non-invasive pH measurements, indicating hypoxia, as a predictor of patients likely to recur. We conclude that 7T multiparametric approaches that include metabolic imaging with phosphorus spectroscopy have the potential to meet the unmet needs of non-invasive location-specific treatment monitoring, lymph node staging, and the reduction in unnecessary surgeries for patients undergoing resections for pancreatic cancer. There is also potential for the use of 7T phosphorous spectra for the phenotyping of tumor subtypes and even early diagnosis (<2 mL). Whether or not 7T can be used for all patients within the next decade, the technology is likely to speed up the translation of new therapeutics.
Collapse
|
3
|
Kakkar P, Kakkar T, Patankar T, Saha S. Current approaches and advances in the imaging of stroke. Dis Model Mech 2021; 14:273651. [PMID: 34874055 PMCID: PMC8669490 DOI: 10.1242/dmm.048785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A stroke occurs when the blood flow to the brain is suddenly interrupted, depriving brain cells of oxygen and glucose and leading to further cell death. Neuroimaging techniques, such as computed tomography and magnetic resonance imaging, have greatly improved our ability to visualise brain structures and are routinely used to diagnose the affected vascular region of a stroke patient's brain and to inform decisions about clinical care. Currently, these multimodal imaging techniques are the backbone of the clinical management of stroke patients and have immensely improved our ability to visualise brain structures. Here, we review recent developments in the field of neuroimaging and discuss how different imaging techniques are used in the diagnosis, prognosis and treatment of stroke. Summary: Stroke imaging has undergone seismic shifts in the past decade. Although magnetic resonance imaging (MRI) is superior to computed tomography in providing vital information, further research on MRI is still required to bring its full potential into clinical practice.
Collapse
Affiliation(s)
- Pragati Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Tarun Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | | | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Rivera D, Kalleveen I, de Castro CA, van Laarhoven H, Klomp D, van der Kemp W, Stoker J, Nederveen A. Inherently decoupled 1 H antennas and 31 P loops for metabolic imaging of liver metastasis at 7 T. NMR IN BIOMEDICINE 2020; 33:e4221. [PMID: 31922319 DOI: 10.1002/nbm.4221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
High field 31 P spectroscopy has thus far been limited to diffuse liver disease. Unlike lower field-strength scanners, there is no body coil in the bore of the 7 T and despite inadequate penetration depth (<10 cm), surface coils are the current state-of-the-art for acquiring anatomical images to support multinuclear studies. We present a system of proton antennas and phosphorus loops for 31 P spectroscopy and provide the first ultrahigh-field phosphorus metabolic imaging of a tumor in the abdomen. Herein we characterize the degree to which antennas are isolated from underlying loops. Next, we evaluate the penetration depth of the two antennas available during multinuclear examinations. Finally, we combine phosphorus spectroscopy (two loops) with parallel transmit imaging (eight antennas) in a patient. The loops and antennas are inherently decoupled (no added circuitry, <0.1% power coupling). The penetration depth of two antennas gives twice that of conventional loops. The liver and full axial slice of the abdomen were imaged with eight transmit/receive antennas using parallel transmit B1-shimming to overcome image voids. Phosphorus spectroscopy from a liver metastasis resolved individual peaks for phosphocholine and phosphoethenalomine. Proton antennas are inherently decoupled from phosphorus loops. By using two proton antennas it is possible to perform region-of-interest image-based shimming in over 80% of the liver volume, thereby enabling phosphorus spectroscopy of localized disease. Shimming of the full extent of the abdominal cross-section is feasible using a parallel transmit array of eight antennas. A system architecture capable of supporting eight-channel parallel transmit and multinuclear spectroscopy is optimal for supporting multiparametric body imaging, including metabolic imaging, for monitoring the response of patients with liver metastases to cancer treatments and for patient risk stratification. In the meantime, the existing infrastructure using two antennas is sufficient for preliminary studies in metabolic imaging of tumors in the liver.
Collapse
Affiliation(s)
- Debra Rivera
- Department of Electrical Engineering, Technical University Eindhoven, Eindhoven, the Netherlands
- MR Coils, BV Zaltbommel, the Netherlands
| | | | | | | | - Dennis Klomp
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wybe van der Kemp
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap Stoker
- Radiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Aart Nederveen
- Radiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Sonkar K, Ayyappan V, Tressler CM, Adelaja O, Cai R, Cheng M, Glunde K. Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer. NMR IN BIOMEDICINE 2019; 32:e4112. [PMID: 31184789 PMCID: PMC6803034 DOI: 10.1002/nbm.4112] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 05/02/2023]
Abstract
Activated choline metabolism is a hallmark of carcinogenesis and tumor progression, which leads to elevated levels of phosphocholine and glycerophosphocholine in all types of cancer tested so far. Magnetic resonance spectroscopy applications have played a key role in detecting these elevated choline phospholipid metabolites. To date, the majority of cancer-related studies have focused on phosphocholine and the Kennedy pathway, which constitutes the biosynthesis pathway for membrane phosphatidylcholine. Fewer and more recent studies have reported on the importance of glycerophosphocholine in cancer. In this review article, we summarize the recent literature on glycerophosphocholine metabolism with respect to its cancer biology and its detection by magnetic resonance spectroscopy applications.
Collapse
Affiliation(s)
- Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oluwatobi Adelaja
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruoqing Cai
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Menglin Cheng
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Krikken E, van der Kemp WJM, van Diest PJ, van Dalen T, van Laarhoven HWM, Luijten PR, Klomp DWJ, Wijnen JP. Early detection of changes in phospholipid metabolism during neoadjuvant chemotherapy in breast cancer patients using phosphorus magnetic resonance spectroscopy at 7T. NMR IN BIOMEDICINE 2019; 32:e4086. [PMID: 30924571 PMCID: PMC6593799 DOI: 10.1002/nbm.4086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 05/14/2023]
Abstract
The purpose of this work was to investigate whether noninvasive early detection (after the first cycle) of response to neoadjuvant chemotherapy (NAC) in breast cancer patients was possible. 31 P-MRSI at 7 T was used to determine different phosphor metabolites ratios and correlate this to pathological response. 31 P-MRSI was performed in 12 breast cancer patients treated with NAC. 31 P spectra were fitted and aligned to the frequency of phosphoethanolamine (PE). Metabolic signal ratios for phosphomonoesters/phosphodiesters (PME/PDE), phosphocholine/glycerophosphatidylcholine (PC/GPtC), phosphoethanolamine/glycerophosphoethanolamine (PE/GPE) and phosphomonoesters/in-organic phosphate (PME/Pi) were determined from spectral fitting of the individual spectra and the summed spectra before and after the first cycle of NAC. Metabolic ratios were subsequently related to pathological response. Additionally, the correlation between the measured metabolic ratios and Ki-67 levels was determined using linear regression. Four patients had a pathological complete response after treatment, five patients a partial pathological response, and three patients did not respond to NAC. In the summed spectrum after the first cycle of NAC, PME/Pi and PME/PDE decreased by 18 and 13%, respectively. A subtle difference among the different response groups was observed in PME/PDE, where the nonresponders showed an increase and the partial and complete responders a decrease (P = 0.32). No significant changes in metabolic ratios were found. However, a significant association between PE/Pi and the Ki-67 index was found (P = 0.03). We demonstrated that it is possible to detect subtle changes in 31 P metabolites with a 7 T MR system after the first cycle of NAC treatment in breast cancer patients. Nonresponders showed different changes in metabolic ratios compared with partial and complete responders, in particular for PME/PDE; however, more patients need to be included to investigate its clinical value.
Collapse
Affiliation(s)
- Erwin Krikken
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wybe J M van der Kemp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thijs van Dalen
- Department of Surgery, Diakonessenhuis, Utrecht, The Netherlands
| | | | - Peter R Luijten
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Leithner D, Wengert GJ, Helbich TH, Thakur S, Ochoa-Albiztegui RE, Morris EA, Pinker K. Clinical role of breast MRI now and going forward. Clin Radiol 2018; 73:700-714. [PMID: 29229179 PMCID: PMC6788454 DOI: 10.1016/j.crad.2017.10.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023]
Abstract
Magnetic resonance imaging (MRI) is a well-established method in breast imaging, with manifold clinical applications, including the non-invasive differentiation between benign and malignant breast lesions, preoperative staging, detection of scar versus recurrence, implant assessment, and the evaluation of high-risk patients. At present, dynamic contrast-enhanced MRI is the most sensitive imaging technique for breast cancer diagnosis, and provides excellent morphological and to some extent also functional information. To compensate for the limited functional information, and to increase the specificity of MRI while preserving its sensitivity, additional functional parameters such as diffusion-weighted imaging and apparent diffusion coefficient mapping, and MR spectroscopic imaging have been investigated and implemented into the clinical routine. Several additional MRI parameters to capture breast cancer biology are still under investigation. MRI at high and ultra-high field strength and advances in hard- and software may also further improve this imaging technique. This article will review the current clinical role of breast MRI, including multiparametric MRI and abbreviated protocols, and provide an outlook on the future of this technique. In addition, the predictive and prognostic value of MRI as well as the evolving field of radiogenomics will be discussed.
Collapse
Affiliation(s)
- D Leithner
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany; Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - G J Wengert
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - T H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - S Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R E Ochoa-Albiztegui
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E A Morris
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - K Pinker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Abstract
CLINICAL/METHODICAL ISSUE Magnetic resonance imaging (MRI) of the breast is an indispensable tool in breast imaging for many indications. Several functional parameters with MRI and positron emission tomography (PET) have been assessed for imaging of breast tumors and their combined application is defined as multiparametric imaging. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the hallmarks of cancer and may provide additional specificity. STANDARD RADIOLOGICAL METHODS Multiparametric and molecular imaging of the breast comprises established MRI parameters, such as dynamic contrast-enhanced MRI, diffusion-weighted imaging (DWI), MR proton spectroscopy ((1)H-MRSI) as well as combinations of radiological and MRI techniques (e. g. PET/CT and PET/MRI) using radiotracers, such as fluorodeoxyglucose (FDG). METHODICAL INNOVATIONS Multiparametric and molecular imaging of the breast can be performed at different field-strengths (range 1.5-7 T). Emerging parameters comprise novel promising techniques, such as sodium imaging ((23)Na MRI), phosphorus spectroscopy ((31)P-MRSI), chemical exchange saturation transfer (CEST) imaging, blood oxygen level-dependent (BOLD) and hyperpolarized MRI as well as various specific radiotracers. ACHIEVEMENTS Multiparametric and molecular imaging has multiple applications in breast imaging. Multiparametric and molecular imaging of the breast is an evolving field that will enable improved detection, characterization, staging and monitoring for personalized medicine in breast cancer.
Collapse
|
9
|
Cheng M, Rizwan A, Jiang L, Bhujwalla ZM, Glunde K. Molecular Effects of Doxorubicin on Choline Metabolism in Breast Cancer. Neoplasia 2017; 19:617-627. [PMID: 28654865 PMCID: PMC5487306 DOI: 10.1016/j.neo.2017.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 12/16/2022]
Abstract
Abnormal choline phospholipid metabolism is a hallmark of cancer. The magnetic resonance spectroscopy (MRS) detected total choline (tCho) signal can serve as an early noninvasive imaging biomarker of chemotherapy response in breast cancer. We have quantified the individual components of the tCho signal, glycerophosphocholine (GPC), phosphocholine (PC) and free choline (Cho), before and after treatment with the commonly used chemotherapeutic drug doxorubicin in weakly metastatic human MCF7 and triple-negative human MDA-MB-231 breast cancer cells. While the tCho concentration did not change following doxorubicin treatment, GPC significantly increased and PC decreased. Of the two phosphatidylcholine-specific PLD enzymes, only PLD1, but not PLD2, mRNA was down-regulated by doxorubicin treatment. For the two reported genes encoding GPC phosphodiesterase, the mRNA of GDPD6, but not GDPD5, decreased following doxorubicin treatment. mRNA levels of choline kinase α (ChKα), which converts Cho to PC, were reduced following doxorubicin treatment. PLD1 and ChKα protein levels decreased following doxorubicin treatment in a concentration dependent manner. Treatment with the PLD1 specific inhibitor VU0155069 sensitized MCF7 and MDA-MB-231 breast cancer cells to doxorubicin-induced cytotoxicity. Low concentrations of 100 nM of doxorubicin increased MDA-MB-231 cell migration. GDPD6, but not PLD1 or ChKα, silencing by siRNA abolished doxorubicin-induced breast cancer cell migration. Doxorubicin induced GPC increase and PC decrease are caused by reductions in PLD1, GDPD6, and ChKα mRNA and protein expression. We have shown that silencing or inhibiting these genes/proteins can promote drug effectiveness and reduce adverse drug effects. Our findings emphasize the importance of detecting PC and GPC individually.
Collapse
Affiliation(s)
- Menglin Cheng
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asif Rizwan
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lu Jiang
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Marino MA, Helbich T, Baltzer P, Pinker-Domenig K. Multiparametric MRI of the breast: A review. J Magn Reson Imaging 2017. [DOI: 10.1002/jmri.25790] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Maria Adele Marino
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging; Medical University of Vienna; Austria
- Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico Universitario G. Martino; University of Messina; Messina Italy
| | - Thomas Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging; Medical University of Vienna; Austria
| | - Pascal Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging; Medical University of Vienna; Austria
| | - Katja Pinker-Domenig
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging; Medical University of Vienna; Austria
- Department of Radiology; Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center; New York New York USA
| |
Collapse
|
11
|
Response Detection of Castrate-Resistant Prostate Cancer to Clinically Utilised and Novel Treatments by Monitoring Phospholipid Metabolism. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4793465. [PMID: 28717648 PMCID: PMC5498927 DOI: 10.1155/2017/4793465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022]
Abstract
Androgen receptor (AR) activation is the primary driving factor in prostate cancer which is initially responsive to castration but then becomes resistant (castration-resistant prostate cancer (CRPC)). CRPC cells still retain the functioning AR which can be targeted by other therapies. A recent promising development is the use of inhibitors (Epi-1) of protein-protein interaction to inhibit AR-activated signalling. Translating novel therapies into the clinic requires sensitive early response indicators. Here potential response markers are explored. Growth inhibition of prostate cancer cells with flutamide, paclitaxel, and Epi-1 was measured using the MTT assay. To simulate choline-PET scans, pulse-chase experiments were carried out with [3H-methyl]choline and proportion of phosphorylated activity was determined after treatment with growth inhibitory concentrations of each drug. Extracts from treated cells were also subject to 31P-NMR spectroscopy. Cells treated with flutamide demonstrated decreased [3H-methyl]choline phosphorylation, whilst the proportion of phosphorylated [3H-methyl]choline that was present in the lipid fraction was increased in Epi-1-treated cells. Phospholipid breakdown products, glycerophosphorylcholine and glycerophosphoethanolamine levels, were shown by 31P-NMR spectroscopy to be decreased to undetectable levels in cells treated with Epi-1. LNCaP cells responding to treatment with novel protein-protein interaction inhibitors suggest that 31P-NMR spectroscopy may be useful in detecting response to this promising therapy.
Collapse
|
12
|
Pinker K, Helbich TH, Morris EA. The potential of multiparametric MRI of the breast. Br J Radiol 2016; 90:20160715. [PMID: 27805423 DOI: 10.1259/bjr.20160715] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MRI is an essential tool in breast imaging, with multiple established indications. Dynamic contrast-enhanced MRI (DCE-MRI) is the backbone of any breast MRI protocol and has an excellent sensitivity and good specificity for breast cancer diagnosis. DCE-MRI provides high-resolution morphological information, as well as some functional information about neoangiogenesis as a tumour-specific feature. To overcome limitations in specificity, several other functional MRI parameters have been investigated and the application of these combined parameters is defined as multiparametric MRI (mpMRI) of the breast. MpMRI of the breast can be performed at different field strengths (1.5-7 T) and includes both established (diffusion-weighted imaging, MR spectroscopic imaging) and novel MRI parameters (sodium imaging, chemical exchange saturation transfer imaging, blood oxygen level-dependent MRI), as well as hybrid imaging with positron emission tomography (PET)/MRI and different radiotracers. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the underlying oncogenic processes of cancer development and progression and can provide additional specificity. This article will review the current and emerging functional parameters for mpMRI of the breast for improved diagnostic accuracy in breast cancer.
Collapse
Affiliation(s)
- Katja Pinker
- 1 Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,2 Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria.,3 Department of Radiology, Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas H Helbich
- 2 Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Elizabeth A Morris
- 3 Department of Radiology, Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
13
|
van der Kemp WJM, Stehouwer BL, Runge JH, Wijnen JP, Nederveen AJ, Luijten PR, Klomp DWJ. Glycerophosphocholine and Glycerophosphoethanolamine Are Not the Main Sources of the In Vivo (31)P MRS Phosphodiester Signals from Healthy Fibroglandular Breast Tissue at 7 T. Front Oncol 2016; 6:29. [PMID: 26913240 PMCID: PMC4753293 DOI: 10.3389/fonc.2016.00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The identification of the phosphodiester (PDE) (31)P MR signals in the healthy human breast at ultra-high field. METHODS In vivo (31)P MRS measurements at 7 T of the PDE signals in the breast were performed investigating the chemical shifts, the transverse- and the longitudinal relaxation times. Chemical shifts and transverse relaxation times were compared with non-ambiguous PDE signals from the liver. RESULTS The chemical shifts of the PDE signals are shifted -0.5 ppm with respect to glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE), and the transverse and longitudinal relaxation times for these signals are a factor 3 to 4 shorter than expected for aqueous GPC and GPE. CONCLUSION The available experimental evidence suggests that GPC and GPE are not the main source of the PDE signals measured in fibroglandular breast tissue at 7 T. These signals may predominantly originate from mobile phospholipids.
Collapse
Affiliation(s)
| | | | - Jurgen H Runge
- Radiology, Academic Medical Center , Amsterdam , Netherlands
| | - Jannie P Wijnen
- Radiology, University Medical Center Utrecht , Utrecht , Netherlands
| | | | - Peter R Luijten
- Radiology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Dennis W J Klomp
- Radiology, University Medical Center Utrecht , Utrecht , Netherlands
| |
Collapse
|
14
|
Šedivý P, Kipfelsberger MC, Dezortová M, Krššák M, Drobný M, Chmelík M, Rydlo J, Trattnig S, Hájek M, Valkovič L. Dynamic 31P MR spectroscopy of plantar flexion: influence of ergometer design, magnetic field strength (3 and 7 T), and RF-coil design. Med Phys 2015; 42:1678-89. [PMID: 25832057 DOI: 10.1118/1.4914448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Dynamic phosphorus magnetic resonance spectroscopy ((31)P MRS) during and after acute exercise enables the noninvasive in vivo determination of the mitochondrial capacity of skeletal muscle. Nevertheless, the lack of standardization in experimental setups leads to significant variations in published values of maximal aerobic capacity, even in the population of healthy volunteers. Thus, in this study, we aimed to assess the impact of the ergometer type (pneumatic and mechanical resistance construction), radiofrequency (RF)-coil diameter, and different magnetic field strengths (3 and 7 T) on the metabolic parameters measured by dynamic (31)P MRS during a plantar flexion isotonic exercise protocol within the same group of healthy volunteers. METHODS Dynamic (31)P MRS measurements of the calf muscle in 11 volunteers (mean age, 36 ± 13 yrs; mean BMI, 23.5 ± 2.5 kg/m(2)), on a 3 T MR system with a custom-made mechanical ergometer in the first research laboratory (RL1) and on 3 and 7 T MR systems equipped with a commercial pneumatic ergometer in the second research laboratory (RL2), were performed at three different workloads. RF-coils differed slightly between the sites and MR systems used. The repeatability of the experimental protocol was tested in every setup. The basal concentrations of phosphocreatine (PCr), exercise-induced depletion of PCr (ΔPCr), initial PCr resynthesis rate (VPCr), and mitochondrial capacity (Qmax) were calculated and compared between the research sites and field strengths. RESULTS High repeatability of the measurement protocol was found in every experimental setup. No significant differences at any workload were found in these metabolic parameters assessed at different magnetic field strengths (3 T vs 7 T), using the same ergometer (in RL2) and a similar RF-coil. In the inter-research laboratory comparison at the same field strength (3 T), but with using different ergometers and RF-coils, differences were found in the concentration of PCr measured at rest and in the drop in PCr signal intensity. These differences translated into difference in the value of mitochondrial capacity at a workload of 15% of maximal voluntary contraction (MVC) force (0.45 ± 0.16 mM/s vs 0.31 ± 0.08 mM/s, in the RL1 and RL2, respectively). CONCLUSIONS Metabolic parameters measured during exercise challenge by dynamic (31)P MRS do not depend upon the magnetic field strength used. For multicenter studies with different ergometers, it is important to set the same workload, measurement, and evaluation protocols, especially when the effects of very mild exercise (15% MVC) are to be compared. However, a higher workload (24% MVC) decreases the influence of imperfections and intersite differences for the assessed value of maximal mitochondrial capacity.
Collapse
Affiliation(s)
- Petr Šedivý
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
| | - Monika Christina Kipfelsberger
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria
| | - Monika Dezortová
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
| | - Martin Krššák
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna A-1090, Austria; and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria
| | - Miloslav Drobný
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
| | - Marek Chmelík
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria
| | - Jan Rydlo
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
| | - Siegfried Trattnig
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria
| | - Milan Hájek
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
| | - Ladislav Valkovič
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava 841 04, Slovakia; and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria
| |
Collapse
|
15
|
Multiparametric MRI With Dynamic Contrast Enhancement, Diffusion-Weighted Imaging, and 31-Phosphorus Spectroscopy at 7 T for Characterization of Breast Cancer. Invest Radiol 2015; 50:766-71. [DOI: 10.1097/rli.0000000000000183] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Pinker K, Baltzer P, Bogner W, Leithner D, Trattnig S, Zaric O, Dubsky P, Bago-Horvath Z, Rudas M, Gruber S, Weber M, Helbich TH. Multiparametric MR Imaging with High-Resolution Dynamic Contrast-enhanced and Diffusion-weighted Imaging at 7 T Improves the Assessment of Breast Tumors: A Feasibility Study. Radiology 2015; 276:360-70. [DOI: 10.1148/radiol.15141905] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Cui J, Bosshard JC, Rispoli JV, Dimitrov IE, Cheshkov S, McDougall MP, Malloy C, Wright SM. A Switched-Mode Breast Coil for 7 T MRI Using Forced-Current Excitation. IEEE Trans Biomed Eng 2015; 62:1777-83. [PMID: 25706501 DOI: 10.1109/tbme.2015.2403850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In high-field magnetic resonance imaging, the radio frequency wavelength within the human body is comparable to anatomical dimensions, resulting in B1 inhomogeneity and nonuniform sensitivity patterns. Thus, this relatively short wavelength presents engineering challenges for RF coil design. In this study, a bilateral breast coil for (1)H imaging at 7 T was designed and constructed using forced-current excitation. By forcing equal current through the coil elements, we reduce the effects of coupling between the elements to simplify tuning and to ensure a uniform field across both breasts. To combine the benefits of the higher power efficiency of a unilateral coil with the bilateral coverage of a bilateral coil, a switching circuit was implemented to allow the coil to be reconfigured for imaging the left, right, or both breasts.
Collapse
|
18
|
Pinker K, Helbich TH, Magometschnigg H, Fueger B, Baltzer P. [Molecular breast imaging. An update]. Radiologe 2014; 54:241-53. [PMID: 24557495 DOI: 10.1007/s00117-013-2580-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CLINICAL/METHODICAL ISSUE The aim of molecular imaging is to visualize and quantify biological, physiological and pathological processes at cellular and molecular levels. Molecular imaging using various techniques has recently become established in breast imaging. STANDARD RADIOLOGICAL METHODS Currently molecular imaging techniques comprise multiparametric magnetic resonance imaging (MRI) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), proton MR spectroscopy ((1)H-MRSI), nuclear imaging by breast-specific gamma imaging (BSGI), positron emission tomography (PET) and positron emission mammography (PEM) and combinations of techniques (e.g. PET-CT and multiparametric PET-MRI). METHODICAL INNOVATIONS Recently, novel techniques for molecular imaging of breast tumors, such as sodium imaging ((23)Na-MRI), phosphorus spectroscopy ((31)P-MRSI) and hyperpolarized MRI as well as specific radiotracers have been developed and are currently under investigation. PRACTICAL RECOMMENDATIONS It can be expected that molecular imaging of breast tumors will enable a simultaneous assessment of the multiple metabolic and molecular processes involved in cancer development and thus an improved detection, characterization, staging and monitoring of response to treatment will become possible.
Collapse
Affiliation(s)
- K Pinker
- Abteilung für Molekulare Bildgebung, Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | | | | | | | | |
Collapse
|
19
|
Valkovič L, Chmelík M, Just Kukurová I, Jakubová M, Kipfelsberger MC, Krumpolec P, Tušek Jelenc M, Bogner W, Meyerspeer M, Ukropec J, Frollo I, Ukropcová B, Trattnig S, Krššák M. Depth-resolved surface coil MRS (DRESS)-localized dynamic (31) P-MRS of the exercising human gastrocnemius muscle at 7 T. NMR IN BIOMEDICINE 2014; 27:1346-1352. [PMID: 25199902 DOI: 10.1002/nbm.3196] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/04/2014] [Accepted: 07/31/2014] [Indexed: 06/03/2023]
Abstract
Dynamic (31) P-MRS with sufficiently high temporal resolution enables the non-invasive evaluation of oxidative muscle metabolism through the measurement of phosphocreatine (PCr) recovery after exercise. Recently, single-voxel localized (31) P-MRS was compared with surface coil localization in a dynamic fashion, and was shown to provide higher anatomical and physiological specificity. However, the relatively long TE needed for the single-voxel localization scheme with adiabatic pulses limits the quantification of J-coupled spin systems [e.g. adenosine triphosphate (ATP)]. Therefore, the aim of this study was to evaluate depth-resolved surface coil MRS (DRESS) as an alternative localization method capable of free induction decay (FID) acquisition for dynamic (31) P-MRS at 7 T. The localization performance of the DRESS sequence was tested in a phantom. Subsequently, two dynamic examinations of plantar flexions at 25% of maximum voluntary contraction were conducted in 10 volunteers, one examination with and one without spatial localization. The DRESS slab was positioned obliquely over the gastrocnemius medialis muscle, avoiding other calf muscles. Under the same load, significant differences in PCr signal drop (31.2 ± 16.0% versus 43.3 ± 23.4%), end exercise pH (7.06 ± 0.02 versus 6.96 ± 0.11), initial recovery rate (0.24 ± 0.13 mm/s versus 0.35 ± 0.18 mm/s) and maximum oxidative flux (0.41 ± 0.14 mm/s versus 0.54 ± 0.16 mm/s) were found between the non-localized and DRESS-localized data, respectively. Splitting of the inorganic phosphate (Pi) signal was observed in several non-localized datasets, but in none of the DRESS-localized datasets. Our results suggest that the application of the DRESS localization scheme yielded good spatial selection, and provided muscle-specific insight into oxidative metabolism, even at a relatively low exercise load. In addition, the non-echo-based FID acquisition allowed for reliable detection of ATP resonances, and therefore calculation of the specific maximum oxidative flux, in the gastrocnemius medialis using standard assumptions about resting ATP concentration in skeletal muscle.
Collapse
Affiliation(s)
- Ladislav Valkovič
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; High Field MR Center, Medical University of Vienna, Vienna, Austria; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Goette MJ, Keupp J, Rahmer J, Lanza GM, Wickline SA, Caruthers SD. Balanced UTE-SSFP for 19F MR imaging of complex spectra. Magn Reson Med 2014; 74:537-43. [PMID: 25163853 DOI: 10.1002/mrm.25437] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/18/2014] [Accepted: 08/15/2014] [Indexed: 12/30/2022]
Abstract
PURPOSE A novel technique for highly sensitive detection of multiresonant fluorine imaging agents was designed and tested with the use of dual-frequency 19F/1H ultrashort echo times (UTE) sampled with a balanced steady-state free precession (SSFP) pulse sequence and three-dimensional (3D) radial readout. METHODS Feasibility of 3D radial balanced UTE-SSFP imaging was demonstrated for a phantom comprising liquid perfluorooctyl bromide (PFOB). Sensitivity of the pulse sequence was measured and compared with other sequences imaging the PFOB (CF2 )6 line group including UTE radial gradient-echo (GRE) at α = 30°, as well as Cartesian GRE, balanced SSFP, and fast spin-echo (FSE). The PFOB CF3 peak was also sampled with FSE. RESULTS The proposed balanced UTE-SSFP technique exhibited a relative detection sensitivity of 51 μmolPFOB(-1) min(-1/2) (α = 30°), at least twice that of other sequence types with either 3D radial (UTE GRE: 20 μmolPFOB(-1) min(-1/2) ) or Cartesian k-space filling (GRE: 12 μmolPFOB(-1) min(-1/2) ; FSE: 16 μmolPFOB(-1) min(-1/2) ; balanced SSFP: 23 μmolPFOB(-1) min(-1/2) ). In vivo imaging of angiogenesis-targeted PFOB nanoparticles was demonstrated in a rabbit model of cancer on a clinical 3 Tesla scanner. CONCLUSION A new dual 19F/1H balanced UTE-SSFP sequence manifests high SNR, with detection sensitivity more than two-fold better than traditional techniques, and alleviates imaging problems caused by dephasing in complex spectra.
Collapse
Affiliation(s)
- Matthew J Goette
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA
| | | | | | - Gregory M Lanza
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Samuel A Wickline
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Shelton D Caruthers
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Philips Healthcare, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Wijnen JP, Jiang L, Greenwood TR, van der Kemp WJM, Klomp DWJ, Glunde K. 1H/31P polarization transfer at 9.4 Tesla for improved specificity of detecting phosphomonoesters and phosphodiesters in breast tumor models. PLoS One 2014; 9:e102256. [PMID: 25036036 PMCID: PMC4103808 DOI: 10.1371/journal.pone.0102256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To assess the ability of a polarization transfer (PT) magnetic resonance spectroscopy (MRS) technique to improve the detection of the individual phospholipid metabolites phosphocholine (PC), phosphoethanolamine (PE), glycerophosphocholine (GPC), and glycerophosphoethanolamine (GPE) in vivo in breast tumor xenografts. MATERIALS AND METHODS The adiabatic version of refocused insensitive nuclei enhanced by polarization transfer (BINEPT) MRS was tested at 9.4 Tesla in phantoms and animal models. BINEPT and pulse-acquire (PA) 31P MRS was acquired consecutively from the same orthotopic MCF-7 (n = 10) and MDA-MB-231 (n = 10) breast tumor xenografts. After in vivo MRS measurements, animals were euthanized, tumors were extracted and high resolution (HR)-MRS was performed. Signal to noise ratios (SNRs) and metabolite ratios were compared for BINEPT and PA MRS, and were also measured and compared with that from HR-MRS. RESULTS BINEPT exclusively detected metabolites with 1H-31P coupling such as PC, PE, GPC, and GPE, thereby creating a significantly improved, flat baseline because overlapping resonances from immobile and partly mobile phospholipids were removed without loss of sensitivity. GPE and GPC were more accurately detected by BINEPT in vivo, which enabled a reliable quantification of metabolite ratios such as PE/GPE and PC/GPC, which are important markers of tumor aggressiveness and treatment response. CONCLUSION BINEPT is advantageous over PA for detecting and quantifying the individual phospholipid metabolites PC, PE, GPC, and GPE in vivo at high magnetic field strength. As BINEPT can be used clinically, alterations in these phospholipid metabolites can be assessed in vivo for cancer diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Jannie P. Wijnen
- Johns Hopkins University In vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Radiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lu Jiang
- Johns Hopkins University In vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tiffany R. Greenwood
- Johns Hopkins University In vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | | - Dennis W. J. Klomp
- Department of Radiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Kristine Glunde
- Johns Hopkins University In vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Sidney Kimmel Comprehensive Cancer, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
22
|
Rivera DS, Wijnen JP, van der Kemp WJM, Raaijmakers AJ, Luijten PR, Klomp DWJ. MRI and 31
P magnetic resonance spectroscopy hardware for axillary lymph node investigation at 7T. Magn Reson Med 2014; 73:2038-46. [DOI: 10.1002/mrm.25304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Debra S. Rivera
- Department of Neurophysics; Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig Germany
| | - Jannie P. Wijnen
- Department of Radiology; University Medical Center Utrecht; Utrecht the Netherlands
| | | | | | - Peter R. Luijten
- Department of Radiology; University Medical Center Utrecht; Utrecht the Netherlands
| | - Dennis W. J. Klomp
- Department of Radiology; University Medical Center Utrecht; Utrecht the Netherlands
- Department of Radiology; University Medical Center Nijmegen; Nijmegen the Netherlands
| |
Collapse
|
23
|
Wijnen JP, Jiang L, Greenwood TR, Cheng M, Döpkens M, Cao MD, Bhujwalla ZM, Krishnamachary B, Klomp DWJ, Glunde K. Silencing of the glycerophosphocholine phosphodiesterase GDPD5 alters the phospholipid metabolite profile in a breast cancer model in vivo as monitored by (31) P MRS. NMR IN BIOMEDICINE 2014; 27:692-9. [PMID: 24764256 PMCID: PMC4162314 DOI: 10.1002/nbm.3106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 05/18/2023]
Abstract
Abnormal choline phospholipid metabolism is an emerging hallmark of cancer, which is implicated in carcinogenesis and tumor progression. The malignant metabolic phenotype is characterized by high levels of phosphocholine (PC) and relatively low levels of glycerophosphocholine (GPC) in aggressive breast cancer cells. Phosphorus ((31) P) MRS is able to non-invasively detect these water-soluble metabolites of choline as well as ethanolamine phospholipid metabolism. Here we have investigated the effects of stably silencing glycerophosphoester diesterase domain containing 5 (GDPD5), which is an enzyme with glycerophosphocholine phosphodiesterase activity, in MDA-MB-231 breast cancer cells and orthotopic tumor xenografts. Tumors in which GDPD5 was stably silenced with GDPD5-specific shRNA contained increased levels of GPC and phosphoethanolamine (PE) compared with control tumors.
Collapse
Affiliation(s)
- J P Wijnen
- The Johns Hopkins University In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lagemaat MW, Maas MC, Vos EK, Bitz AK, Orzada S, Weiland E, van Uden MJ, Kobus T, Heerschap A, Scheenen TWJ. (31) P MR spectroscopic imaging of the human prostate at 7 T: T1 relaxation times, Nuclear Overhauser Effect, and spectral characterization. Magn Reson Med 2014; 73:909-20. [PMID: 24677408 DOI: 10.1002/mrm.25209] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 11/06/2022]
Abstract
PURPOSE Optimization of phosphorus ((31) P) MR spectroscopic imaging (MRSI) of the human prostate at 7 T by the evaluation of T1 relaxation times and the Nuclear Overhauser Effect (NOE) of phosphorus-containing metabolites. METHODS Twelve patients with prostate cancer and one healthy volunteer were scanned on a 7 T whole-body system using a (31) P endorectal coil combined with an eight-channel (1) H body array coil. T1 relaxation times were measured using progressive saturation in a two-dimensional localization sequence. (31) P MRSI was performed twice: once without NOE and once with NOE using low-power continuous wave (1) H irradiation to determine NOE enhancements. RESULTS T1 relaxation times of (31) P metabolites in the human prostate at 7 T varied between 3.0 and 8.3 s. Positive but variable NOE enhancements were measured for most metabolites. Remarkably, the (31) P MR spectra showed two peaks in chemical shift range of inorganic phosphate. CONCLUSION Knowledge of T1 relaxation times and NOE enhancements enables protocol optimization for (31) P MRSI of the prostate at 7 T. With a strongly reduced (31) P flip angle (≤ 45°), a (31) P MRSI dataset with optimal signal-to-noise ratio per unit time can be obtained within 15 minutes. The NOE enhancement can improve fitting accuracy, but its variability requires further investigation.
Collapse
Affiliation(s)
- Miriam W Lagemaat
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stehouwer BL, van der Kemp WJM, Luijten PR, van den Bosch MAAJ, Veldhuis WB, Wijnen JP, Klomp DWJ. 31P magnetic resonance spectroscopy of the breast and the influence of the menstrual cycle. Breast Cancer Res Treat 2014; 144:583-9. [DOI: 10.1007/s10549-014-2889-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/15/2014] [Indexed: 02/03/2023]
|
26
|
Esmaeili M, Moestue SA, Hamans BC, Veltien A, Kristian A, Engebråten O, Maelandsmo GM, Gribbestad IS, Bathen TF, Heerschap A. In vivo ³¹P magnetic resonance spectroscopic imaging (MRSI) for metabolic profiling of human breast cancer xenografts. J Magn Reson Imaging 2014; 41:601-9. [PMID: 24532410 DOI: 10.1002/jmri.24588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/20/2014] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To study cancer associated with abnormal metabolism of phospholipids, of which several have been proposed as biomarkers for malignancy or to monitor response to anticancer therapy. We explored 3D (31) P magnetic resonance spectroscopic imaging (MRSI) at high magnetic field for in vivo assessment of individual phospholipids in two patient-derived breast cancer xenografts representing good and poor prognosis (luminal- and basal-like tumors). MATERIALS AND METHODS Metabolic profiles from luminal-like and basal-like xenograft tumors were obtained in vivo using 3D (31) P MRSI at 11.7T and from tissue extracts in vitro at 14.1T. Gene expression analysis was performed in order to support metabolic differences between the two xenografts. RESULTS In vivo (31) P MR spectra were obtained in which the prominent resonances from phospholipid metabolites were detected at a high signal-to-noise ratio (SNR >7.5). Metabolic profiles obtained in vivo were in agreement with those obtained in vitro and could be used to discriminate between the two xenograft models, based on the levels of phosphocholine, phosphoethanolamine, glycerophosphocholine, and glycerophosphoethanolamine. The differences in phospholipid metabolite concentration could partly be explained by gene expression profiles. CONCLUSION Noninvasive metabolic profiling by 3D (31) P MRSI can discriminate between subtypes of breast cancer based on different concentrations of choline- and ethanolamine-containing phospholipids.
Collapse
Affiliation(s)
- Morteza Esmaeili
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kraff O, Fischer A, Nagel AM, Mönninghoff C, Ladd ME. MRI at 7 Tesla and above: demonstrated and potential capabilities. J Magn Reson Imaging 2014; 41:13-33. [PMID: 24478137 DOI: 10.1002/jmri.24573] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/03/2014] [Indexed: 12/29/2022] Open
Abstract
With more than 40 installed MR systems worldwide operating at 7 Tesla or higher, ultra-high-field (UHF) imaging has been established as a platform for clinically oriented research in recent years. Along with technical developments that, in part, have also been successfully transferred to lower field strengths, MR imaging and spectroscopy at UHF have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. In terms of applications, this overview article focuses on already achieved advantages for in vivo imaging, i.e., in imaging the brain and joints of the musculoskeletal system, but also considers developments in body imaging, which is particularly challenging. Furthermore, new applications for clinical diagnostics such as X-nuclei imaging and spectroscopy, which only really become feasible at ultra-high magnetic fields, will be presented.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | | | | | | | | |
Collapse
|
28
|
Valkovič L, Bogner W, Gajdošík M, Považan M, Kukurová IJ, Krššák M, Gruber S, Frollo I, Trattnig S, Chmelík M. One-dimensional image-selected in vivo spectroscopy localized phosphorus saturation transfer at 7T. Magn Reson Med 2014; 72:1509-15. [PMID: 24470429 DOI: 10.1002/mrm.25058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/07/2023]
Abstract
PURPOSE To evaluate the feasibility of a one-dimensional image-selected in vivo spectroscopy (1D-ISIS) saturation transfer (ST) sequence at 7T for localized in vivo measurements of energy metabolism in different tissues in clinically reasonable examination times. METHODS The performance of a gradient offset independent adiabacity-based 1D-ISIS localization was tested on phantom and the localized ST sequence was compared with the nonlocalized version in vivo. We performed localized measurements of basal metabolism of human liver and different muscle groups of the calf. Localized ST experiments took 15-25 minutes. RESULTS The selectivity of the 1D-ISIS sequence was 81.63% and the outer volume suppression was 97.57%. The ST parameters acquired with the 1D-ISIS sequence and with the nonlocalized acquisition in the muscle were not statistically different. The forward rate constants for phosphocreatine (PCr)-adenosine triphosphate (ATP) and inorganic phosphate (Pi)-ATP exchange reactions were measured in the soleus (kCK = 0.30 ± 0.06 s(-1) and kATP = 0.11 ± 0.02 s(-1) , respectively) and in the medial gastrocnemius (kCK = 0.27 ± 0.06 s(-1) and kATP = 0.09 ± 0.03s(-1) , respectively) in 15 minutes per muscle group. The corresponding fluxes were FCK = 6.26 ± 1.28 μmol/g/s, FATP = 0.22 ± 0.05 μmol/g/s and FCK = 6.29 ± 1.66 μmol/g/s, FATP = 0.21 ± 0.07 μmol/g/s, for soleus and gastrocnemius, respectively. The hepatic ATP synthesis measurement was feasible in 24 minutes. CONCLUSION The fast assessment of PCr-ATP and Pi-ATP exchange rates at 7T makes the 1D-ISIS ST sequence a promising tool for examining local resting-state metabolism in clinically acceptable measurement times.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the breast at 7 T. Eur Radiol 2013; 24:913-20. [DOI: 10.1007/s00330-013-3075-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/11/2013] [Accepted: 11/03/2013] [Indexed: 12/18/2022]
|
30
|
van der Kemp WJM, Boer VO, Luijten PR, Stehouwer BL, Veldhuis WB, Klomp DWJ. Adiabatic multi-echo ³¹P spectroscopic imaging (AMESING) at 7 T for the measurement of transverse relaxation times and regaining of sensitivity in tissues with short T₂ values. NMR IN BIOMEDICINE 2013; 26:1299-307. [PMID: 23553945 DOI: 10.1002/nbm.2952] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 05/12/2023]
Abstract
An adiabatic multi-echo spectroscopic imaging (AMESING) sequence, used for (31) P MRSI, with spherical k-space sampling and compensated phase-encoding gradients, was implemented on a whole-body 7-T MR system. One free induction decay (FID) and up to five symmetric echoes can be acquired with this sequence. In tissues with low T2 and high T2 , this can theoretically lead to a potential maximum signal-to-noise ratio (SNR) increase of almost a factor of three, compared with a conventional FID acquisition with Ernst-angle excitation. However, with T2 values being, in practice, ≤400 ms, a maximum enhancement of approximately two compared with low flip Ernst-angle excitation should be feasible. The multi-echo sequence enables the determination of localized T2 values, and was validated with (31) P three-dimensional MRSI on the calf muscle and breast of a healthy volunteer, and subsequently applied in a patient with breast cancer. The T2 values of phosphocreatine, phosphodiesters (PDE) and inorganic phosphate in calf muscle were 193 ± 5 ms, 375 ± 44 ms and 96 ± 10 ms, respectively, and the apparent T2 value of γ-ATP was 25 ± 6 ms. A T2 value of 136 ± 15 ms for inorganic phosphate was measured in glandular breast tissue of a healthy volunteer. The T2 values of phosphomonoesters (PME) and PDE in breast cancer tissue (ductulolobular carcinoma) ranged between 170 and 210 ms, and the PME to PDE ratios were calculated to be phosphoethanolamine/glycerophosphoethanolamine = 2.7, phosphocholine/glycerophosphocholine = 1.8 and PME/PDE = 2.3. Considering the relatively short T2 values of the metabolites in breast tissue at 7 T, the echo spacing can be short without compromising spectral resolution, whilst maximizing the sensitivity.
Collapse
Affiliation(s)
- W J M van der Kemp
- Image Sciences Institute, Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Hu L, Chen J, Yang X, Senpan A, Allen JS, Yanaba N, Caruthers SD, Lanza GM, Hammerman MR, Wickline SA. Assessing intrarenal nonperfusion and vascular leakage in acute kidney injury with multinuclear (1) H/(19) F MRI and perfluorocarbon nanoparticles. Magn Reson Med 2013; 71:2186-96. [PMID: 23929727 DOI: 10.1002/mrm.24851] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/20/2013] [Accepted: 06/02/2013] [Indexed: 01/19/2023]
Abstract
PURPOSE We sought to develop a unique sensor-reporter approach for functional kidney imaging that employs circulating perfluorocarbon nanoparticles and multinuclear (1) H/(19) F MRI. METHODS (19) F spin density weighted and T1 weighted images were used to generate quantitative functional mappings of both healthy and ischemia-reperfusion (acute kidney injury) injured mouse kidneys. (1) H blood-oxygenation-level-dependent (BOLD) MRI was also employed as a supplementary approach to facilitate the comprehensive analysis of renal circulation and its pathological changes in acute kidney injury. RESULTS Heterogeneous blood volume distributions and intrarenal oxygenation gradients were confirmed in healthy kidneys by (19) F MRI. In a mouse model of acute kidney injury, (19) F MRI, in conjunction with blood-oxygenation-level-dependent MRI, sensitively delineated renal vascular damage and recovery. In the cortico-medullary junction region, we observed 25% lower (19) F signal (P < 0.05) and 70% longer (1) H T2* (P < 0.01) in injured kidneys compared with contralateral kidneys at 24 h after initial ischemia-reperfusion injury. We also detected 71% higher (19) F signal (P < 0.01) and 40% lower (1) H T2* (P < 0.05) in the renal medulla region of injured kidneys compared with contralateral uninjured kidneys. CONCLUSION Integrated (1) H/(19) F MRI using perfluorocarbon nanoparticles provides a multiparametric readout of regional perfusion defects in acutely injured kidneys.
Collapse
Affiliation(s)
- Lingzhi Hu
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
In vivo magnetic resonance spectroscopy (MRS) of the breast can be used to measure the level of choline-containing compounds, which is a biomarker of malignancy. In the diagnostic setting, MRS can provide high specificity for distinguishing benign from malignant lesions. MRS also can be used as an early response indicator in patients undergoing neoadjuvant chemotherapy. This article describes the acquisition and analysis methods used for measuring total choline levels in the breast using MRS, reviews the findings from clinical studies of diagnosis and treatment response, and discusses problems, limitations, and future developments for this promising clinical technology.
Collapse
Affiliation(s)
- Patrick J Bolan
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55419, USA.
| |
Collapse
|
33
|
Response to trastuzumab by HER2 expressing breast tumour xenografts is accompanied by decreased Hexokinase II, glut1 and [18F]-FDG incorporation and changes in 31P-NMR-detectable phosphomonoesters. Cancer Chemother Pharmacol 2012. [DOI: 10.1007/s00280-012-2032-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|